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Abstract. In this paper, numerical solution of general Lane-Emden equation via colloca-
tion method based on Double Exponential (DE) transformation is considered. The method
converts equation to the nonlinear Volterra integral equation. Numerical examples show the
accuracy of the method. Also, some remarks with respect to run-time, computational cost
and implementation are discussed.
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1. Introduction

The Lane-Emden type equations are obtained from Emden-Fowler equation which
is of the form [3]:

y
′′
+

2

t
y

′
+ g(t)f(y(t)) = h(t), 0 < t < ∞, (1)

with conditions:

y(0) = a, y
′
(0) = 0, (2)
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where a is a constant and f(y), g(t), h(t) are given functions, y(t) is unknown
function and must be determined.
By selecting f(y) = ym, h(t) = 0, g(t) = 1, the Lane-Emden type equations are

obtained:

y
′′
+

2

t
y

′
+ ym(t) = 0, 0 < t < ∞. (3)

Lane-Emden equation is linear for m = 0, 1, and nonlinear otherwise. Exact solu-
tions exist only for m = 0, 1, 5 that are given in Bender [1], respectively, by

m = 0, y(t) = 1− 1

3!
t2,

m = 1, y(t) =
sin(t)

t
,

m = 5, y(t) = (1 +
t2

3
)−1/2.

(4)

The Lane-Emden type equations have significant application in nonlinear science
and are frequently used to model the several phenomena in mathematical physics
and astrophysics such as the theory of stellar structure, the thermal behavior of
a spherical cloud of gas acting under the mutual attraction of its molecules and
subject to the classical law of the thermodynamics. A discussion of the formulation
of these models can be found in Chandrasekhar [4], Shawagfeh [19], Horedt [12],
Biles [3] and Davis [5].

Many different methods are usually use to solve Eq. (1). He developed the
variational iteration method (VIM) [11]. Liao solved Lane-Emden type equations
by applying a homotopy analysis method [13]. Youseffi used Legendre wavelets to
obtain approximated solution [25]. Wazwaz in [23, 24] used Adomian decomposi-
tion method to solve Eq.(1), also many authors introduced a modification of ADM
for solving Lane-Emden singular problems. Bender et al used perturbation method
based on existence of small parameter [1]. Sinc collocation method in [18] was
applied by single exponential and derivation form of function y to approximate
the solution.

Sinc method is a powerful numerical tool for finding fast and accurate solution
in various areas of problems [14, 20]. Double exponential transformation, abbre-
viated as DE was first proposed by Takahasi and Mori [22] in 1974. It has come
to be widely used in applications. Also, it is known that the double exponential
transformation gives an optimal result for numerical evaluation of definite integral
of an analytic function [16]. However, Sugihara [15, 21] has recently found that the
errors in the Sinc numerical methods are O(exp(−cN/logN)) with some c > 0.
The main difficulty arises in the singularity of the Eq. (1) at t = 0. Because

of the singularity, the solution may be not differentiable at t = 0 and system of
equations in this case becomes ill-conditioned as the number of basis functions
increases. Discussion in [17] shows using smoothing transformation in cooperate
with sinc approximation is generally an effective tool with derivative singularity at
endpoints. Furthermore, it can be examined numerically that in this method, the
system of equations is well-conditioned.
The main purpose of the present research is to consider the numerical solution

of Lane-Emden integral equations corresponding to ordinary differential equation
based on double exponential transformation by converting Eq. (1) to an integral
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equation and investigating computational cost and implementation of the algo-
rithm.
The layout of the paper is as follows: in section 2, we give some basic definitions,

assumptions and preliminaries of the sinc approximations and related topics. In
section 3, the proposed method to solve the corresponding Lane-Emden integral
equation is applied. Finally, section 4, contains the details of the proposed algorithm
and numerical implementation and some experimental results.

2. Basic definitions and preliminaries

Let f be a function defined on R and h > 0 is step size then the Whittaker cardinal
defined by the series

C(f, h)(x) =
∞∑

j=−∞
f(jh)S(j, h)(x), (5)

whenever this series convergence, and

S(j, h)(x) =
sin[π(x− jh)/h]

π(x− jh)/h
, j = 0,±1,±2, .. (6)

where S(j, h)(x) is known as j − th Sinc function evaluated at x.
Moreover, let us consider H1(Dd) be the family of all functions g analytic in Dd,

such that

N1(g,Dd) = limϵ→0

∫
∂Dd(ϵ)

|g(t)||dt| < ∞,

Dd(ϵ) = {t ∈ C, |Ret| < 1
ϵ , |Imt| < d(1− ϵ)}.

We recall the following definitions from [14, 20], that will become instrumental
in establishing our useful formulas:

Definition 2.1 A function g is said to be decay double exponentially, if there exist
constants α and C, such that:

|g(t)| ⩽ C exp(−α exp |t|), t ∈ (−∞,∞)

equivalently, a function g is said to be decay double exponentially with respect to
conformal map ϕ, if there exist positive constants α and C such that:

|g(ϕ(t))ϕ′(t)| ⩽ C exp(−α exp |t|), t ∈ (−∞,∞).

Here, we suppose thatKα
ϕ (Dd) denote the family of functions g where g(ϕ(t))ϕ′(t)

belongs to H1(Dd) and decays double exponentially with respect to ϕ. If f belongs
to Kα

ϕ (Dd) with respect to ϕ, then we have the following formulas for definite and
indefinite integrals based on DE transformation.

Theorem 2.1 [10, 14, 20] Let f ∈ Kα
ϕ (Dd) then DE formula for indefinite inte-
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gration is:

∫ x

a
f(x)dx = h

N∑
j=−N

f(ϕ(jh))ϕ′(jh)(
1

2
+

1

π
Si(

πϕ−1(x)

h
− jπ))

+O(
logN

N
exp(− πdN

log(πdN/α)
)),

(7)

where

ϕ(t) =
b− a

2
tanh(

π

2
sinh t) +

a+ b

2
, (8)

ϕ′(t) =
b− a

2

π/2 cosh(t)

cosh2(π/2 sinh(t))
, (9)

also Si(t) is the Sine integral defined by:

Si(t) =

∫ t

0

sinw

w
dw,

and the mesh size h satisfies h = 1
N log(πdN/α).

3. Main idea

We consider Eq. (1) as follows:

ty
′′
+ 2y

′
= −tg(t)f(y(t)) + th(t), 0 < t < ∞, (10)

By integrating (10) with respect to s from (0, t) with t < T we get:

∫ t

0
sy

′′
(s)ds+ 2

∫ t

0
y

′
(s)ds =

∫ t

0
[−sg(s)f(y(s)) + sh(s)] ds. (11)

By using the initial conditions (2) we obtain

[ty(t)]
′
= a+

∫ t

0
{−sg(s)f(y(s)) + sh(s)} ds. (12)

By Integrating again and simplifying, it results

y(t) =a+
1

t

∫ t

0
(t− s) {−sg(s)f(y(s)) + sh(s)} ds

=a+

∫ t

0

(
s2

t
− s

)
{g(s)f(y(s))− h(s)} ds,

(13)
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which is a nonlinear Volterra integral equation of the second kind with weakly
singular kernel. Eq. (13) can be written as:

y(t) = F (t) +

∫ t

0
K(t, s)f(y(s))ds, (14)

where,

K(t, s) =

(
s2

t
− s

)
g(s),

F (t) = a−
∫ t

0
K(t, s)h(s)ds.

(15)

To apply DE transformation for approximation of Eq. (14), first, we apply The-
orem 1 to the Volterra integral part of Eq. (14), so we get:

∫ t

0
K(t, s)f(y(s))ds ≃ h

N∑
j=−N

K(t, ϕ(jh))ϕ′(jh)(
1

2
+

1

π
Si(

πϕ−1(t)

h
− jπ))f(yj),

(16)
where yj denotes an approximation value of y(tj) and

h =
1

N
log(πdN/α). (17)

If we substitute (16) in the right-hand side of (14), we obtain:

y(t) ≃ F (t) + h

N∑
j=−N

K(t, ϕ(jh))ϕ′(jh)(
1

2
+

1

π
Si(

πϕ−1(t)

h
− jπ))f(yj). (18)

There are 2N + 1 unknowns yj , j = −N..N to be determined. In order to
determine these variables we use collocation method at Sinc points as follows:

ϕ(tk) =
b− a

2
tanh(

π

2
sinhhk) +

a+ b

2
, k = −N..N. (19)

So, we have the following nonlinear system of 2N + 1 unknowns:

y(tk) = F (tk) + h

N∑
j=−N

K(xk, ϕ(jh))ϕ
′(jh)(

1

2
+

1

π
Si(

πϕ−1(t)

h
− jπ))f(yj). (20)

By solving above system of nonlinear equations, we obtain approximate solution
yj , j = −N..N which corresponds to the exact solution y(tj) at the sinc points tj .
To obtain an approximation in arbitrary t we use a method similar to the Nyström
method for the Volterra integral equations as:

yN (t) = F (t) + h
N∑

j=−N

K(t, ϕ(jh))ϕ′(jh)(
1

2
+

1

π
Si(

πϕ−1(t)

h
− jπ))f(yj). (21)
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System (20) can be shown in the matrix form

ũ1 = p+Aũ2, (22)

where,

Akj = [K(tk, ϕ(jh))ϕ
′(jh)(

1

2
+

1

π
Si((k − j)π))],

ũ1 = [yj ]
t, j = −N..N,

ũ2 = [f(yj)]
t, j = −N..N,

p = [F (tk)]
t, k = −N..N.

(23)

4. Numerical experiments

At first, we give the following algorithm to compute numerical solution of Eq. (1):
Algorithm1:
Step1: Input a, T,N, α, f(y), h(t), g(t), ϕ(t)
Step2: Execute nested loops
z := 1
Take h by relation(17)
for k = −N..N do
tk = ϕ(kh)
ss := 0 ;
eq[z] := 0
for j = −N..N do
ss := ss+K(tk, ϕ(jh))ϕ

′(jh)(12 + 1
πSi((k − j)π))

end do
eq[z] := yk − h ∗ ss− F (tk).
z := z + 1
end do
Step3: Solve nonlinear system of equations eq[z] = 0, z = 1..2N + 1 by Newton
method.
Step4: Output yj , j = −N..N and (21) to approximate the solution.

In this section, based on Algorithm 1, two examples are presented to illustrate the
effectiveness and importance of proposed method. All programs have been provided
by Maple 13. Also, in order to show the error and the accuracy of approximation,
we apply the following criteria:
1) Absolute error between the exact and approximated solution (L∞error norm)is
defined by

∥.∥∞ = Maxi=−N..N |y(ti)− yN (ti)| (24)

2) Run time of program which is showed by T(s),(s means second).

Example 4.1 Consider the Lane-Emden equation with m = 1:
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Table 1. Results of Example 1 by Sinc collocation method for m = 1.

N T (s) h ∥.∥∞
5 1.90 0.17087 1.65E-2
10 2.00 0.15475 6.78E-3
15 1.72 0.13019 6.13E-3
30 6.53 0.08820 1.06E-3
60 25.87 0.05565 2.95E-4

Table 2. Results of Example 1 by Sinc collocation method.

N N = 5 N = 10 N = 15 N = 25

yN 4.77 5.00 4.98 4.999999
2.70E-3 1.27E-6 1.92E-8 3.23E-13

yN−1 4.55 4.99 4.95 4.9999997
2.24E-3 5.56E-7 2.44E-8 1.80E-13

yN−2 4.22 4.96 4.90 4.999998
2.78E-3 4.33E-6 1.24E-7 1.30E-14

y
′′
+

2

t
y

′
+ y = 0, 0 < t < 5, (25)

with condition y(0) = 1, y
′
(0) = 0.

To obtain results, we take several numbers of basic functions, such as N =
5, 10, 15, 30, 60. Also, in order to have better results we concentrate on the men-
tioned criteria as run-time (column T (s) in Table 1(second)) and Norm infinity
(column ∥.∥∞). The results in Sinc collocation method are shown in Table 1.
This table indicates that as N increases the errors decrease. Although, Sinc ap-

proximation is of order exponential but column ∥.∥∞ shows error decreases slowly.
It is due to singularity at t = 0.
For full discussion, we compare results in table 2 at three points yN , yN−1, yN−2

for different values of N . As seen in table 2, by decreasing N , the error between
exact value and approximated value decreases rapidly. For example with N = 25
at t = 4.999999 error is 3.23E − 13 which is very noticeable.
Also, we must notice the size of linear system in the case N = 60 is 121 × 121.

By considering the run time of program in this case, an important property of this
method is remarkable.
Figure 1. shows the exact and approximate solution of this example with m = 1
and N = 3.

Example 4.2 Consider the following Lane-Emden equation with m = 3:

y
′′
+

2

t
y

′
+ y3(t) = 0, 0 < t < 1, (26)
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Figure 1. Exact and approximate solution of Example 1 for m = 1 and N = 3.

Figure 2. Approximate solution of Example 2 with m = 3 in comparison with m = 1 and m = 5.

with conditions:

y(0) = 0, y
′
(0) = 0. (27)

the closed-form of the solution is not known, but it is shown that the approximated
closed-form solution u(t) = sech( t√

3
) is attained [2].

Table 3 shows error in three points y−N , y0, yN for different values of N . In this
example ∥.∥∞ = 10E − 3, but error in each cell between exact and closed form is
very small. The solutions are more accurate than the results in [18].
Figure 2, shows approximate solution for m = 3 in comparison with the exact

solution by m = 1 and m = 5.
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Table 3. Results of Example 2 by Sinc collocation method.

N N = 5 N = 7 N = 10

y−N 0.0001 0.0024 0.00001
1.73E-5 2.23E-7 6.53E-8

y0 0.5 0.5 0.5
2.44E-5 5.49E-6 2.63E-7

yN 0.9823 0.9758 0.9998
1.42E-5 3.2E-7 4.43E-9

∥.∥∞ 1.79E-3 1.34E-3 1.33E-3

However, results show that the method is practically well. Also, Sinc collocation
method gives better accuracy at the computational cost, also the implementing
and coding are very easy.

5. Conclusion

We applied the sinc collocation method based on double exponential transformation
to Lane-Emden type differential equations. Sinc collocation method in run time
has good reliability and efficiency even when singularity occurs at end points. In
addition, based on [6–9] this method is portable to other area of problems and easy
to programming.
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