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1. Introduction

The fractional partial differential equations (FPDEs) arise in numerous prob-
lems of engineering, physics, mathematics, and chemistry, biology, viscoelasticity
[1,2,3,4]. Most fractional differential equations do not have exact analytical solu-
tions, thus many authors are seeking ways to numerically solve these problems
[5,6].
Recently, some different numerical methods to solve fractional differential equations
have been given such as variational iteration method [7], homotopy perturbation
method[8], adomian decomposition method [9], homotopy analysis method [10],
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and collocation method [11]. In [12] Fix developed a least square finite element
solution of a fractional-order two-point boundary value problems. Darzi and et al.
proposed Sumudu transform method for solving fractional differential equations
and fractional diffusion-wave equation as well [13]. Neamaty and et al.[31] used
wavelet operational method for solving fractional partial differential equations.
Liu and et al.[14,28] suggested method of lines to transform the space fractional
Fokker-Planck equation into a system of ordinary differential equations.The space
fractional diffusion equations are solved numerically by many authors.Khader pro-
posed Chebyshev collocation method to discretize space fractional diffusion equa-
tions to obtain a linear system of ordinary differential equations and he solved
the resulting system by finite difference method [15]. Dehghan [16] applied Tau
approach to solve space fractional diffusion equations.

2. Basic Ideas and Definitions

Definition 2.1. The Caputo fractional derivative operator 0D
α
x of order α is defined

in the following form:

0D
α
xf(x) =

1
Γ(m−α)

∫ x
0

f (m)(t)
(x−t)α−m+1dt, α > 0,

where m− 1 < α ⩽ m, m ∈ N , x > 0.

Caputo fractional derivative operator is a linear operation and for the Caputos
derivative we have [18]:

Dαc = 0, (1)

Dαxn =

{
0, n ∈ N0 and n < ⌈α⌉,
Γ(n+1)

Γ(n+1−α)x
n−α, n ∈ N0 and n ⩾ ⌈α⌉, (2)

where c is a constant and ⌈α⌉ denotes the smallest integer greater than or equal
to α and N0 = {1, 2, ...}. For α ∈ N0, the Caputo differential operator coincides
with the usual differential of integer order ([17,18,26]).
In this article, we propose a modified approach to obtain the solution of space
fractional diffusion equation

∂u(x, t)

∂t
= d(x, t)

∂αu(x, t)

∂xα
+ s(x, t), a < x < b, 0 ⩽ t ⩽ T, 1 < α ⩽ 2, (3)

with initial condition

u(x, 0) = u0(x), a < x < b, (4)

and boundary conditions

u(a, t) = u(b, t) = 0, (5)
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where the function s(x,t) is a source term. Also we solve numerically the fractional
Riccati differential equation

Dαu(t) + u2(t)− 1 = 0, t > 0, 0 < α ⩽ 1,

with the initial condition u(0) = u0. Note that for α = 2, Eq.(3) is the classical
diffusion equation:

∂u(x, t)

∂t
= d(x, t)

∂2u(x, t)

∂x2
+ s(x, t). (6)

We use the Chebyshev collocation method to discretize (3) and to get a linear
system of ordinary differential equations [15] and use the finite difference method
(FDM) [20-22] to solve the resulting system, and obtain the coefficients in the
approximate solution. By determining the coefficients ,the associated approximate
polynomial will be as:

um(x, tn) =
m∑
i=0

ui(tn)T
∗
i (x) = áo,nT

∗
0 (x) + á1,nT

∗
1 (x) + á2,nT

∗
2 (x) + ...+ ám,nT

∗
m(x)

(7)

= a0,n + a1,nx+ a2,nx
2 + ...+ am,nx

m,

which is of degree m,and T ∗
i (x) are shifted Chebyshev polynomials. Now let us

change one of the coefficients say ai,n, as δai,n and determine δ in such a way that
the absolute value of the difference between the exact and approximate solutions
be less than or equal to a given ε > 0,. Now the new obtained approximate
polynomial is appeared as:

um(x, tn) =

m∑
i=0

ui(tn)T
∗
i (x) = a0,n+a1,nx+a2,nx

2+...+δai,nx
i+...+am,nx

m, (8)

which approximates the exact solution much better. Such a fact will be demon-
strated in solved examples later, by comparing to the other methods.

3. A Review of the Chebyshev Polynomials

The well known Chebyshev polynomials are defined on the interval [-1, 1] as: [29];
T0(z) = 1,
T1(z) = z,
Tn+1(z) = 2zTn(z)− Tn−1(z), n = 1, 2, ... .
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The analytic form of the Chebyshev polynomials Tn(z) of degree n is given by
the following:

Tn(z) = n

[n
2
]∑

i=0

(−1)i2n−2i−1 (n− i− 1)!

(i)!(n− 2i)!
zn−2i, (9)

where [n2 ] denotes the integer part of n/2. The orthogonality condition is

∫ 1

−1

Ti(z)Tj(z)√
1− z2

dz =

π, for i = j = 0,
π
2 , for i = j ̸= 0,
0, for i ̸= j.

In order to use these polynomials on the interval x ∈ [0, 1], we define the so called
shifted Chebyshev polynomials by introducing the change of variable z=2x-1.We
denote Tn(2x− 1) by T ∗

n(x), defined as:

T ∗
n(x) = n

n∑
k=0

(−1)n−k 2
2k(n+ k − 1)!

(2k)!(n− k)!
xk, n = 2, 3, ... , (10)

where T ∗
0 (x) = 1 and T ∗

1 (x) = 2x− 1.
A function y(x), which is squared integrable in [0, 1], may be expressed in terms
of shifted Chebyshev polynomials as:

y(x) =

∞∑
i=0

ciT
∗
i (x),

where

c0 =
1

π

∫ 1

0

y(t)T ∗
0 (x)√

x− x2
dx, ci =

2

π

∫ 1

0

y(t)T ∗
i (x)√

x− x2
dx, i = 1, 2, ... . (11)

Theorem 3.1. [30] Let y(x) be approximated by shifted Chebyshev polynomials
as:

ym(x) =

m∑
i=0

ciT
∗
i (x), (12)

and α > 0, then

Dα(ym(x)) =

m∑
i=⌈α⌉

i∑
k=⌈α⌉

ciw
(α)
i,k x

k−α, (13)
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where w
(α)
i,k is given by:

w
(α)
i,k = (−1)i−k 22ki(i+ k − 1)!Γ(k + 1)

(i− k)!(2k)!Γ(k + 1− α)
. (14)

4. Error Analysis

This section is concerned with the studying of the convergence analysis and
getting an upper bound for the error of the proposed formula.
Theorem 4.1. (Chebyshev truncation theorem) [29].
The error in approximating y(x) by the sum of its first m terms is bounded by the
sum of the absolute values of all the coefficients. If

ym(x) =

m∑
k=0

ckTk(x), (15)

then

ET (m) ≡ |y(x)− ym(x)| ⩽
∞∑

k=m+1

|ck|, (16)

for all y(x), all m, and all x ∈ [−1, 1].

Theorem 4.2. [30] The error |ET (m)| = |Dαy(x) − Dαym(x)| in
approximatingDαy(x) by Dαym(x) is bounded as:

|ET (m)| ⩽ |
∞∑

i=m+1

ci(
i∑

k=⌈α⌉

k−⌈α⌉∑
j=0

θi,j,k)|, (17)

where

θi,j,k =
(−1)i−k2i(i+k−1)!Γ(k−α+ 1

2
)

hjΓ(k+
1

2
)(i−k)!Γ(k−α−j+1)Γ(k+j−α+1)

, j = 1, 2, ... .

5. The Process of Solving the Space Fractional Diffusion Equation

In order to use Chebyshev collocation method in Eq.(3), we approximate u(x) as:

um(x, t) =
m∑
i=0

ui(t)T
∗
i (x). (18)
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From Eqs. (3), (12) and Theorem 3.1 we have:

m∑
i=0

dui(t)

dt
T ∗
i (x) =

m∑
i=⌈α⌉

i∑
k=⌈α⌉

ui(t)w
(α)
i,k x

k−α + s(x, t). (19)

Collocating, Eq. (19) at (m+ 1− ⌈α⌉) points xp yields:

m∑
i=0

dui(t)

dt
T ∗
i (xp) =

m∑
i=⌈α⌉

i∑
k=⌈α⌉

ui(t)w
(α)
i,k x

k−α
p +s(xp, t), P = 0, 1, ...,m−⌈α⌉. (20)

Now we use of roots of shifted Chebyshev Polynomials T ∗
m+1−⌈α⌉(x) as suitable

collocation points.
By substituting Eqs.(13) and (18) in the boundary conditions (5) we get

m∑
i=0

(−1)iui(t) = 0,
m∑
i=0

ui(t) = 0. (21)

If so, ⌈α⌉ equations obtained from (21), along with m+1-⌈α⌉ equations obtained
from (20) give (m+1) ordinary differential equations which may be solved by
using FDM, to get the m unknown ui, i=0,1,...,m, in various time levels tn.
by determining the unknowns ui(tn), the approximate m degree polynomials as
obtained as follows:

um(x, tn) =
m∑
i=0

ui(tn)T
∗
i (x) = áo,nT

∗
0 (x) + á1,nT

∗
1 (x) + á2,nT

∗
2 (x) + ...+ ám,nT

∗
m(x)

= a0,n + a1,nx
1 + a2,nx

2 + ...+ am,nx
m,

i=0,1,...,N, △t = T
N , 0 ⩽ ti ⩽ T, ti = i△t,

in which T is the final time and uni = ui(tn). Now we change one of a co-
efficients say ai,n, as δai,n, and obtain δ by using |uex−uapprox| ⩽ ε where, uex and
uapprox are respectively the exact and approximate solutions.The new obtained
approximate polynomial is appeared as:

um(x, tn) =
m∑
i=0

ui(tn)T
∗
i (x) = a0,n + a1,nx+ a2,nx

2 + ...+ δai,nx
i + ...+ am,nx

m.
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6. Numerical Results

Example 6.1. In this section, we consider space fractional diffusion equation (3)
with α = 1.8, of the form:

∂u(x, t)

∂t
= d(x, t)

∂1.8u(x, t)

∂x1.8
+ s(x, t),

where, 0 < x < 1, with the diffusion coefficient: d(x,t)= Γ(1.2)x1.8, and the
source function: s(x,t)=3x2(2x − 1)e−t. The initial and boundary conditions are
respectively as:
u(x,0)=x2(1− x),
u(0,t)=u(1,t)=0.
The exact solution of this problem is u(x,t)= x2(1− x)e−t.

We apply the present method with m=3, and approximate the solution as
follows:

u3(x, t) =

3∑
i=0

ui(t)T
∗
i (x). (22)

Using Eq. (20) we have:

3∑
i=0

dui(t)

dt
T ∗
i (xp) = d(xp, t)

3∑
i=2

i∑
k=2

ui(t)w
(1.8)
i,k xk−1.8

p + s(xp, t), p = 0, 1, (23)

note that the x,ps are roots of shifted Chebyshev polynomial T ∗
2 (x), i.e.

x0 = 0.146447, x1 = 0.887298.

By using Eqs. (21) and (23), the following system of ordinary differential equations
is obtained :

u̇0(t) + k1u̇0(t) + k2u̇0(t) = R1u2(t) +R2u3(t) + s0(t), (24)

u̇0(t) + k11u̇0(t) + k22u̇0(t) = R11u2(t) +R22u3(t) + s1(t), (25)

u0(t)− u1(t) + u2(t)− u3(t) = 0, (26)

u0(t) + u1(t) + u2(t) + u3(t) = 0, (27)

where:
k1 = T ∗

1 (x0), k2 = T ∗
3 (x0), k11 = T ∗

1 (x1), k22 = T ∗
3 (x1),

R1 = d(x0, t)w
(1.8)
2,2 x0.20 , R2 = d(x0, t)[w

(1.8)
3,2 x0.20 + w

(1.8)
3,3 x1.20 ],
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R11 = d(x1, t)w
(1.8)
2,2 x0.21 , R22 = d(x1, t)[w

(1.8)
3,2 x0.21 + w

(1.8)
3,3 x1.21 ].

Now, the system (24)-(27 ) is solved, by using finite difference method (FDM). In
this example, we consider ti = i∆t, 0 ⩽ ti ⩽ T,∆t = τ = T

N , for i=0,1,...,N, and
uni = ui(tn), s

n
i =si(tn). If so, the system (24)-(27), is discretized in time and takes

the following form:

un0 − un−1
0

△t
+ k1

un1 − un−1
1

△t
+ k2

un3 − un−1
3

△t
= R1u

n
2 +R2u

n
3 + Sn

0 , (28)

un0 − un−1
0

△t
+ k11

un1 − un−1
1

△t
+ k22

un3 − un−1
3

△t
= R11u

n
2 +R22u

n
3 + Sn

1 , (29)

uno − un1 + un2 − un3 = 0, (30)

uno + un1 + un2 + un3 = 0. (31)

The above system (28)-(31) can be written in the following matrix form:


1 k1 −τR1 k2 − τR2

1 k11 −τR11 k22 − τR22

1 −1 1 −1
1 1 1 1

 .


u0
u1
u2
u3


n

=


1 k1 0 k2
1 k11 0 k22
0 0 0 0
0 0 0 0

 .


u0
u1
u2
u3


n−1

+ τ


s0
s1
0
0


n

,

(32)
or,

AUn = BUn−1 + τSn, or, Un = A−1(BUn−1) +A−1(τSn), (33)

where:

Un = (un0 , u
n
1 , u

n
2 , u

n
3 ) and Sn = (sn0 , s

n
1 , 0, 0).

Note that for n=1, the initial solution U0 = { 1
16 ,

1
32 ,−

1
16 ,−

1
32} is obtained

from the initial condition of the problem, u(x,0) and using Eq.(11). We show the
obtained numerical results by means of the proposed method with the initial
solution U0, in Tables 1 and 2 .In Table 1, the absolute error, between the
exact solution uex and the approximate solution uapprox at m=3 and time step
τ = 0.0025, with the final time T=2 is given. Note that, the new approximating
polynomial is considered as:

u3(x, tn) =
3∑

i=0

ui(tn)T
∗
i (x) = a0,n + δa1,nx+ a2,nx

2 + a3,nx
3, (34)
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where in (34), δ can be considered as: δai,nx
i, i=0,1,2,3. as well By using the

inequality:

|uapprox(δ) − uex| = |(a0,n + δa1,nx+ a2,nx
2 + a3,nx

3)− (x2(1− x)e−t)| ⩽ 10−10,

the values of δ are calculated for various points ,time and ε. In Table 2, by means
of the modified method, values δ and |uapprox(δ) − uex|, at m=3 and time step

τ = 0.0025, with the final time T=2, and ε = 10−10 are given. note that u3(x, 2)
considered as:

u3(x, 2) =
3∑

i=0

ui(t800)T
∗
i (x) = a0,800 + a1,800x+ a2,800x

2 + a3,800x
3.

It is notable that by considering ∆t = 0.0025, we will has 800 ( T
∆t =

2
0.0025 = 800)

level time for the solution of the system of equations (33),i.e. we get 800 approxi-
mate solutions u(x, tn), 0 < x < 1.
In the above example all 800 values of un = (un0 , u

n
1 , u

n
2 , u

n
3 ) are calculated by

utilizing mathematica.

Table 1: Comparsion of absolute errors for u(x,2)at m=3from example 6.1.

x present method Method[12] Method [20] Method [13]

0.0 8.67362 ×10−19 1.70849 ×10−4 4.483787×10−3 0.00
0.1 8.23560×10−5 2.10940 ×10−5 4.479660×10−3 2.89×10−5

0.2 1.49747×10−4 1.76609 ×10−4 4.201329×10−3 1.09×10−4

0.3 2.00921×10−4 3.01420 ×10−4 3.695172×10−3 2.20×10−4

0.4 2.34628×10−4 4.04138 ×10−4 3.007566×10−3 3.40×10−4

0.5 2.49617×10−4 4.89044 ×10−4 2.184889 ×10−3 4.45×10−4

0.6 2.44636×10−4 4.89044 ×10−4 1.273510 ×10−3 5.15×10−4

0.7 2.18435×10−4 5.63305 ×10−4 0.319831 ×10−3 5.27×10−4

0.8 1.69763×10−4 6.33367 ×10−4 0.629793 ×10−3 4.60×10−4

0.9 9.73680×10−5 7.05677 ×10−4 1.528978 ×10−3 2.91×10−4

1.0 2.60209×10−18 8.82821 ×10−4 2.331347 ×10−3 0.00

Example 6.2. Consider the fractional Riccati differential equation of the form

Dαu(t) + u2(t)− 1 = 0, t > 0, 0 < α ⩽ 1, (35)

with the initial condition

u(0) = u0, (36)

and the parameter α, refers to the fractional order of the time derivative.
For α = 1; the Eq.(35) is the standard Riccati differential equation

du(t)

dt
+ u2(t)− 1 = 0.
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Table 2: Absolute errors for u(x,2) with m=3 and ε = 10−10 from example 6.1.

x δ |uapprox(δ) − uex|

0.1 0.0790163028 9.99948×10−11

0.2 0.1626942205 9.99998×10−11

0.3 0.2510358034 9.99976×10−11

0.4 0.3440407717 9.99864×10−11

0.5 0.4417090696 9.99985×10−11

0.6 0.5440406785 9.99750×10−11

0.7 0.6510355900 9.97496×10−11

0.8 0.7626938012 9.99788×10−11

0.9 0.8790153088 9.99866×10−11

1.0 1.0000001118 9.99734 ×10−11

The exact solution to this equation is

u(t) =
e2t − 1

e2t + 1
.

Now we approximate the function u(t) by using formula (12) and its Caputo deriva-
tive Dαu(t) by using the presented formula (13) with m=5.Then fractional Riccati
differential equation (35) is transformed to the following approximated form

5∑
i=1

i∑
k=1

ciw
(α)
i,k t

k−α + (
5∑

i=0

ciT
∗
i (t))

2 − 1 = 0, (37)

where w
(α)
i,k is defined in (14). Also the initial condition (36) is given by :

5∑
i=0

ci(T
∗
i (0)) = u0. (38)

We now collocate Eq. (37) at (m+ 1− ⌈α⌉) points tp as:

5∑
i=1

i∑
k=1

ciw
(α)
i,k t

k−α
p + (

5∑
i=0

ciT
∗
i (tp))

2 − 1 = 0, p = 0, 1, 2, 3, 4. (39)

Note that t,ps are roots of shifted Chebyshev polynomial T ∗
5 (t), i.e.

t0 = 0.5, t1 = 0.206107, t2 = 0.793893, t3 = 0.024471, t4 = 0.975528.

By using Eqs.(38) and (39), we obtain a system of non-linear algebraic equations
which contains 6 equations for the unknowns ci, i = 0, 1, ..., 5.
By solving the previous system, utilizing the Newton iteration method, we obtain
the unknown ci, i = 0, 1, ..., 5, and therefore, the approximate solution is obtained
via:
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u5(t) =
5∑

i=0

ciT
∗
i (t).

In figure 1, comparison between the exact and approximate solutions using the
introduced method with different values of α (α = 1; 0.9; o.8; o.75; 0.5); u0 = 0, is
presented.
The obtained numerical results by of the proposed technique and the exact solution
values of α are shown in the Table 3. Also in the Tables 4,5,6 the absolute error
between the exact solution uex and the approximate solution uapprox with different
values of α (α = 1; 0.9; o.8; o.75; 0.5); and δ, by means of the proposed modified
method are given.

Table 3: Numerical results with different values of α.and exact solution for Ex.6.2.
x uex α = 0.5 α = 0.75 α = 0.8 α = 0.9 α = 1.0

uapprox(0.5) uapprox(0.75) uapprox(0.8) uapprox(0.9) uapprox(1.0)

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.096668 0.337455 0.184532 0.163128 0.127437 0.099693
0.2 0.197375 0.456273 0.310062 0.284370 0.237669 0.197438
0.3 0.291313 0.497307 0.402443 0.339867 0.334655 0.291345
0.4 0.379949 0.531235 0.476923 0.459384 0.420799 0.379927
0.5 0.462117 0.578471 0.540807 0.527890 0.497371 0.462073
0.6 0.537049 0.629083 0.596122 0.587143 0.564917 0.537033
0.7 0.604368 0.662705 0.642285 0.637269 0.623684 0.604398
0.8 0.664037 0.668449 0.678764 0.678349 0.674033 0.664084
0.9 0.716298 0.664829 0.707743 0.711999 0.716859 0.716312
1.0 0.761594 0.719666 0.736791 0.742953 0.754008 0.761590

Out[1]=

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Exact solution

Α=1

Α=0.9

Α=0.8

Α=0.75

Α=0.5

Figure 1. Comparison between the exact and approximate solution with different values of α (α =
1; 0.9; o.8; o.75; 0.5)
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Table 4: The absolute error with different values of α and δ with ε = 10−10 for
Ex.6.2.

x uex α = 0.5 |uapprox(0.5,δ) − uex| α = 0.75 |uapprox(0.75,δ) − uex|
δ δ

0.0 0.000000 1.0000000000 0.00000 1.0000000000 0.00000
0.1 0.096668 0.5509367733 6.92721×10−11 0.6118280529 8.67221×10−11

0.2 0.197375 0.7828683978 1.48167×10−11 0.7557098658 9.94548×10−11

0.3 0.291313 0.9022085415 1.57780×10−11 0.8474079058 6.33089×10−11

0.4 0.379949 0.9528339326 5.49787×10−11 0.9035663569 7.07466×10−11

0.5 0.462117 0.9689178977 1.00396 ×10−10 0.9375555912 7.96814×10−11

0.6 0.537049 0.9734178132 1.80849×10−10 0.9594396045 9.91023×10−11

0.7 0.604368 0.9810632337 2.94385×10−10 0.9759452075 2.91887×10−11

0.8 0.664037 0.9953461638 2.98471×10−10 0.9904367802 5.61777×10−11

0.9 0.716298 1.0100142158 1.51601×10−10 1.0028985149 1.03043×10−10

1.0 0.761594 1.0087667241 3.74314×10−10 1.0099243331 4.65192×10−11

Table 5: The absolute error with different values of α and δ with ε = 10−10 for
Ex.6.2.

x uex α = 0.8 |uapprox(0.8,δ) − uex| α = 0.9 |uapprox(0.9,δ) − uex|
δ δ

0.0 0.000000 1.0000000000 0.00000 1.0000000000 0.00000
0.1 0.096668 0.6530401769 9.52008×10−11 0.7834457254 8.68039×10−11

0.2 0.197375 0.7728985841 6.36302×10−11 0.8482476922 8.63411×10−11

0.3 0.291313 0.8522406578 9.08493×10−11 0.8943227887 7.85992×10−11

0.4 0.379949 0.9033615454 6.00183×10−11 0.9267068960 9.98892×10−11

0.5 0.462117 0.9362341985 5.69637×10−11 0.9496111110 1.07309×10−11

0.6 0.537049 0.9584700450 5.00371×10−11 0.9663644649 3.86520×10−11

0.7 0.604368 0.9752817828 3.36036×10−11 0.9793608133 5.01296×10−11

0.8 0.664037 0.9894528911 4.51679 ×10−11 0.9900127621 9.40892×10−12

0.9 0.716298 1.0013161863 8.01994×10−11 0.9987223389 7.21614×10−11

1.0 0.761594 1.0087416449 3.28626×10−12 1.0048624114 9.39442×10−11

7. Conclusion

In this paper we proposed a numerical method ,based on the shifted Chebyshev
collocation method and finite difference scheme, to find the solution of the space
fractional diffusion equations and fractional Riccati differential equation. In this
method, the fractional derivatives are described in the Caputo sense. Comparison
between our proposed method and other methods , shows that this scheme is
superior and evidently the error gets smaller.
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Table 6: The absolute error with different values of α and δ with ε = 10−10 for
Ex.6.2.

x uex α = 1. |uapprox(1.,δ) − uex|
δ

0.0 0.000000 1.0000000000 0.00000
0.1 0.096668 0.9997414696 9.10855×10−11

0.2 0.197375 0.9996883291 8.89971×10−11

0.3 0.291313 0.9998913577 9.38171×10−11

0.4 0.379949 1.0000541869 9.60665×10−11

0.5 0.462117 1.0000876557 9.44814×10−11

0.6 0.537049 1.0000274985 9.00673×10−11

0.7 0.604368 0.9999564718 5.07978×10−11

0.8 0.664037 0.9999405416 4.11708×10−11

0.9 0.716298 0.9999840010 9.90938×10−11

1.0 0.761594 1.0000039826 9.96059×10−11
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