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1. Introduction

The uncertainty principle is a cornerstone in quantum phsysics. However, its prin-
ciples play an equally monumental role in harmonic analysis. To put it in one
sentence: A nonzero function and its Fourier transform cannot both be sharply
localized. While Heisenberg gave a clear physical interpretation of the uncertainty
principal in 1927 in [8]. As description of this, one has Hardy’s theorem [7], Mor-
gan’s theorem[9]. These theorems have been generalized to many other situations
(see, for example, [1, 2, 5]). In this paper we establish an analogous of LP-L4-version
of Morgan’s theorem for the generalized Fourier transform Fj associated with as-
sociated with a Dunkl type operator A introduit and study in [3]. We prove that
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forl <p,g<oo,a>0, b>0, v>2andn = %, then for all measurable
function f on R, the conditions

el f € LD (R)
and
PV FA(F)(N) € L (R)

imply f=0if

(@) on)t > (sin (T - 1))

The structure of the paper is as follows: In section 2 we set some notations and
collect some basic results about the first singular differential-difference operator A
and the generalized Fourier transform associated with A. In section 3 we state and
prove an LP-L9-version of Morgan’s theorem for the generalized Fourier transform
associated with A.

2. The Harmonic Analysis Associated with A

In this section we provide some facts about harmonic analysis related to A on the
real line. We cite here, as briefly as possible, some properties. For more details we
refer to [3]. Throughout this paper we assume that a > %1 and let

Q@ﬁ—em)(—Axﬁ0ﬁ>,:ceR (1)

e L5 (R) the class of measurable functions f on R for which ||f]|,.« < oo, where

1l = ( / \f(x)\prx\2“+ldx)”, if p< o

and || flloo = [1flloe = esssupacsl f(2)]

. LIQ(R) the class of measurable functions f on R for which || f|,.0 = |Qf|lp.a <
oo, where @ is given by (1)

o M the map defined by Mf(x) = Q(z)f(x) is an isometry from L) onto Lg

We consider the first singular differential-difference operator A defined on R

Af(@) = f'(2) + (a+ ;)W

+q(x)f(x) (2)
where ¢ is a C* real-valued odd function on R. For ¢ = 0 we regain the Dunkl
operator A, associated with reflection group Z, on R given by

Aof(z) = f(2) + (o + ;)JW
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2.1 Generalized Fourier Transform
The following statements are proved in [3]

(1) For each A € C, the differential-difference equation
Au =i u, u(0)=1
admits a unique C* solution on R, denoted by W, given by
Ua(z) = Q@)ealirr), 3)

where e, denotes the one-dimensional Dunkl kernel defined by

€al?) = jaliz) + =— jiai(z) (2 €0)

2a+1

and j, being the normalized spherical Bessel function of index « given by

= ()

ja(z):r(aﬂ);)m Tt ot (z € C). (4)
(2) Forallz €e R, A€ Cand n=0,1,... we have
9% 0\(x) < Q@)al"elim e, (5)
oAn
In particular
| Ua(x) |< Q(z)el™ el (6)

(3) For all z € R, X\ € C, we have the Laplace type integral representation
1 ) .
V(@) = aaQ(o) [ (1= 2) 3 (L4 O, (7)

-1

2 (a+1
where g, = —22@+1)

Vl(a+1)"

The generalized Fourier transform associated with A for a function in Lb(R) is
defined by

FA(DN) = / F(2) Uy (2)a? e (8)

(1) Let f € Lb(R) such that Fx(f) € LL. Then for allmost = € R we have the
inversion formula

£(2) (Q))* = ma / Fa(F) V)T (@) AP dA,

where
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(2) For every f € L%(R), we have the Plancherel formula

@) Q)P P e = ma [ 1F(HOFIAR

(3) The generalized Fourier transform Fj extends uniquely to an isometric
isomorphism from LzQ(R) onto L2 (R).
3. An LP-L9-Version of Morgan’s Theorem for Fj,
We start by getting the following lemma of Phragmen-Lindl6f type using the same
technique as in [4, 6]. We need this lemma to prove the main result of this paper.
Suppose that p €]1,2[, ¢ € [1,00], 0 > 0 and B > osin(5(p—1)). If g is an
entire function on C verifiying:
l9(x +iy)| < C.e”W’ (9)
and
Bl glg € L (R) (10)
for all z,y € R then g = 0.
Let 1<p,g<o0,a>0, b>0, vy>2andn= %, then for all measurable
function f on R, the conditions
el f € L) (R) (11)
and

PV FA(F)(N) € L (R) (12)

imply f =0 if

1
7

(a7)> (bm)» > (sin (S (= 1))’ (13)

Proof The function

/ f 2a+1d$

is well defined, entirely on C and from (8) and (6), we have

FA (V)] = / F(@) Uy ()22 e,
< [ I @@z ias,
R

= / IMf(z)]ellSlz2e de YA =¢+ic eC
R
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Applying Holder inequality and using (15), we get

1
ol

(/ (|e—a\x|"’e|:c|\<|>p, $2a+1dx> ? 7
R

1
o

<C (/ (|€_a|x‘w€‘x”q)pl x2°‘+1daz> o
R

where p’ is the conjugate exponent of p.
Let C € I =|(bn) ™ sin(5(n—1))", (ay)7 .
Applying the convex inequality

| FA(f)N)] < | </R (Mf(x)|€a|x|v>px2a+1d$>

1 1
ty] < (D)L + (=)|y]"
Ity < I + )l

to the positive numbers C|z| and %, we obtain
c? 1
z||¢| < (—)|z|” + (—=)|<|"
|z[I¢] < ( S )" + (nm)lCl
and the following relation holds
/ o' ' lelICl 2041 g o Bl / o P = )al 2041,
R R
Since C' € I, then a > %, and thus the integral

' (a—CY v
/e P'(a=<)al” 2041 g,
R

is finite. Moreover

’
<"

|FA(f)(N)] < Const.e nem | forallX € C. (14)

By virtue of relations (15), (16), (14) and Lemma 3, we obtain that F, ,f = 0.
Then f =0 by Theorem 2.1. [ ]

4. Conclusion
In this paper, using a generalized Fourier transform associated with a Dunkl type
operator, we obtained an LP-L9-version of Morgan’s. We proved that if 1 < p,q <

00,a>0, b>0, v>2andn= %, then for all measurable function f on R,
the conditions

el f € LE(R) (15)
and

PIFA(F)N) € LH(R) (16)
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imply f=0if

(@) on)t > (sin (S - 1)) (17)

The demonstration of this result is based on the lemma of Phragmen-Lindlof type.
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