
Journal of
Linear and Topological Algebra
Vol. 02, No. 04, 2013, 243- 254

Approximate solution of fourth order differential
equation in Neumann problem
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Abstract. Generalized solution on Neumann problem of the fourth order ordinary differential
equation in space W 2

α(0, b) has been discussed , we obtain the condition on B.V.P when the
solution is in classical form. Formulation of Quintic Spline Function has been derived and the
consistency relations are given.Numerical method,based on Quintic spline approximation has
been developed. Spline solution of the given problem has been considered for a certain value
of α. Error analysis of the spline method is given and it has been tested by an example.
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1. Introduction

The most important class of operator equation in the fourth order is:

Lu ≡ (xαu′′)′′ +Au = f, (1)

when x ∈ [0, b], 0 ⩽ α ⩽ 4, f ∈ L2((0, b),H), the operator A has a complete system of
eigenfunctions {φk}k∈N, which form a Riesz basis inH. Degenerate equations encountered
in solving many important problems of applied character(the theory of small deformation
surfaces of rotation, the membrane theory of shells, the bending of plates of variable thick-
ness with a sharp edge). Particularly, these equations are important in the gas dynamic.
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Tricomi [19]has studied on the second-order equation with non-characteristic degenera-
tion. Keldysh [9] had played a fundamental role in the theory of degenerate equations.He
studied the first boundary value problem of the second-order equation with character-
istic degeneration.Bicadze in [2] formulated weight problems which has been created by
Fichera [5]. Generally speaking the 4th order B.V.P can not be solved analytically only
in the special case the analytic solution is available so that the numerical Approxima-
tion of the solution are interested . Numerical discussion of fourth-order boundary value
problems are given in [20], [10],[11].The Quintic spline methods for the solution of linear
fourth-order two boundary value problems are given in [10],[12],[11]. Rashidinia discussed
solving fourth-order linear boundary-value problems [12].
In this paper we emphasize on the generalized solution for the Neumann problem in
W 2

α(0, b). In section-2 we consider one-dimension form of equation (1) and defined spaces
Ẇ 2

α(0, b),W
2
α(0, b) and there norms also we defined generalized solution of the Neumann

problem.In section-3 Formulation of Quintic Spline Function has been derived and the
consistency relations are given which it is useful in approximation of the solution of
4th B.V.P.In section-4 Error Analysis of the method is given and finally in section-5
Numerical illustration has been given.

2. Neumann problem for one-dimensional case

We consider the one-dimensional of equation (1),that Au = au, a ∈ C, a = const,

Lu ≡ (xαu′′)′′ + au = f, 0 ⩽ α ⩽ 4, f ∈ L2(0, b). (2)

To discuss the generalized solution in Neumann problem,we need to define spaces
Ẇ 2

α(0, b)and W 2
α(0, b).

2.1 Space Ẇ 2
α(0, b)and W 2

α(0, b)

Definition 2
The weighted Sobolev space Ẇ 2

α(0, b) is the completion of Ċ2[0, b] with the norm

∥u∥2
Ẇ 2

α(0,b)
=

∫ b

0
xα |u′′(x)|2dx, α ⩾ 0, (3)

when Ċ2[0, b] be a set of twice continuously differentiable functions and u(x) defined on
[0, b] and satisfying the conditions

u(0) = u′(0) = u(b) = u′(b) = 0. (4)

The elements of Ẇ 2
α(0, b) are continuously differentiable functions on [ε, b] for every

0 < ε < b, whose first derivatives are absolutely continuous and u(b) = u′(b) = 0.

Proposition 3 For every u ∈ Ẇ 2
α(0, b) close to x = 0, we have the following estimates

(i) |u(x)|2 ⩽ C1x
3−α∥u∥2

Ẇ 2
α(0,b)

, for α ̸= 1, 3,

(ii) |u′(x)|2 ⩽ C2x
1−α∥u∥2

Ẇ 2
α(0,b)

, for α ̸= 1. (5)
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Following ( [7]) in the above solutions when α = 1and α = 3 the factors x3−α in (i) must
be replaced by x2| lnx| and | lnx| respectively.when α = 1 the factor x1−α in (ii) must
be replaced by | lnx|.

It follows from relations (5) that, for α < 1 (weak degeneracy), the boundary conditions
u(0) = u′(0) = 0 are “retained”, while for 1 ⩽ α < 3 (strong degeneracy), only the
condition u(0) = 0 is ”retained”, for α ≥ 3, both u(0) and u′(0) in general may be
infinite. For example, if u(x) = xβφ(x) when φ(x) ∈ C2[0, b], φ(b) = φ′(b) = 0 and

φ(0) ̸= 0, then for α > 3 and (3−α)
2 < β < 0, the function u(x) belongs to Ẇ 2

α(0, b), but
u(0) and u′(0) do not exist.

Proposition 4 For every 0 ⩽ α ⩽ 4, we have a continuous embedding

Ẇ 2
α(0, b) ↪→ L2(0, b). (6)

It is compact for 0 ⩽ α < 4, and it verify that the sequence un(x) =
n−1/2x−1/2| lnx|−1/2−1/n is bounded in Ẇ 2

4 (0, b), but it does not contain a subsequence
convergent in L2(0, b).(proof in [6])

Remark 5 The embedding (6) for α > 4 is fail.

When α > 4, we use the function u(x) = x−1/2φ(x) that φ(x) ∈ C2[0, b], φ(b) =
φ′(b) = 0 and φ(0) ̸= 0 and u ∈ Ẇ 2

α(0, b) but u /∈ L2(0, b).

Corollary 6 If the function u has a bounded piecewise-continuous derivative of the second
order in [ε, b] for arbitrary 0 < ε < b, ∥u∥Ẇ 2

α(0,b)
< ∞, u(b) = u′(b) = 0 and near to x = 0

hold the inequalities (5), then u ∈ Ẇ 2
α(0, b).

Definition 7 The weighted Sobolev space W 2
α(0, b) is the completion of C2[0, b] with the

norm

∥u∥2W 2
α(0,b)

=

∫ b

0
(xα |u′′(x)|2 + |u(x)|2) dx, α ⩾ 0, (7)

with the corresponding scalar product

{u, v}α = (xau′′, v′′) + (u, v).

Proposition 8 For every u ∈ W 2
α(0, b) we have

(i) |u(x)|2 ⩽ (c1 + c2x
3−α)∥u∥2W 2

α(0,b)
, for α ̸= 1, 3,

(ii) |u′(x)|2 ⩽ (c3 + c4x
1−α)∥u∥2W 2

α(0,b)
, for α ̸= 1. (8)

Following ([18]) in the above solutions when α = 1and α = 3 the factors x3−α in (i) must
be replaced by x2| lnx| and | lnx| respectively.when α = 1 the factor x1−α in (ii) must
be replaced by | lnx|.

Proposition 9 The following embedding for arbitrary 0 ⩽ α ⩽ 4 is continuous and
compact.

W 2
α(0, b) ⊂ L2(0, b). (9)
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2.2 Generalized Solution Of The Neumann Problem

In this subsection we define that generalized solution and when it is classical get some
conditions.

Definition 10 The function u ∈ W 2
α(0, b) is called a generalized solution of the Neumann

problem for the equation (2) if for every v ∈ W 2
α(0, b) we have the equality

(xαu′′, v′′) + a(u, v) = (f, v). (10)

If the generalized solution u ∈ W 2
α(0, b) for the equation (2) is classical,then we get

the following conditions ([14])

u′′(b) = u′′′(b) = 0, (xαu′′(x))|x=0 = (xαu′′(x))′|x=0 = 0. (11)

Indeed, integrating the equality (10) by parts,we obtain that for every v ∈ W 2
α(0, b)

the equality

((xαu′′)′′, v) + a(u, v) + (xαu′′(x)v̄′(x)− (xαu′′(x))′v̄(x))|x=b
x=0 = (f, v),

is valid.
In the following section we discuss the numerical approximation the solution of the
Neumann problem by using Quintic spline function.

3. Quintic Spline Function

We consider a uniform mesh ∆, with nodal points xi on [a, b] such that

∆ : a = x0 < x1 < ... < xN = b,

xi = a+ ih, i = 1, ..., N,
(12)

We denote a function value,u(xi) byui. Quintic spline function Si(x) interpolating to a
function u(x) on [a, b] and it is defined as follows:
1.In each subinterval[xi−1, xi],Si(x) is a polynomial of at most degree five;
2.The first,second,third and fourth derivatives of Si(x)are continuing on [xi−1, xi] ⊆ [a, b]
which are denoting the following:

(i)S′
i(x

−
i ) = S′

i(x
+
i ), (ii)S′′

i (x
−
i ) = S′′

i (x
+
i ),

(iii)S′′′
i (x−i ) = S′′′

i (x+i ), (ii)S
(4)
i (x−i ) = S

(4)
i (x+i ), (13)

More ever we denote:

(i)Si(xi−1) = ui−1, (ii)Si(xi) = ui,

(iii)S′′
i (xi−1) = Mi−1, (iv)S

′′

i (xi) = Mi, (14)

(v)S
(4)
i (xi−1) = Fi−1, (vi)S

(4)
i (xi) = Fi,
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The spline function Si(x) for x ∈ [xi−1, xi] is defined by:

Si(x) = (
x− xi−1

h
)ui + (

xi − x

h
)ui−1

+
h2

3!
[(
x− xi−1

h
)3Mi − (

x− xi−1

h
)Mi + (

xi − x

h
)3Mi−1 − (

xi − x

h
)Mi−1]

+
h4

5!
[((

x− xi−1

h
)5 − 10

3
(
x− xi−1

h
)3 +

7

3
(
x− xi−1

h
))Fi + (

x− xi−1

h
)Fi−1]. (15)

By the continuity of the first and third derivatives and eliminatingMi’s we obtain the
following useful relation.

ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2

− 1

120
h4(Fi−2 + 26Fi−1 + 66Fi + 26Fi+1 + Fi+2) + τFi

= 0, i = 3, ..., N − 3,

(16)

and from equation (2) we obtain:

u(4)(x) = x−α(f(x)− a.u(x)− 2.α.x(α−1).u′′′(x)− α.(α− 1).x(α−2).u′′(x)), (17)

by substituting Equation (17) into (16) we obtain the main relation of the method.To
obtain the unique solution we need to associated four more equations with (16) .Since
we have u′′(x) and u′′′(x) in (17) we have to approximate them.We use Taylor series and
method of undetermined coefficients that:

u1 − 2u2 + u3 − h2M0 − 2h3T0 −
h4

120
(321F1 − 72F2 + F3)− τF1 = 0,

⇒− 2u1 + 5u2 − 4u3 + u4 + h2M0 + h3T0

− h4

120
(−379

3
F1 +

581

3
F2 −

55

3
F3 + F4)− τF2 = 0,

⇒ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2

− h4

120
(Fi−2 + 26Fi−1 + 66Fi + 26Fi+1 + Fi+2)− τFi = 0, i = 3(1)N − 3

⇒− 2uN−1 + 5uN−2 − 4uN−3 + uN−4 + h2MN + h3TN

− h4

120
(−379

3
FN−1 +

581

3
FN−2 −

55

3
FN−3 + FN−4)− τFN−2

= 0,

⇒uN−1 − 2uN−2 + uN−3 − h2MN − 2h3TN

− h4

120
(321FN−1 − 72FN−2 + FN−3)− τFN−1

= 0. (18)
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Now for approximation u′′(x) by same manner so that the following system :

u1 − 2u2 + u3 −
h2

20
(M1 + 9M2 +M3)− τM1

= 0,

− 2u1 + 5u2 − 4u3 + u4 −
h2

20
(−4M1 − 101M2 + 46M3 +M4)− τM2

= 0,

ui−2 + 2ui−1 − 6ui + 2ui+1 + ui+2 −
h2

20
(Mi−2 + 26Mi−1 + 66Mi + 26Mi+1 +Mi+2)− τMi

= 0,

− 2uN−1 + 5uN−2 − 4uN−3 + uN−4 −
h2

20
(−4MN−1 − 101MN−2 + 46MN−3 +MN−4)

− τMN−2
= 0,

uN−1 − 2uN−2 + uN−3 −
h2

20
(MN−1 + 9MN−2 +MN−3)− τMN−1

= 0. (19)

And the approximation of u′′′(x):

u1 − 2u2 + u3 − h2M0 −
43h3

120
T0 −

h3

60
(73T1 +

49

2
T2 + T3)− τT1

= 0,

− 2u1 + 5u2 − 4u3 + u4 + h2M0 +
59

180
h3T0 −

h3

60
(
−159

2
T1 + 14T2 +

145

6
T3 + T4)− τT2

= 0,

− ui−2 + 2ui−1 − 2ui+1 + ui+2

− h3

60
(Ti−2 + 26Ti−1 + 66Ti + 26Ti+1 + Ti+2)− τTi

= 0, i = 3(1)N − 3

− 2uN−1 + 5uN−2 − 4uN−3 + uN−4 + h2MN +
59h3

180
TN − h3

60
(−159

2
TN−1 + 14TN−2

+
145

6
TN−3 + TN−4)− τTN−2

= 0,

uN−1 − 2uN−2 + u3 − h2MN − 43h3

120
TN − h3

60
(73TN−1 +

49

2
TN−2 + TN−3)− τTN−1

= 0.

(20)

The above system of (17), (18),(19),(20) can be dented in the Matrix form as follows:

F = x−α(G− aU − 2αxα−1T − α(α− 1)xα−2M), (21)

A1U − h2W1M
∗
0 − h3V1T

∗
0 − h4

120
C1F −RF = 0, (22)

A2U − h2

20
C2M −RM = 0, (23)
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A3U − h2W3M
∗
0 − h3V3T

∗
0 − h3

60
C3T −RT = 0, (24)

When:

A1 =



1 −2 1 0
−2 5 −4 1
1 −4 6 −4 1

. . . .

. . . . .
. . . . .

. . . . .
1 −4 6 −4 1

1 −4 5 −2
0 1 −2 1



A2 =



1 −2 1 0
−2 5 −4 1
1 2 −6 2 1

1 2 −6 2 1
1 −4 5 −2

0 1 −2 1



A3 =



1 −2 1 0
−2 5 −4 1
−1 2 0 −2 1

−1 2 0 −2 1
1 −4 5 −2

0 1 −2 1
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C1 =



321 −72 1 0
−379

3
581
3 −55

3 1
1 26 66 26 1

. . . .

. . . . .
. . . . .

. . . . .
1 26 66 26 1

1 −55
3

581
3 −379

3
0 1 −72 321



C2 =



1 9 1 0
−4 −101 46 1
1 26 66 26 1

1 26 66 26 1
1 46 −101 −4

0 1 9 1



C3 =



73 49
2 1 0

−159
2 14 145

6 1
1 26 66 26 1

1 26 66 26 1
1 145

6 14 −159
2

0 1 49
2 73
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G = (f1, ..., fN−2, fN−1)
T ,

U = (u1, u2, ..., uN−2, uN−1)
T ,

F = (u
(4)
1 , u

(4)
2 , ..., u

(4)
N−2, u

(4)
N−1)

T = (F1, F2, ..., FN−2, FN−1)
T ,

M = (u
(2)
1 , u

(2)
2 , ..., u

(2)
N−2, u

(2)
N−1)

T = (M1,M2, ., ., .,MN−2,MN−1)
T ,

T = (u
(3)
1 , u

(3)
2 , ..., u

(3)
N−2, u

(3)
N−1)

T = (T1, T2, ., ., ., ., TN−2, TN−1)
T ,

M∗
0 = (u′′0, u

′′
0, 0, ..., 0, u

′′
N , u′′N )T = (M0,M0, ., ., .,MN ,MN )T ,

T ∗
0 = (u′′′0 , u

′′′
0 , 0, ..., 0, u

′′′
N , u′′′N )T = (T0, T0, ., ., ., ., TN , TN )T ,

W1 = (1,−1, 0, ..., 0,−1, 1)T ,

W3 = (1,−1, 0, ..., 0,−1, 1)T ,

V1 = (2,−1, 0, ..., 0,−1, 2)T ,

V3 = (
43

120
,− 59

180
, 0, ..., 0,− 59

180
,
43

120
)T ,

RT = (τT1
, τT2

, ..., τTN−2
, τTN−1

)T ,

RM = (τM1
, τM2

, ..., τMN−2
, τMN−1

)T ,

RF = (τF1
, τF2

, ..., τFN−2
, τFN−1

)T ,

By substituting Equations (21),(23),(24) into (22) the main method has the following
Matrix form:

AU −B− τError = 0, (25)

Where:

A = A1 +
h2αC1

6x2C2
(α− 1)A2 +

hαC1

xC3
A3 +

h4aC1

120xα
,

B =
h4C1

120xα
G+ (

h3αC1

xC3
W3 + h2W1)M

∗
0 + (

h4αC1

xC3
V3 + h3V1)T

∗
0 ,

τError = (
hαC1

xC3
)RT +

h2αC1

6x2C2
(α− 1)RM +RF . (26)
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4. Error Analysis

The Local Truncation error of the given method can be obtained as:

τM =



τM1
= − 1

240h
6.u(6)(ε1) i = 1,

τM2
= 1

240h
7.u(7)(ε2) i = 2,

τMi
= 1

120h
6.u(6)(εi) i = 3, ..., N − 3,

τMN−2
= 1

240h
7.u(7)(εN−2) i = N − 2,

τMN−1
= − 1

240h
6.u(6)(εN−1) i = N − 1,

(27)

τT =



τT1
= 17

360h
6.u(6)(ε1) i = 1,

τT2
= 139

180h
6.u(6)(ε2) i = 2,

τTi
= − 1

120h
7.u(7)(εi) i = 3, ..., N − 3,

τTN−2
= 139

180h
6.u(6)(εN−2) i = N − 2,

τTN−1
= 17

360h
6.u(6)(εN−1) i = N − 1,

(28)

τF =



τF1
= 61

90h
6.u(6)(ε1) i = 1,

τF2
= 133

72 h
6.u(6)(ε2) i = 2,

τFi
= − 1

12h
6.u(6)(εi) i = 3, ..., N − 3,

τFN−2
= 133

72 h
6.u(6)(εN−2) i = N − 2,

τFN−1
= 61

90h
6.u(6)(εN−1) i = N − 1,

(29)

Where:

x0 < ε1 < x1,

x1 < ε2 < x2,

xi−1 < εi < xi,

xN−2 < εN−1 < xN−1,

xN−1 < εN < xN . (30)

5. Numerical Illustration

In order to test the utility of the proposed method we have solved the following example.
The exact solution is known and the maximum absolute error in the solution is tabulated.

Example :
Consider the linear boundary value problem :

(u′′(x))′′ − u(x) = x3 − x2,

u′′0 = 0, u′′π = 0,

u′′′0 = 0, u′′′π = 0.



J. Rashidinia et al. / J. Linear. Topological. Algebra. 02(04) (2013) 243-254. 253

With the Exact solution

u(x) = −x3 + x2 +
(−2− 6eπ + 6e−π + 2e−πeπ + 3e−ππ + 6π + 3πeπ) cos(x)

(1 + eπ)(1 + e−π)

− (−2eπ + 3πeπ + 2e−π − 3e−ππ − 6 + 6e−πeπ) sin(x)

(1 + eπ)(1 + e−π)
+

(−8 + 3π)e−x

1 + e−π
+

(4 + 3π)ex

1 + eπ
,

(31)

This problem has been solved using the Quintic spline with different values of N the
maximum absolute errors in the solution are computed and tabulated in the table.

Table 1. The maximum absolute errors in the solution of Example
N step lengths Absolu Error in solution

50 π
50 3.01(-2)

75 π
75 1.66(-3)

100 π
100 7.8(-4)

References

[1] Berezanski.J.M,Expansion in Eigenfunctions of Selfadjoint Operators.,Transl.Math. Monographs 17, Amer-
ican Mathematical Soc, Providence,1968.

[2] Bicadze.A.V, Equations of mixed type.,M. Izd. AN SSSR,1959 (Russian).
[3] Burenko. V.V, Sobolev Spaces on Domains., Teubner, 1999.
[4] Dezin. A.A,Partial DifferentialEquations.(An Introduction to a General Theory of Linear Boundary Value

Problems),Springer,1987.
[5] Fichera. G, On a unified theory of boundary value problems for elliptic-parabolic equations of second order.,

Boundary Problems of Differential Equations, The Univ. of Wisconsin Press,pp. 97-120 , 1960.
[6] Kalvand. Daryoush, Neumann problem for the degenerate differential-operator equations of the fourth order.,

Vestnik RAU, Physical-Mathematical and Natural Sciences, No. 2,pp. 34-41, 2010 (Russian).
[7] Kalvand. Daryoush, Tepoyan. L, Neumann problem for the fourth order degenerate ordinary differential

equation., Proceedings of the Yerevan State University, Physical and Mathematical Sciences, No. 1,pp. 22-26
, 2010.

[8] Kalvand. Daryoush, Tepoyan. L, Rashidinia. J, Existence and uniqueness of the fourth order boundary value
problem and quintic Spline solution., Proceeding of 9th Seminar on Differential Equations and Dynamical
Systems, 11-13 July, Iran,pp. 133-136, 2012.
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