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Abstract. In this paper, the exponential B-spline functions are used for the numerical solution
of the advection-diffusion equation. Two numerical examples related to pure advection in a
finitely long channel and the distribution of an initial Gaussian pulse are employed to illustrate
the accuracy and the efficiency of the method. Obtained results are compared with some early
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1. Introduction

One known problem of our age is the environmental pollution. This problem is
increasingly reduce the quality of our water. Scientists are benefiting from the
solution of the advection-diffusion equation (ADE) in modelling this problem. Since
both advection and diffusion terms exist in the ADE, it also arises very frequently in
transferring mass, heat, energy, velocity and vorticity in engineering and chemistry.
Thus, the heat transfer in a draining film, dispersion of tracers in porous media,

∗Corresponding author. Email: mzorsahin@ogu.edu.tr

c⃝ 2018 IAUCTB
http://ijm2c.iauctb.ac.ir



134 M. Zorsahin Gorgulu & I. Dag/ IJM2C, 08 - 03 (2018) 133-143.

the intrusion of salt water into fresh water aquifers, the spread of pollutants in
rivers and streams, the dispersion of dissolved material in estuaries and coastal
sea, contaminant dispersion in shallow lakes, the absorption of chemicals into beds,
the spread of solute in a liquid flowing through a tube, long-range transport of
pollutants in the atmosphere, forced cooling by fluids of solid material such as
windings in turbo generators, thermal pollution in river systems and flow in porous
media, etc. are modeled by ADE [16].
It is well known that the solution of the advection-diffusion boundary value prob-

lem displays sharp boundary layers. To cope with the sharp solutions, some of the
spline based methods for the numerical solution of ADE are suggested such as
the quasi-Lagrangian cubic spline method [19, 20], the characteristic methods inte-
grated with splines [25, 28], the cubic B-spline Galerkin method [10], the quadratic
B-spline subdomain collocation method [11], the spline approximation with the help
of upwind collocation nodes [9], the exponential spline interpolation in characteris-
tic based scheme [29] , the cubic spline interpolation for the advection component
and the Crank-Nicolson scheme for the diffusion component [1, 2], the meshless
method based on thin-plate spline radial basis functions [3], the least-square B-
spline finite element method [6], the standard finite difference method [26, 27], the
cubic B-spline collocation method [12–14], the quadratic/cubic B-spline Taylor-
Galerkin methods [5], the cubic/quadratic B-spline least-squares finite element
techniques [7, 8, 15], the cubic B-spline differential quadrature method [16], the
quadratic Galerkin finite elements method [4].
The exponential B-spline basis functions are used to establish the numerical

methods. Thus the exponential B-spline based collocation method are constructed
to solve the differential equations. Numerical solution of the singular perturbation
problem is solved with a variant of exponential B-spline collocation method in the
work [23], the cardinal exponential B-splines is used for solving the singularly per-
turbed problems [21], the exponential B-spline collocation method is built up for
finding the numerical solutions of the self-adjoint singularly perturbed boundary
value problems in the work [22], the numerical solutions of the convection-diffusion
equation is obtained by using the exponential B-spline collocation method [18]. As
far as we search, no study exists solving the advection-diffusion problems using the
exponential B-spline Galerkin method. Thus advection-diffusion equation is fully
integrated with combination of the exponential B-spline Galerkin method (EB-
SGM) for space discretization and Crank-Nicolson method for time discretization.
The study is organized as follows. In section 2, exponential B-splines are intro-

duced and their some basic relations are given. In section 3, the application of
the numerical method to the ADE is given. The efficiency and the accuracy of
the present method are investigated by using two numerical experiments related
to pure advection in an infinitely long channel and the distribution of an initial
Gaussian pulse.

2. Exponential B-splines and finite element solution

The mathematical model describing the transport and diffusion processes is the
one dimensional ADE

∂u

∂t
+ ξ

∂u

∂x
− λ

∂2u

∂x2
= 0, (1)

where the function u(x, t) represents the concentration at position x and time t with
uniform flow velocity ξ and constant diffusion coefficient λ. The initial condition
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Table 1. Error norm at t = 5, ξ = 0.8 m/s, λ = 0.005 m2/s, ∆t = 0.0125.

xi−2 xi−1 xi xi+1 xi+2

ϕi (x) 0 s−ph
2(phc−s)

1 s−ph
2(phc−s)

0

ϕ′
i (x) 0

p(c−1)
2(phc−s)

0
p(1−c)

2(phc−s)
0

ϕ′′
i (x) 0 p2s

2(phc−s)
−p2s
phc−s

p2s
2(phc−s)

0

of Eq. (1) is

u(x, 0) = u0(x), 0 ⩽ x ⩽ L (2)

and the boundary conditions are

u(0, t) = f0(t), u(L, t) = fL(t) or − λ
∂u

∂x
|L = ϕL(t) (3)

where L is the length of the channel, ϕL is the flux at the boundary x = L and u0,
f0, fL are imposed functions.
Let us consider a uniform mesh Γ with the knots xi on [a, b] such that

Γ : a = x0 < x1 < x2 < · · · < xN−1 < xN = b

where h =
b− a

N
and xi = x0 + ih.

Let ϕi (x) be the exponential B-splines at the points of Γ together with knots
xi, i = −3,−2,−1, N + 1, N + 2, N + 3 outside the interval [a, b] and having a
finite support on the four consecutive intervals [xi + kh, xi + (k + 1)h]0k=−3 , i =
0, ..., N + 2. According to McCartin [17], the ϕi (x) can be defined as

ϕi (x) =



b2

[
(xi−2 − x)− 1

p
(sinh (p (xi−2 − x)))

]
if x ∈ [xi−2, xi−1] ;

a1 + b1 (xi − x) + c1e
p(xi−x) + d1e

−p(xi−x) if x ∈ [xi−1, xi] ;

a1 + b1 (x− xi) + c1e
p(x−xi) + d1e

−p(x−xi) if x ∈ [xi, xi+1] ;

b2

[
(x− xi+2)−

1

p
(sinh (p (x− xi+2)))

]
if x ∈ [xi+1, xi+2] ;

0 otherwise.

(4)

where

p = max
0⩽i⩽N

pi, s = sinh (ph) , c = cosh (ph)

b2 =
p

2 (phc− s)
, a1 =

phc

phc− s
, b1 =

p

2

[
c (c− 1) + s2

(phc− s) (1− c)

]
,

c1 =
1

4

[
e−ph (1− c) + s

(
e−ph − 1

)
(phc− s) (1− c)

]
, d1 =

1

4

[
eph (c− 1) + s

(
eph − 1

)
(phc− s) (1− c)

]
.

Each basis function ϕi (x) is twice continuously differentiable. The values of
ϕi (x) , ϕ

′
i (x) and ϕ′′

i (x) at the knots xi’s are given in Table 1.
The ϕi (x) , i = −1, . . . , N + 1 form a basis for functions defined on the interval

[a, b]. We seek an approximation U(x, t) to the analytical solution u(x, t) in terms
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for the exponential B-splines

u (x, t) ≈ U (x, t) =

N+1∑
i=−1

ϕi (x) δi (t) (5)

where δi (t) are time dependent unknown to be determined from the boundary
conditions and Galerkin approach to the equation (1). The approximate solution
and their derivatives at the knots can be found from the Eq. (4-5) as

Ui = U(xi, t) = α1δi−1 + δi + α1δi+1,
U ′
i = U ′(xi, t) = α2δi−1 − α2δi+1,

U ′′
i = U ′′(xi, t) = α3δi−1 − 2α3δi + α3δi+1

(6)

where α1 =
s− ph

2(phc− s)
, α2 =

p(1− c)

2(phc− s)
, α3 =

p2s

2(phc− s)
.

Applying the Galerkin method to the ADE with the exponential B-splines as
weight function over the interval [a, b] gives

b∫
a

ϕi (x) (ut + ξux − λuxx) dx = 0. (7)

The approximate solution U over the element [xm, xm+1] can be written as

U e = ϕm−1 (x) δm−1 (t)+ϕm (x) δm (t)+ϕm+1 (x) δm+1 (t)+ϕm+2 (x) δm+2 (t) (8)

where quantities δj (t) , j = m − 1, ...,m + 2 are element parameters and ϕj (x) ,
j = m− 1, ...,m+ 2 are known as the element shape functions.
The contribution of the integral equation (7) over the sample interval [xm, xm+1]

is given by

xm+1∫
xm

ϕj (x) (ut + ξux − λuxx) dx. (9)

Applying the Galerkin discretization scheme by replacing Ut, Ux, Uxx, which are
derivatives of the approximate solution U e in Eq. ( 8), into ut, ux, uxx, which are
derivatives of the exact solution u, respectively, we obtain a system of equations in
the unknown parameters δj

m+2∑
i=m−1


xm+1∫

xm

ϕjϕidx

 •
δi + ξ

xm+1∫
xm

ϕjϕ
′
idx

 δi − λ

xm+1∫
xm

ϕjϕ
′′
i dx

 δi

 (10)

where i and j take only the values m− 1, m, m+1, m+2 for m = 0, 1, . . . , N − 1
and • denotes time derivative.
In the above system of differential equations, when Ae

ji, B
e
ji and Ce

ji are denoted
by

Ae
ji =

xm+1∫
xm

ϕjϕidx, Be
ji =

xm+1∫
xm

ϕjϕ
′
idx, Ce

ji =
xm+1∫
xm

ϕjϕ
′′
i dx (11)
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where Ae, Be and Ce are the element matrices of which dimensions are 4× 4, the
matrix form of the Eq.(10) can be written as

Ae
•
δe + (ξBe − λCe) δe (12)

where δe = (δm−1, ..., δm+2)
T .

Gathering the systems (12) over all elements, we obtain global system

A
•
δ + (ξB− λC) δ = 0 (13)

where A, B, C are derived from the corresponding element matrices Ae, Be, Ce

and δ = (δ−1, ..., δN+1)
T contain all elements parameters.

The unknown parameters δ are interpolated between two time levels n and n+1
with the Crank-Nicolson method

δ =
δn+1 + δn

2
,
•
δ =

δn+1 − δn

∆t
,

we obtain iterative formula for the time parameters δn:[
A+

∆t

2
(ξB− λC)

]
δn+1 =

[
A−∆t

2
(ξB− λC)

]
δn. (14)

The set of equations consist of (N + 3) equations with (N + 3) unknown parame-
ters. Before starting the iteration procedure, boundary conditions must be adapted
into the system. For this purpose, we delete first and last equations from the sys-
tem (14) and eliminate the terms δn+1

−1 and δn+1
N+1 from the remaining system (14)

by using boundary conditions in (3), which give the following equations:

u (a, t) = α1δ
n
−1 + δn0 + α1δ

n
1 = β1,

u (b, t) = α1δ
n
N−1 + δnN + α1δ

n
N+1 = β2,

we obtain a septa-diagonal matrix with the dimension (N + 1)× (N + 1).
To start evolution of the vector of initial parameters δ0 , it must be determined

by using the initial condition (2) and boundary conditions (3):

u′0(x0, 0) =
p (1− c)

2 (phc− s)
δ−1 +

p (c− 1)

2 (phc− s)
δ1

u (xm, 0) =
s− ph

2 (phc− s)
δm−1 + δm +

s− ph

2 (phc− s)
δm+1, m = 0, ..., N

u′ (xN , 0) =
p (1− c)

2 (phc− s)
δN−1 +

p (c− 1)

2 (phc− s)
δN+1

(15)

The solution of matrix equation (15) with the dimensions (N + 1) × (N + 1) is
obtained by the way of Thomas algorithm. Once δ0 is determined, we can start
the iteration of the system to find the parameters δn at time tn = n∆t. Thus the
approximate solution U (5) can be determined by using these δ values.
To investigate the stability of system of the difference scheme(14), we apply

the von Neumann stability analysis. A typical member of the linearized equation
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corresponding to Eq. (14) is given by

γ1δ
n+1
m−3 + γ2δ

n+1
m−2 + γ3δ

n+1
m−1 + γ4δ

n+1
m + γ5δ

n+1
m+1 + γ6δ

n+1
m+2 + γ7δ

n+1
m+3

= γ7δ
n
m−3 + γ6δ

n
m−2 + γ5δ

n
m−1 + γ4δ

n
m + γ3δ

n
m+1 + γ2δ

n
m+2 + γ1δ

n
m+3

where the parameters γi, i = 1, . . . , 7 are determined from system (14), in which
these values are not prefered to document here due to being too long.
Substituting the Fourier mode δnm = sneimφ into the linearized from of the dif-

ference equation becomes

sn+1 = qsn.

Here, the growth factor is determined as

q =
â− ib̂

â+ ib̂

where

â = (γ1 + γ7) cos (3φ) + (γ2 + γ6) cos (2φ) + (γ3 + γ5) cos (φ) + (γ4) ,

b̂ = (γ1 − γ7) sin (3φ) + (γ2 − γ6) sin (2φ) + (γ3 − γ5) sin (φ) .

Since the magnitude of the growth factor is |q| = 1, the difference scheme (14)
is unconditionally stable.

3. Test problems

We have carried out two test problems to demonstrate the performance of the given
algorithm. Accuracy of the method is measured by the error norm

L∞ =
∥∥uexact − unumeric

∥∥
∞ = max

0⩽j⩽N

∣∣uexactj − u numeric
j

∣∣ . (16)

In numerical calculations, the determination of p in the exponential B-spline is
made by experimentally. The Courant number is defined by the ratio of the flow

velocity ξ to the mesh velocity
h

∆t
, i.e.,

Cr = ξ
∆t

h
,

and the time and space pointwise rate of convergence for numerical method are
computed by the formulas

order=
log
∣∣(L∞)hi

/(L∞)hi+1

∣∣
log |hi/hi+1|

, order=
log
∣∣(L∞)∆ti/(L∞)∆ti+1

∣∣
log |∆ti/∆ti+1|

,

where (L∞)hi
and (L∞)∆ti

are the error norms L∞ for space step hi and time step
∆ti, respectively.
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Table 2. Peak concentrations at t = 9600 s for various Cr and ∆t = 50.

Cr h p EBSGM [25] [6] [10]

0.25 100 6.8E-6 9.992 9.816 9.926 9.986
0.50 50 13.6E-6 9.992 9.836 9.932 9.986
0.75 33.3 2.04E-5 9.992 9.934 9.949 9.993
1.00 25 3.59E-5 9.992 10.000 9.961 9.986
1.50 16.6 4.91E-5 9.992 9.941 9.959 9.994
2.00 12.5 7.18E-5 9.992 10.000 9.961 9.986
3.20 7.8 7.50E-6 9.993 9.988 9.962 9.999

Exact 10

3.1 Pure advection in an infinitely long channel

In the first example, we consider the pure advection that is λ = 0, in an infinitely
long channel is of long constant cross-section, bottom slope and in which constant
velocity is ξ = 0.5 m/s. The analytical solution is

u(x, t) = 10 exp

(
− 1

2ρ2
(x− x0 − ξt)2

)
(17)

where ρ = 264 m is the standard deviation and the initial distribution is x0 = 2
km away from the start. The initial concentration can be obtained from (17) by
taking t = 0. At the boundaries the following conditions are taken:

u(0, t) = u(L, t) = 0

where L = 9 km. Since the velocity is 0.5m/s, the initial distribution is transported
4.8 km after 9600 s. Fig. 1 shows this transportation.

Figure 1. Transportation of the initial distribution with Cr = 0.25 and ∆t = 50

The obtained peak concentrations at t = 9600 s for various Courant numbers
are given in Table 2. As it is seen from the table that during the running of time
period, the calculations show that the results of EBSGM are considerably near to
the exact value and in general, it leads to more accurate results than the other
methods. To see the errors along the whole domain for various Courant numbers,
Table 3 is documented. According to this table, the results of EBSGM are mostly
more accurate than the those produce by the least square finite element method
and extended cubic B-spline collocation method for various Courant numbers. The
absolute error distributions of the EBSGM at t = 9600 is illustrated in Fig. 2.
Maximum error occurred around the peak concentration.
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Table 3. Errors at t = 9600 s with ξ = 0.5 m/s.

Cr h ∆t p EBSGM [14] [6]

0.125 200 50 3.30E-6 1.63E-1 1.29E-0 5.18E-1
0.25 100 50 6.80E-6 8.60E-2 3.25E-1 3.76E-1
0.50 50 50 13.6E-6 9.07E-2 1.98E-1 3.73E-1
0.50 10 10 1.53E-4 3.51E-3 7.51E-3
0.50 1 1 3.04E-4 3.53E-5 7.50E-5
0.50 0.5 0.5 3.40E-3 1.20E-5 1.88E-5
0.75 33.3 50 2.04E-5 9.03E-2 3.76E-1
1.00 25 50 3.59E-5 9.02E-2 3.79E-1
1.50 16.6 50 4.91E-5 8.96E-2 3.78E-1
2.00 12.5 50 7.18E-5 9.02E-2 3.79E-1
3.20 7.8 50 7.50E-6 8.90E-2 3.80E-1

Table 4. The time pointwise order of convergence at t = 9600 s with h = 10 and p = 0.0000373.

∆t L∞ order

50 0.189757890344378 2.008789561436494
20 0.030117721143528 1.998144047815728
10 0.007539122739676 1.982361076968232
5 0.001907966158771 1.725030542270457
2 0.000392746206108

The time rate of convergence is calculated by fixing space step as h = 10. For the
valuation of the time steps given in the Table 4, the rate of convergence is found as
2 approximately. When higher time space is used, we have reached the convergence
rate of 2 especially. Same calculation is performed for the space rate of convergence,
but the rate of convergence is varied according to selection of depending parameter
p.

Figure 2. Absolute error distributions at t = 9600 with Cr = 0.25 and ∆t = 50

3.2 The distribution of an initial Gaussian pulse

As a second test problem, we deal with both advection and diffusion. The analytical
solution to the one-dimensional ADE of a Gaussian pulse of unit height over the
domain [0, 9] is given as

u(x, t) =
1√

4t+ 1
exp

(
−(x− x0 − ξt)2

λ
√
4t+ 1

)
(18)
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where ξ is the velocity, λ is diffusion coefficient and x0 is the centre of the initial
Gaussian pulse [24].
The initial condition is chosen as the analytical value of the Eq. (18 ) for t = 0

and the boundary conditions are chosen as

u(0, t) = u(9, t) = 0.

The results presented here are computed for time step ∆t = 0.0125 s. Parameters in
the equation are used as λ = 0.005m2/s and ξ = 0.8m/s. Fig. 3 shows the behavior
of the numerical and analytical solutions (which are graphed with continuous lines)
for various times until the simulation terminating time t = 5. Thus, the decay in
time of the initial pulse is modeled. So that the effect of the diffusion term has been
observed in this test problem. The absolute error distributions of the EBSGM at
t = 5 is illustrated in Fig. 4.

Figure 3. Distribution of an initial Gaussian pulse

Figure 4. Absolute error distributions at t = 5 with h = 0.025,∆t = 0.0125

For comparison, the advection-diffusion equation is solved for various Courant
numbers and computed errors at t = 5 s are presented in Table 5. As expected time
rate of convergence is found as 2 approximately seen in the Table 6 due to using
the Crank-Nicolson time integrator, when the space increment is fixed as h = 0.05.
Once more we couldn’t get regular space rate of convergence given in Table 7 for
the second test problem.
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Table 5. Error norm at t = 5, ξ = 0.8 m/s, λ = 0.005 m2/s, ∆t = 0.0125.

Cr h
EBSGM

(p=0.05286)
Method I

[16]
Method II

[16]

0.05 0.2 0.1326154 0.1253926 0.1361437
0.10 0.1 0.0042464 0.0069553 0.0145554
0.20 0.05 0.0008333 0.0012117 0.0002886
0.40 0.025 0.0004134 0.0003071 0.0000181

Table 6. The time pointwise order of convergence at t = 9600 s with h = 0.05.

∆t L∞ order

0.1 0.053345581280198 1.920846239041120
0.05 0.014088544133159 2.048129736530073
0.025 0.003406572459735 2.031342703643572
0.0125 0.00083334060923 2.054630426980018
0.00625 0.00020059363910

Table 7. The space pointwise order of convergence at t = 9600 s with ∆t = 0.0125.

h L∞ order

0.2 0.132615441852962 4.964862117923087
0.1 0.004246407564140 2.349264655307255
0.05 0.000833340609231 1.011432200464369
0.025 0.000413381574304

4. Conclusion

In this paper, we have proposed a new algorithm for the numerical solution of the
ADE. This algorithm is obtained by employing exponential B-spline functions to
the well known Galerkin finite element method. To see achievement of the method
is studied two test problems. The resulting numerical solutions for various Courant
numbers are compared with the previous studies in Tables 3 and 5. Accordingly,
we can say that the proposed method give acceptable results.
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