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Abstract In this paper, the numerical scheme of nonlinear Volterra-Fredholm integro-
differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method
is constructed based on the reproducing kernel properties in which the initial condition of the
problem is satisfied. The nonlinear terms are replaced by its Taylor series. In this technique,
the nonlinear Volterra-Fredholm integro-differential equations are converted to nonlinear dif-
ferential equations. The exact solution is represented in the form of series in the reproducing
Hilbert kernel space. The approximation solution is expressed by n-term summation of re-
producing kernel functions and it is converge to the exact solution. Some numerical examples
are given to show the accuracy of the method.

Received: 15 August 2016, Revised: 18 October 2016, Accepted: 20 November 2016.

Keywords: Reproducing kernel method, Volterra-Fredholm integro-differential equations,
Approximation solution.

Index to information contained in this paper

1 Introduction

2 Construction of the Method

3 The Analytical Solution

4 Implementations of the Method

5 Applications and Numerical Results

6 Concluding Remarks

1. Introduction

Some of the phenomena in physics, biology, electronics, and other applied sciences
persuade to nonlinear Volterra- Fredholm integro-differential equations. Since the
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boundary value problems in terms of integro-differential equations have many prac-
tical applications, many authors have been investigated the numerical methods of
integro-differential equations, such as application of homotopy analysis method [1],
new direct method using operational matrix with block-pulse functions [2], spline
collocation method [3], homotopy perturbation method [4], differential transform
method with Adomian polynomials [5], modified Laplace Adomian decomposition
method [6], a sinc-collocation method [7], Chebyshev finite difference method [8],
rationalized Haar function method [9], operational Tau method [10], the combined
Laplace transform-Adomian decomposition method [11], modified Adomian decom-
position method [12], non-standard finite difference method [13], B-spline interpo-
lation method [14], a new modified homotopy perturbation method [15], and see
[16–19].
The theory of reproducing kernel has been successfully applied to nonlinear Volterra
integro-differential equations of fractional order [20], fractional differential equa-
tions with daley [21], multiple solutions of nonlinear boundary value problems [22],
nonlinear delay differential equations of fractional order [23], singularly perturbed
boundary value problems with a delay [24], Fredholm integro-differential equations
with weakly singularity [25], second-order integro-differential equations of Fred-
holm type [26], Fredholm integro-differential equations [27], two-point boundary
value problems of fourth-order mixed integro-differential equations [28], two-point,
second-order periodic boundary value problems for mixed integro-differential equa-
tions [29], and see [30–35].
In this paper, an effective numerical method based on the RKM presented for solv-
ing nonlinear Volterra-Fredholm integro-differential equations.
Consider the nonlinear Volterra-Fredholm integro-differential equations

q∑
i=0

ai(x)u
(i)(x) = f(x) + λ1

∫ x

a
K1(x, t)g(u(t))dt+ λ2

∫ b

a
K2(x, t)h(u(t))dt, (1)

subject to the boundary conditions

u(i)(a) = di, i = 0, 1, · · · q − 1,

where ai(x)(i = 0, 1, · · · q), f(x), K1(x, t), K2(x, t), are function having n th
(n ⩾ q) derivatives on an integral a ⩽ x, t ⩽ b and a, b, λ1, and λ2 are constants.

This paper is organized in six sections including the introduction. In the next
section, we present construction of the method in the reproducing kernel space.
The analytical solution is introduced in Section 3. Implementations of the method
is presented in Section 4. We report our numerical findings and demonstrate the
stability of the new numerical scheme by considering some examples in Section 5.
The last section is a brief conclusion.

2. Construction of the Method

2.1 Reproducing kernel Spaces

We construct the closed subspaces oWm
2 [a, b], (m ⩾ q+1) of the reproducing kernel

space Wm
2 [a, b] by imposing homogeneous boundary conditions on oWm

2 [a, b].
Definition 2.1. oWm

2 [a, b] = {u(x)|u(m−1)(x) is an absolutely continuous real value
function, u(m)(x) ∈ L2[a, b], u(i)(a) = 0, i = 1, 2, · · · , q− 1}. The inner product and
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norm in oWm
2 [a, b] are given respectively by

⟨u, v⟩ =
m−1∑
i=0

u(i)(0)v(i)(0) +

∫ b

a
u(m)(x)v(m)(x)dx, (2)

and

∥u∥m =
√

⟨u, u⟩m, u, v ∈ oWm
2 [a, b]. (3)

According to [36], oWm
2 [a, b] is a complete reproducing kernel Hilbert space, i.e., for

each fixed y ∈ oWm
2 [a, b], and any u(x) ∈ oWm

2 [a, b], there exists a function Rx(y)
such that ⟨u(y), Rx(y)⟩ = u(x), the reproducing kernel Rx(y) can be denoted by

Rx(y) =

{∑2m
i=1 ci(y)x

i−1, x ⩽ y,∑2m
i=1 di(y)x

i−1, x > y,
(4)

where coefficients ci(y), di(y), {i = 1, 2, · · · , 2m}, could be obtained by solving the
following equations

∂iRy(x)

∂xi
|x=y+ =

∂iRy(x)

∂xi
|x=y− , i = 0, 1, 2, · · · , 2m− 2, (5)

(−1)m(
∂2m−1Ry(x)

∂x2m−1
|x=y+ − ∂2m−1Ry(x)

∂x2m−1
|x=y−) = 1, (6)


∂iRy(a)

∂xi − (−1)m−i−1 ∂
2m−i−1Ry(a)
∂x2m−i−1 = 0, i = q, q + 1, · · · ,m− 1,

∂2m−i−1Ry(b)
∂x2m−i−1 = 0, i = 0, 1, · · · ,m− 1.

∂iRy(a)
∂xi = 0, i = 0, 1, · · · , q − 1.

(7)

2.2 An Equivalent Transformation of Nonlinear Term (1)

In this section, for solving Eq. (1) an equivalent transformation of integral parts is
proposed. With the Taylor series expansion of u(t) based on expanding about the
given point x belonging to the interval [a, b], we have the Taylor series approxima-
tion of u(t) in the following form

u(t) = u(x) + (t− x)u′(x) +
(t− x)2

2!
u′′(x) + · · ·+ (t− x)n

n!
u(n)(x) +

(t− x)n+1

(n+ 1)!
u(n+1)(ηx,t),

(8)

where ηx,t are between x and t. We use the truncated Taylor series of u(t). By
substituting relation (8) into Eq. (1), we have
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q∑
i=0

ai(x)u
(i)(x) = f(x) + λ1

∫ x

a
K1(x, t)g

(
k=n∑
k=0

u(k)(x)(t− x)k

k!

)
dt

+ λ2

∫ b

a
K2(x, t)h

(
k=n∑
k=0

u(k)(x)(t− x)k

k!

)
dt, (9)

where u(0)(x) = u(x) and
∫ x
a K1(x, t)g

(∑k=n
k=0

u(k)(x)(t−x)k

k!

)
dt,∫ b

a K2(x, t)h
(∑k=n

k=0
u(k)(x)(t−x)k

k!

)
dt in term of x, u(x) and its derivatives are

computable. Hence, Eq. (9) can be written as follows

q∑
i=0

ai(x)u
(i)(x) = H(x, u(x), u′(x), · · · , u(n)(x)). (10)

3. The Analytical Solution

In order to illustrate the analytical of the model problem, we consider that L :
oWm

2 [a, b] −→W [a, b] is an invertible bounded linear operator and L∗ is the adjoint
operator of L, assume a countable dense subset {xi}∞i=1 in [a, b] and define equation
(1), {

Lu(x) =
∑q

i=0 ai(x)u
(i)(x) = H(x, u(x), u′(x), · · · , u(n)(x)),

u(i)(a) = 0, i = 0, 1, · · · , q − 1.
(11)

Let ϕi(x) = Rx(xi) and ψi(x) = L∗ϕi(x). From the property of the reproducing
kernel, it holds ⟨u(x), ϕi(x)⟩ = u(xi).

Theorem 3.1 If {xi}∞i=1 is dense in the interval [a, b], then {ψi(x)}∞i=1 is the
complete system of oWm

2 [a, b].
Proof. Note that {xi}∞i=1 is dense in the interval [a, b]. For u(x) ∈ oWm

2 [a, b], if

⟨u(x), ψi(x)⟩ = ⟨Lu(x), ϕi(x)⟩ = u(xi) = 0, (i = 1, 2, · · · ),

from the density of {xi}∞i=1 and continuity of u(x), then we have u(x) ≡ 0.

The orthonormal system {ψ̄i(x)}∞i=1 of oWm
2 [a, b] is constructed from {ψi(x)}∞i=1

by using the Gram-Schmidt algorithm, and then the approximate solution will be
obtained by calculating a truncated series based on these functions, such that

ψ̄i(x) =
i∑

k=1

βikψk(x), (βii > 0, i = 1, 2, · · · ),

(12)
where βik are orthogonal coefficients.

Theorem 3.2 Let {xi}∞i=1 be dense in the interval [a, b]. If the equation (11) has
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a unique solution, then the solution satisfies the form

u(x) =
∞∑
i=1

∞∑
k=1

βikH(xk, u(xk), u
′(xk), · · · , u

(n)
k (x))ψ̄i(x). (13)

Proof. Let u(x) be the solution of Eq. (11) u(x) is expanded in Fourier series, it
has

u(x) =
∞∑
i=1

⟨u(x), ψ̄i(x)⟩ψ̄i(x) =
∞∑
i=1

i∑
k=1

βik⟨u(x), ψk(x)⟩ψ̄i(x)

=

∞∑
i=1

i∑
k=1

βik⟨u(x),L∗φk(x)⟩ψ̄i(x) =

∞∑
i=1

i∑
k=1

βik⟨Lu(x), φk(x)⟩ψ̄i(x)

=
∞∑
i=1

i∑
k=1

βik⟨H(x, u(x), u′(x), · · · , u(n)(x)), φk(x)⟩ψ̄i(x)

=

∞∑
i=1

i∑
k=1

βikH(xk, u(xk), u
′(xk), · · · , u

(n)
k (x))ψ̄i(x).

The proof is complete.

The equation (11) is nonlinear, that is H(x, u(x), u′(x), · · · , u(n)(x)) depend on
u and its derivatives , then its solution can be obtained by the following iterative
method.

4. Implementations of the Method

Here, a method of solving (13) of (11) is given in the reproducing kernel space.
Rewrite (13) as

u(x) =
∞∑
i=1

Biψ̄i(x), (14)

where Bi =
∑i

k=1 βikH(xk, u(xk), u
′(xk), · · · , u(n)(xk)).

Let x1 = 0, from the initial and boundary condition of Eq. (11), it follows that
u(i)(x1) = 0, (i = 1, 2 · · ·n), then H(x1, u(x1), u

′(x1), · · · , u(n)(x1)) is known. We
put

H(x1, u0(x1), u
′
0(x1), · · · , u

(n)
0 (x1)) = H(x1, u(x1), u

′(x1), · · · , u(n)(x1)),

and define the n−term approximation to u(x) by

uN (x) =
N∑
i=1

Biψ̄i(x), (15)
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where

B1 = β11H(x1, u0(x1), u
′
0(x1), · · · , u

(n)
0 (x1)),

u1(x) = B1 ψ̄1(x),

B2 =
2∑

k=1

β2kH(xk, u1(xk), u
′
1(xk), · · · , u

(n)
1 (xk)),

u1(x) = B1 ψ̄1(x) +B2 ψ̄2(x),

...

BN =

N∑
k=1

βNkH(xk, uN−1(xk), u
′
N−1(xk), · · · , u

(n)
N−1(xk)),

uN (x) =

N∑
i=1

Biψ̄i(x).

Next, the convergence of uN (x) will be proved.

4.1 Convergence of Method

Theorem 4.1 Suppose ∥uN (x)∥Wm
2

is bounded in (15), if {xi}∞i=1 is dense in [a, b],

then the N -term approximate solution uN (x) converges to the exact solution u(x)
of Eq. (11) and the exact solution is expressed as

u(x) =
∞∑
i=1

Biψ̄i(x), (16)

where Bi is given by (14).
Proof. The convergence of uN (x) will be proved. From (15), one obtains

uN (x) = uN−1(x) +BN ψ̄N (x). (17)

From the orthogonality of {ψ̄i(x)}∞i=1, it follows that

∥uN (x)∥2Wm
2

= ∥uN−1(x)∥2Wm
2
+ ∥BN∥2.

The sequence ∥uN (x)∥Wm
2

is monotone increasing. Due to ∥uN (x)∥Wm
2

being
bounded, {∥uN (x)∥Wm

2
} is convergent as soon as N −→ ∞. Then there is a constant

c such that

∞∑
i=1

B2
i = c. (18)
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It implies that

Bi =

i∑
k=1

βikH(xk, ui−1(xk), u
′
i−1(xk), · · · , u

(n)
i−1(xk)),

let m > N , in view of (um − um−1) ⊥ (um−1 − um−2) ⊥ · · · ⊥ (uN+1 − uN ), it
follows that

∥(um − uN )∥2Wm
2

= ∥um − um−1 + um−1 − um−2 + · · ·+ uN+1 − uN∥2Wm
2

= ∥um − um−1∥2Wm
2
+ ∥um−1 − um−2∥2Wm

2
+ · · ·+ ∥uN+1 − uN∥2Wm

2

=

m∑
i=N+1

(Bi)
2 −→ 0, (N −→ ∞). (19)

Considering the completeness of oWm
2 [a, b], it has

uN (x)
∥.∥Wm

2−→ u(x), (N −→ ∞).

It is proved that u(x) is the solution of Eq. (11).
Hence,

u(x) =

∞∑
i=1

Biψ̄i(x).

The proof is complete.

Theorem 4.2 If uN (x)
∥.∥Wm

2−→ u(x) and xN −→ y (N −→ ∞), then

H(xN , uN (xN ), u′N (xN ), · · · , u(n)N (xN )) −→ H(y, u(y), u′(y), · · · , u(n)(y)) (N −→ ∞).
(20)

Proof. We will prove u
(i)
N (xN ) −→ u(i)(y), (N −→ ∞) and i = 0, 1, 2, · · · , n. Ob-

serving that

|u(i)N (xN )− u(i)(y)| = |u(i)N (xN )− u
(i)
N (y) + u

(i)
N (y)− u(i)(y)|

⩽ |u(i)N (xN )− u
(i)
N (y)|+ |u(i)N (y)− u(i)(y)|.

It follows that

|u(i)N (xN )− u
(i)
N (y)| = |⟨uN (x),

∂i

∂yi
(RxN

(x)−Ry(x))⟩|

⩽ ∥uN (x)∥Wm
2
∥ ∂

i

∂yi
(RxN

(x)−Ry(x))∥Wm
2
.

From the convergence of uN (x), there exist constants N1 ∈ N and M ∈ R, such
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that

∥u(i)N (x)∥Wm
2

⩽M∥u(x)∥Wm
2
, for N ⩾ N1 and i = 0, 1, 2, · · · , n.

Since

∥RxN
(x)−Ry(x)∥Wm

2
−→ 0 (N −→ ∞).

It follows that |u(i)N (xN )− u(i)(y)| −→ 0 as soon as xN −→ y from ∥u(i)N (x)∥Wm
2

⩽
M∥u(x)∥Wm

2
.

Hence, as soon as xN −→ y it shows that

u
(i)
N (xN ) −→ u(i)(y) (N −→ ∞).

It follows that

H(xN , uN (xN ), u′N (xN ), · · · , u(n)N (xN )) −→ H(y, u(y), u′(y), · · · , u(n)(y)) (N −→ ∞).
(21)

Consequently, the method mentioned is convergent.

5. Applications and Numerical Results

To test the accuracy of the present method, some examples with exact solutions
are given. In these examples we take N = 10, where N is the number of terms
of the Fourier series of the unknown function u(x). Parameter n is the number
of terms of the Taylor series and we choose m > n for solving these examples.
Results obtained by the method are compared with the exact solution of each
example and are found to be in a good agreement. The approximate solution
uN (x) is calculated by (15). The examples are computed using Mathematica 8.0.
Example 5.1. Consider the nonlinear Volterra-Fredholm integro-differential
equation [17]:

x2u′′(x)+2u′(x) = 2− 5

6
x+

1

2
xe−x2

+

∫ x

0
txe−u2(x)dt+

∫ 1

0
xu2(t)dt, 0 ⩽ x ⩽ 1,

with initial conditions u(0) = 0, u′(0) = 1. The exact solution is u(x) = x.
Let n = 2 and applying the reproducing kernel method. The comparison between
the exact solution and the approximate solution and the absolute errors in spaces
W 5[0, 1],W 6[0, 1] are graphically shown in figure 1, respectively. The absolute errors
between u(x) and u10(x) in spaces W 5[0, 1],W 6[0, 1] are shown in Table 5. This
is an indication of stability on the reproducing Kernel. However, by increasing m,
the behavior improves.
Example 5.2. Let us now study the nonlinear Volterra-Fredholm integro-

differential equation [1]:

u′′(x)+xu′(x) = ex(2+x2+3x)−(0.5892858)x+

∫ x

0

u2(t)dt+

∫ 0.5

0

xt(1+u(t))2dt, 0 ⩽ x ⩽ 0.5,

with initial conditions u(0) = 0, u′(0) = 1. The exact solution is u(x) = xex.
Let n = 3 and applying the reproducing kernel method. The comparison between
the exact solution and the approximate solution and the absolute errors in spaces
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1.0

Approximate solution

Exact solution

0.2 0.4 0.6 0.8 1.0

5.´10-12

1.´10-11

1.5 ´10-11

2.´10-11

0.2 0.4 0.6 0.8 1.0

5.´10-13

1.´10-12

1.5 ´10-12

2.´10-12

Figure 1. The figures of the approximate solution, the absolute errors in W 5 and W 6, respectively left to
right.

Table 1
Numerical results of Ex. 5.1.

Node |u10(x)− u(x)|W 5 |u10(x)− u(x)|W 6

0 0 0
0.1 2.29525E-13 2.29677E-14
0.2 9.11105E-13 9.11216E-14
0.3 2.03459E-12 2.03448E-13
0.4 3.59002E-12 3.58991E-13
0.5 5.56755E-12 5.56888E-13
0.6 7.95675E-12 7.96030E-13
0.7 1.07471E-11 1.07558E-12
0.8 1.39275E-11 1.39422E-12
0.9 1.74869E-11 1.75171E-12
1 2.14146E-11 2.14717E-12

W 5[0, 0.5],W 6[0, 0.5] are graphically shown in figure 1, respectively. The absolute
errors between u(x) and u10(x) in spacesW 5[0, 0.5],W 6[0, 0.5] are shown in Table 5.
This is an indication of stability on the reproducing Kernel. However, by increasing
m, the behavior improves. The numerical results compared with [1] are given in
Table 5.

0.1

0.5

Approximate solution

Exact solution

0.1 0.2 0.3 0.4 0.5

2.´10-7

4.´10-7

6.´10-7

8.´10-7

1.´10-6

0.1 0.2 0.3 0.4 0.5

2.´10-8

4.´10-8

6.´10-8

8.´10-8

1.´10-7

Figure 2. The figures of the approximate solution, the absolute errors in W 5 and W 6, respectively left to
right.

Table 2
Numerical results of Ex. 5.2.

Node |u10(x)− u(x)|W 5 |u10(x)− u(x)|W 6 Errors, HAM [1]
0 0 0 —
0.05 1.04211E-9 1.04855E-10 0.00071584
0.1 8.36636E-9 8.38119E-10 0.00127473
0.15 2.82122E-8 2.82352E-9 0.00163066
0.2 6.67232E-8 6.67544E-9 0.00196136
0.25 1.29904E-7 1.29944E-8 0.00217893
0.3 2.23578E-7 2.23626E-8 0.00235548
0.35 3.53345E-7 3.53400E-8 0.00268905
0.4 5.24540E-7 5.24602E-8 0.00297645
0.45 7.42203E-7 7.42273E-8 0.00314973
0.5 1.01104E-6 1.01112E-7 0.00347981
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Example 5.3. Consider the following Volterra-Fredholm integro-differential
equation [4, 19]:

u′′(x)−xu′(x)+xu(x) = f(x)+

∫ x

−1
(x−2t)u2(t)dt+

∫ 1

−1
xtu(t)dt, −1 ⩽ x ⩽ 1,

where f(x) = 2
25x

6− 1
3x

4+x3−2x2− 23
15x+

5
3 , with condition u(0) = −1, u′(0) = 0

and exact solution u(x) = x2 − 1.
Let n = 2 and applying the reproducing kernel method. The comparison between
the exact solution and the approximate solution and the absolute errors in spaces
W 5[−1, 1],W 6[−1, 1] are graphically shown in figure 3, respectively. The absolute
errors between u(x) and u10(x) in spacesW 5[−1, 1],W 6[−1, 1] are shown in Table 5.
This is an indication of stability on the reproducing Kernel. However, by increasing
m, the behavior improves.

-1.0 -0.5 0.5 1.0

-1.0

-0.8

-0.6

-0.4

-0.2

Approximate solution

Exact solution

-1.0 -0.5 0.5 1.0

2.´10-7

4.´10-7

6.´10-7

8.´10-7

-1.0 -0.5 0.5 1.0

2.´10-10

4.´10-10

6.´10-10

8.´10-10

1.´10-9

1.2 ´10-9

Figure 3. The figures of the approximate solution, the absolute errors in W 5 and W 6, respectively left to
right.

Table 3
Numerical results of Ex. 5.3.

Node |u10(x)− u(x)|W 5 |u10(x)− u(x)|W 6

-1 0 0
-0.8 7.68430E-11 3.24518E-13
-0.6 3.57387E-10 2.33868E-12
-0.4 1.67649E-9 8.81384E-12
-0.2 6.20583E-9 2.47495E-11
0.0 1.81650E-8 5.82997E-11
0.2 4.47561E-8 1.21964E-10
0.4 9.73603E-8 2.34128E-10
0.6 1.93123E-7 4.21058E-10
0.8 3.57009E-7 7.19472E-10
1 6.24578E-7 1.17988E-9

6. Concluding Remarks

In this study, a computationally attractive method for solving nonlinear Volterra-
Fredholm integro-differential equations is presented. Using the definition reproduc-
ing kernel space, Taylor series and the properties of proposed method, the initial
problem is converted a nonlinear differential equation. By solving the nonlinear
differential equations, numerical solutions are obtained. Some examples are solved
in two different space Wm

2 . However, to obtain better results, use of the larger
parameter m is recommended.
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