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Abstract. Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of 
sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist 
competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP 
into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution 
country swarm, and help the evolution country swarm to approach or land in the feasible region of 
the problem, three kinds of different methods of colonies moving toward their relevant imperialist 
are given. Thirdly, the new operator for exchanging position of the imperialist and colony is given 
similar as a recombination operator in genetic algorithm to enrich the exploration and exploitation 
abilities of the proposed algorithm. At last, the new approach is tested on two well-known NP-hard 
nonlinear constrained optimization functions, and the empirical evidence suggests that the 
proposed method is robust, efficient, and generic. 
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1. Introduction  

In portfolio and engineering disciplines, many optimization problems involve in the 
constraint environments [1,3]. That's to say, the optimal solution of those practical 
problems are restricted to the problem's constraint conditions. When solving these 
optimization problems, it is difficult to deal with the constraints and find the real optimal 
solution or approximation optimal solution. 

Mostly often, constraint handling methods can be identified two types: one is generic 
methods that do not exploit the mathematical structure of the constraints, and the other is 
special methods that used to solve these problems with specific types of constraints. In 
fact, among the generic methods, the most popular approach is the penalty function 
method, in which involves a number of penalty parameters and we must to set right in any 
algorithms in order to obtain the optimal solution. 

Imperialist competitive algorithm (ICA), similar to the genetic algorithm, is a kind of 
generic algorithm proposed by E. Atashpaz-Gargari and C. Lucas [4] in 2007. Imperialist 
competitive algorithm mainly mimics the social–political process of imperialism and 
imperialistic competition, it has also been succeeded widely to solve many real world 
optimization problems in recent years, e.g., in [5], Mahdi A., Ayaz I., and Davoud A. 
introduced an imperialist competitive  algorithm  for  solving  systems  of  nonlinear
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equations, and in [6], the authors designed a multi-objective imperialist competitive 
algorithm to solve a capacitated hub covering location problem, E. Shokrollahpour, M. 
Zandieh and B. Dorri [7] proposed a novel imperialist competitive algorithm for solving 
bi-criteria scheduling of the assembly flow-shop problem, etc. 

In this paper, we proposed a new multiobjective optimization method based on the 
imperialist competitive algorithm to solve NCOP, Firstly, the considering nonlinear 
constrained optimization problem is transformed into a bi-objective optimization problem. 
Then, in order to improve the diversity of evolution country swarm, and help the evolution 
country swarm to approach or land in the feasible region, three kinds of different methods 
of colonies moving toward their relevant imperialist are presented. Also, the new operator 
for exchanging position of the imperialist and colony is given. At last, the new method is 
tested on three NP-hard nonlinear constrained optimization functions, and compared with 
four state-of-the-art algorithms, the proposed algorithm has remarkably advantage in terms 
of the best, mean, the worst objective function values and the standard deviations, i.e., it is 
indicated that the proposed algorithm can effectively solve NCOP.
 

2. Related concepts of NCOP 

Considered the following nonlinear constrained optimization problem (NCOP): 
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is called the feasible region, and [ , ]L U  is called the search region. 

Definition 1. For every point x D , if exists a point *x D  such that *( ) ( )f x f x  

holds, then the point *x  is called the optimal solution, and *( )f x  is the optimal value for 

problem (1).  
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  , where ( )f x  is the 

objective function of problem (1) and 2 ( )f x  is the optimization function defined by the 

constraints condition of problem (1), then, we can transform the nonlinear constrained 
optimization problem (1) into the biobjective optimization problem as follows: 

1 2[ , ]
min ( ) ( ( ), ( ))

x D L U
F x f x f x

 
  (3) 

For the biobjective optimization problem (3), when to minimize the first objective 
function f1(x), it means to find a feasible point so as to become the optimal solution of 
problem (1), and to minimize the second objective function f2(x), it means to search the 
point in order to meet all the constraints of problem (1). Therefore, when to minimize the 
two objectives function of problem (3) simultaneously means searching for the point so as 
to satisfy all the constraints and make the objective function of problem (1) to reach the 
optimum. 
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3. Imperialist competitive algorithm 

Imperialist competitive algorithm (ICA) is proposed by the authors E. Atashpaz-Gargari 
and C. Lucas [4] in 2007, during the operation process of ICA, the initial evolution country 
swarm should be generated firstly. Among the initial country swarm, some of the best 
countries are selected to form the initial imperialists, and the rest of the countries are 
divided among the initial imperialists as colonies. Then, each imperialist along with its 
colonies is regard as empire. All the empires start to compete among each other. The 
weakest empire, which cannot succeed in this competition, will be eliminated from the 
competition and take part in the strongest power imperialist. Finally, the collapse 
mechanism will cause all the colonies to converge to a state which is the optimal solution. 

Initial empires creation. Randomly generate pop initial countries in search space, 

denote them as 1 2country ( , , , )i i i T
ni x x x  for 1,2, ,i pop  , and define the cost of each 

countryi  as follows: 
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Select N of the most powerful countries to form empires, the rest countries of the initial 
countries will become colonies of each of empires according to their power. Thus, each 
empire receives a number of colonies. At last, these initial countries is divided into two 
groups: imperialist and colony (denote in imperialisti and colonyj for 1,2, ,i N  , 

1,2, ,j pop N  , respectively). In order to form the initial empires, we divide colonies 

into N imperialists based on their power. Here, we divide these colonies among 
imperialists according to the roulette wheel selection as follows: 

Step1: Suppose the normalized power of each imperialist is defined by 

1
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where pj is the normalized power of the j-th imperialist, and 
1
max{ }j j i

i N
C c c

 
  is the 

normalized cost of the j-th imperialistj for 1,2, ,j pop N  is the cost of the i-th 

imperialisti for 1,2, ,i N  . 

Step2: Generate the initial number of the colonies belonging to each empire based on the 
following formula 

. . { ( )}j jN C round p pop N   . 

where N.C.j is the number of initial colonies of the j-th empire, and pop-N is the total 
number of all initial colonies. 

Step3: Select N.C.j of the colonies based on the roulette wheel selection and join them to 
the j-th imperialist. These colonies along with the imperialist together will form the j-th 
empire (denotes empirej, 1,2, ,j pop N  ). 

Method of colonies moving toward their relevant imperialist. In [4], the authors make 
each colony to move toward the imperialist by x-units in the direction which is the vector 
from colony to imperialist. x will be a random variable with uniform distribution, i.e., 

(0, )x U d �  (6) 
where 1  and d is the distance between the colony and imperialist, parameter  causes 

the colony to get closer to the imperialist from both sides. In this section, we proposed a 
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new method of colonies moving to their relevant imperialist based on the character of 
optimization problem (1). Suppose that we make the colonyj ( 1,2, ,j pop N  ) to 

move the imperialisti( 1,2, ,i N  ), then, 

Case1: If both imperialisti and colonyj are feasible,  then  we generate a circle which 
the diameter is the straight-line segment d joining the imperialisti and colonyj , the new 

position colonyk  of colonyj  moved is shown in a gray colour in Figure1(a), where A 

and r are two random numbers with uniform distribution, i.e., 
( , )A U  �  and (0, cos )r U d A� . (7) 

Case2: If both imperialisti and colonyj are infeasible, then, we random select a colonys 
from feasible region D, then compute the barycenter of three countries colonyj, imperialisti 
and colonys, then, the barycenter (denoted by colonyk in Figure1(b)) can be regarded as 
the new position which colonyj move to imperialisti. 

Case3: If exists one feasible country between colonyj and imperialisti, suppose colonyj 
is feasible country and imperialisti is infeasible country and vice versa, then, we generate a 
circle which the circle's center is colonyj and the radius is the straight-line segment L 
joining the colonyj and imperialisti, the new position colonyk of colonyj moved to 
imperialisti is shown in a gray colour in Fig.1(c), where B is a random number with 
uniform distribution, i.e., ( , )B U  � , where is a parameter that adjusts the deviation 

of direction which is the vector from colonyj to imperialisti, ( , )l U o L �  is a random 

number with uniform distribution, and  and  are arbitrary. In most of our 

implementation, the value of 1 2  and 1  have a good convergence to the global 

minimum and can make the feasible colonyj not far away from the feasible region. 

Exchanging position of the imperialist and colony. The operator of exchanging 
positions of the imperialist and the colony can be described as follows: 

(1) If both colony j and imperialist i are feasible, and suppose that the cost of colony j 
has lower cost than that the imperialist i does, i.e., f1(colony j)<f1(imperialist i), then we 
use the colony j to replace the imperialist i and form the new imperialist, vice versa. 

(2) If both colony j and imperialist i are unfeasible, then we always choose the one with 
the smaller cost as the new imperialist i, i.e., if f2(colonyj)>f2(imperialisti), then keep 
imperialisti invariable, otherwise, if f2(colonyj)<f2(imperialisti), then use the colony j to 
replace the imperialisti and form new imperialist. 

(3) If exists one feasible country between the colonyj and imperialisti, we always use 
the feasible as the new imperialist in order to make the evolution country swarm 
approaching the feasible region and fast convergence to the minimum. 

                                                               
                        
 
                                                                                             
                          
 

 
              (a)                         (b)                          (c) 

Figure 1. The method of colony moving to imperialist based on colonyj and imperialisti 
in search space [L,U]; (a) both colonyj and imperialisti are feasible; (b) both colonyj and 
imperialisti are infeasible; (c) colonyj is feasible and imperialisti is infeasible. 
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4. Multiobjective imperialist competitive evolutionary algorithm 

Step1 Generate initial country size pop, randomly generate initial country swarm in 
search space [L,U], and denotes them as the set pop(0), find the weekly Pareto optimal 
countries in pop(0) and denote them as an external set C(0), let t=0. 

Step2 Generate initial empires, i.e. select N of the most powerful countries from pop(t) 
and divide the rest countries to each of them. 

Step3 Make each of colonies to move toward relative imperialist based on the method 
of colonies moving toward their relevant imperialist, and exchange the position of the 
imperialist and the colony. 

Step4 Find the weekly Pareto optimal countries in the set ( ) ( 1)C t pop t   and use 

them to replace those countries in C(t) to form the new external set C(t+1). 

Step5 If the maximum number of the cycles has been reached, the algorithm stop; 
output the optimal solution of problem (1), otherwise, let t=t+1, go to step 2. 

5. Numerical simulation 

Test problems. To evaluate the efficiency of the proposed algorithm, two nonlinear 
constrained optimization test problems were tested by five optimization evolutionary 
algorithms: SAEA [8], SMEA [9], RCEA [10] and ISEA [11] and the proposed algorithm 
MICA. The two benchmark functions are described in [10]. 
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where n=20, 0 10 ( 1 )ix i n   � , the global maximum is unknown, f(x*)=-0.803619 is 

better than any reported value up to the best of our knowledge, and the constraint g1 is 
active. 

g02. 
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.  

The best known solution  * 14.095,  0.84296x  , and f(x*)=-6961.81388. 

Results analysis. We list the known optimal solution and the best, mean and worst 
objective function values in Table 1, and the standard deviations after 30 independent runs 
by MICA is also given. These results provided by four compared algorithms SAEA, 
SMEA, RCEA and ISEA were taken from the original references.  
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Table 1. The results obtained by SAEA, SMEA, RCEA, ISEA and MICA for g01and g02. 

Function Optimal Status 
Methods 

SAEA[8] SMEA[9] RCEA[10] ISEA[11] MICA 

g01 -0.803619 

best -0.80297 -0.803601 -0.803515 -0.803376 -0.803619 
mean -0.79010 -0.785238 -0.781975 -0.798231 -0.793421 
worst -0.76043 -0.751322 -0.726288 -0.768291 -0.783461 
st.dev 1.2E-02 1.7E-02 2.0E-02 9.0E-03 2.5E-02 

g02 -6961.8138 

best -6961.800 -6961.814 -6961.814 -6961.814 -6961.814 
mean -6961.800 -6961.284 -6875.940 -6961.813 -6961.814 
worst -6961.800 -6952.482 -6350.262 -6961.812 -6961.814 
st.dev 0.0000 1.9E+00 1.6E+02 8.5E-05 1.21E-10 

It can be seen from Table 1, compared with the four algorithms SAEA, SMEA, RCEA 
and ISEA, our algorithm MICA can find a better ``best'' result in functions g01. In addition, 
algorithm MICA found a ``similar'' best solution in problems g02 than SMEA, RCEA and 
ISEA do. Our approach found better ``mean'' and ``worst'' results in test functions g02 than 
the compared algorithms. Thus, it reflects the fact that our algorithm is capable of 
performing a robust and stable search.  

6. Conclusion 

This paper introduce a new imperialist competitive algorithm (MICA) for solving 
nonlinear constrained optimization problem. From the comparative study, algorithm NICA 
has shown its potential to handle various nonlinear constrained optimization problems. 
This work is partially supported by The Planning fund for the humanities and social 
sciences of the Ministry of Education (No.18YJA790053). 
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