
Journal of
Linear and Topological Algebra
Vol. 02, No. 04, 2013, 229- 241

Numerical solution of second-order stochastic differential
equations with Gaussian random parameters

R. Farnoosha, H. Rezazadeha,∗, A. Sobhania and D. Ebrahimibaghab

aSchool of Mathematics, Iran University of Science and Technology, 16844, Tehran, Iran.
bDepartment of Mathematics, Center Branch, Islamic Azad university, Tehran, Iran.

Received 16 September 2013; revised 4 December 2013; accepted 31 December 2013.

Abstract. In this paper, we present the numerical solution of ordinary differential equations
(or SDEs), from each order especially second-order with time-varying and Gaussian random
coefficients. We indicate a complete analysis for second-order equations in special case of
scalar linear second-order equations (damped harmonic oscillators with additive or multi-
plicative noises). Making stochastic differential equations system from this equation, it could
be approximated or solved numerically by different numerical methods. In the case of linear
stochastic differential equations system by Computing fundamental matrix of this system, it
could be calculated based on the exact solution of this system. Finally, this stochastic equa-
tion is solved by numerically method like Euler-Maruyama and Milstein. Also its Asymptotic
stability and statistical concepts like expectation and variance of solutions are discussed.
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1. Introduction

One of the most important and applicable concepts in various sciences is Newtons sec-
ond law of motion which relates force and acceleration together. Therefore, second-order
differential equations are most common in various scientific applications, As we can see
in some articles, the famous and well-known differential equations of second-order such
as OrnsteinUhlenbeck process and Random harmonic oscillator have been solved by dif-
ferent methods like as Monte Carlo and other numerical methods [1, 6, 14]. The study
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of numerical methods of second-order ordinary differential equations is one of the most
applicable branches in numerical analysis issues[9]. With attention to stochastic essence
of almost all physical phenomena, the most interesting advances in recent years are the
development and extension of previous methods to stochastic systems [12]. Numerical
methods have to replace discrete-time dynamics in place of continuous-time with generat-
ing values at times t0, t1, ..., tn. In this process, t0 and tn, are fixed points. Some criterions
for specification a good numerical method are order of convergency, comparison with ex-
act solution and produced error of a used method and determining its discrete-time
dynamics which has an appropriate stationary density as close as possible to that of
the corresponding continuous-time system that Wiener chaos expansion (WCE), is one
of these methods[4],[17]. The differential equation which describe second-order systems
contains some parameters known as damping. The stationary density is completely in-
dependent of damping, but dynamical quantities, and the specially the final numerical
algorithms, are strongly dependent on it. With some change of variables, the system
becomes first order one.
In this paper, we intend to extend our previous work about solving second-order linear
stochastic differential equation [16], to solve second-order stochastic differential equation
By first-order stochastic linear system equation which has been mentioned in various
books like [10], [11], [13] and [15].
That is, we consider Xt ∈ Rn and Xt ∈ L2

n(0, T ), as a stochastic process and unique
solution of following S.D.E:{

dXt = (A(t).Xt +B(t))dt+ (C(t).Xt +D(t))dW

X(0) = X0. (0 ⩽ t ⩽ T )
(1)

such that W (.), is a m-dimensional Brownian motion. Afterwards, By construction
fundamental or Hamiltonian matrix for this system, we solve it with numerical methods
as EulerMaruyama(E.M.), Milstein and Rung-Kutta method. finally, in the end of our
conclusions, we investigate some statistical properties like expectation and variance by
numerical simulation like predictor-corrector E.M.[8], and will have a comparison between
exact solution and its solution and find least square error for this equations.

This paper is organized as follow. In section 2, we consider the stochastic linear equa-
tion system of stochastic linear second-order equation which has been mentioned in
various books like [13] and [11] and latest articles[3] and [5]. Afterwards, by construc-
tion fundamental matrix for this system we solve it numerically by Rung-Kutta method.
In this section we consider second order S.D.E. examples solve them by this mentioned
method and stochastic numerical simulation like predictor-corrector EulerMaruyama and
Milstein’method [8]. Also, we take a discussion about expectation, variance of these equa-
tions solutions . In final section, the conclusion of this paper has been said again.

2. Making Stochastic Differential Equation System

Let the general form of a second-order stochastic differential equation is defined such
this equation:{

Ẍt = (f(Xt, t) + f̂(Xt, t)ξ(t))Ẋt + (g(Xt, t) + ĝ(Xt, t)ξ(t))Xt + h(Xt, t),

Xt(0) = X0 , Ẋ0 = X1.
(2)
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such that we define h(Xt, t) = (h(Xt, t) + ĥ(Xt, t)ξ(t)) and Xt is a 1-dimensional
stochastic process defined on closed time interval [0, T ] and the real functions

f(Xt, t), g(Xt, t), h(Xt, t) and also f̂(Xt, t), ĝ(Xt, t), ĥ(Xt, t), are stochastic integrable
functions. In special case, It shall be considered equation of the following form which
has been discussed in[3]:

{
Ẍt = f(Xt)− ηf̂2(Xt, t)Ẋt + εf̂(Xt, t)ξ(t),

Xt(0) = X0 , Ẋ0 = X1.
(3)

The damping parameter and The amplitude of the random forcing are denoted by η and
ε respectively such that related to the temperature T and damping coefficient η by the
fluctuation-dissipation relation[7], We have ε2 = 2ηKT .
ξ(t), is defined as White noise that has derivative relation with Wiener process

Ẇt =
dW

dt
= ξ(t),

Definition 2.1 Consider the m-dimensional vector W (t) of real stochastic processes
Wi(t), (i = 1, 2, ...,m). It is named Wiener process or Brownian motion if;
(a) W (0) = 0 a.s. (almost sure with probability one),
(b) W (t)−W (s) is normal distribution (i.e.W ∼ N(0, t− s)), for all 0 ⩽ s ⩽ t
(c) The random variables W (t1),W (t2) − W (t1), ...,W (tn) − W (tn−1), for times
0 ⩽ t1 ⩽ t2 ⩽ ... ⩽ tn, are independent increments.

From this definition, about expectation and variance related to Wi(t), it could be
concluded that

E[Wi(t)] = 0, E[W 2
i (t)] = t for i = 1, 2, ...,m. (4)

The expectation integral for these functions has these properties

E[ξ(t), ξ(s)] = δ0(s− t) , E[W (s),W (t)] = min(s, t).

We can write (2), as a pair of first-order equations for Xt and Vt, the position and velocity
stochastic processes:{

dXt = Vtdt,

dVt =
(
f(Xt, t)Vt + g(Xt, t)Xt + h(Xt, t)

)
dt+

(
f̂(Xt, t)Vt + ĝ(Xt, t)Xt + ĥ(Xt, t)

)
dW (t).

(5)

With initial conditions Xt(0) = X0 , V0 = X1. Now the second-order SDE(2), could be
written again as a first-order system by matrix notation.

d

(
Xt

Vt

)
=

(
Γ(Xt, t)

(
Xt

Vt

)
+

(
0

h(Xt, t)

))
dt+

(
Σ(Xt, t)

(
Xt

Vt

)
+

(
0

ĥ(Xt, t)

))
dWt. (6)
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Where we have

Γ(Xt, t) =

(
0 1

g(Xt, t) f(Xt, t)

)
, Σ(Xt, t) =

(
0 0

ĝ(Xt, t) f̂(Xt, t)

)
.

If Γ(Xt, t) = Γ(t) and Σ(Xt, t) = Σ(t), we reach to a stochastic linear equation system:

d

(
Xt

Vt

)
=

(
Γ(t)

(
Xt

Vt

)
+

(
0

h(t)

))
dt+

(
Σ(t)

(
Xt

Vt

)
+

(
0

ĥ(t)

))
dWt. (7)

If in special case, we have

d

(
Xt

Vt

)
= Γ(t)

(
Xt

Vt

)
dt+

(
0

ĥ(t)

)
dWt, (8)

This special case is a better model of Brownian movement which is provided by the Orn-
steinUhlenbeck equation. For solving this matrix form (8), it could be done by different
numerical methods like Euler, Milstein or even Rung-kutta that in [16], it was done that
is named linear second-order SDEs in narrow sense case. As another special cases, if we
have

d

(
Xt

Vt

)
= Γ(t)

(
Xt

Vt

)
dt+Σ(t)

(
Xt

Vt

)
dWt. (9)

This stochastic differential equation system is well-known to Geometric Brownian Motion
But as we will observe later, this system just in special case has an exact solution like
Black-Scholes model in 1-dimentional case.
Now we perform the same work in extended case on interval[0, T ], to solve the system
of equations(27) explicitly and numerically. Suppose time interval has been separated to
equal subintervals [ti, ti+1], (i = 1, 2, ..., n) and we define the following one step recursive
equation even for general case(6).(

Xi+1

Vi+1

)
= (10)(

Xi

Vi

)
+
(
Γ(Xi, ti)

(
Xi

Vi

)
+

(
0

h(Xi, ti)

))
∆ti +

(
Σ(Xi, ti)

(
Xi

Vi

)
+

(
0

ĥ(Xi, ti)

))
∆Wi.

(11)

such that ∆ti = ti+1 − ti =
T
n , and according to Wiener process definition:

∆Wi = Wi+1 −Wi ∼ N(0,∆ti).

With the next theorem, we want to express the existence and uniqueness of second-order
stochastic differential equations based on some conditions.

Theorem 2.2 Suppose that A(t).Xt + B(t) : Rn × [0, T ] → Rn and C(t).Xt + D(t) :
Rn × [0, T ] → Mm×n are continuous and satisfy the following properties:
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(1) ∥A(t).(X(t)− X̂t(t))∥ ⩽ L.∥Xt(t)− X̂t(t)∥, (12)

∥C(t).(Xt(t)− X̂t(t)∥ ⩽ L.∥Xt(t)− X̂t(t)∥. for all 0 ⩽ t ⩽ T,Xt, X̂t ∈ Rn

(2) ∥A(t).Xt +B(t)∥ ⩽ L|1 + ∥Xt∥|,

∥C(t).Xt +D(t)∥ ⩽ L|1 + ∥Xt∥|. for all 0 ⩽ t ⩽ T,Xt ∈ Rn,

for some suitable L ∈ R.

Let X0 ∈ Rn is a random variable such that: E[X2
0 ] < ∞ so, There exist a unique

solution Xt ∈ L2
n(0, T ) of following S.D.E:{

dXt = (A(t).Xt +B(t))dt+ (C(t).Xt +D(t))dW

X(0) = X0. (0 ⩽ t ⩽ T )
(13)

where W (.), is a m-dimensional Brownian motion[6].

Remark 1 Moreover, in special case if each one of matrixes gets its supreme value in a
closed interval, that is;

Sup
0⩽t⩽T

{∥B(t)∥, ∥D(t)∥, ∥A(t)∥, ∥C(t)∥} < ∞

Therefore, A(t)Xt +B(t) and C(t)Xt +D(t) satisfy the hypotheses of uniqueness and
Existence theorem [2] for Linear S.D.E. provided that E[X2

0 ] < ∞.Finally, this condition
is necessary that for almost each W (t), the random trajectories of linear S.D.E.{

dXt = (A(t).Xt +B(t))dt+ (C(t).Xt +D(t))dW,

X(0) = X0 + ξ
.

when with attention to:

limξ→0C(t).Xt +D(t) = 0,

Converge uniformly on interval [0, T ] to the trajectory of its corresponding ordinary dif-

ferential equation.

{
Ẋt = A(t).Xt +B(t)

X(0) = X0.

In general case, the following theorem that is named (Dependence on parameters),
indicates the concept of asymptotic stability for Linear stochastic systems.

Theorem 2.3 Suppose for k = 1, 2, · · · that Ak(t)Xt+Bk(t) and Ck(t)Xt+Dk(t) satisfy
the hypotheses of existence and uniqueness theorem, with the same constant L which
said as a real bond in theorem. Assume further that

lim
k→∞

E(∥Xk
0 −X0∥) = 0
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and for each M > 0, such that ∥Xt∥ ⩽ M ,

lim
k→∞

max
0⩽t⩽T

(
∥Bk(t)−B(t)∥+ ∥Ak(t)−A(t)∥+ ∥Dk(t)−D(t)∥+ ∥Ck(t)− C(t)∥

)
= 0

Finally suppose that Xk(0) solves:{
dXk

t = (Ak(t)Xt +Bk(t))dt+ (Dk(t)Xt + Ck(t))dW

Xk(0) = Xk
0

Then

limE
(
max
0⩽t⩽T

∥Xk(t)−X(t)∥2
)
= 0,

where Xt is the unique solution of{
dXt = (A(t).Xt +B(t))dt+ (C(t).Xt +D(t))dW,

X(0) = X0.

In addition, the analytic solution and least square error of O.D.E. Could be found
in virtue of expectation and variance of S.D.E. solution such that in special Case, if
A,B,Cand D contain continuous elements in [0, T ], they get their finite maximum values
in this interval. With attention to existence and uniqueness solution of Linear S.D.E.,
the equation has been brought in (8), has a closed and explicit solution which is found
according to following theorem[2]:

Theorem 2.4 {
dXt = (A(t).Xt +B(t))dt+D(t).dW

X(0) = X0
(14)

X(t) = Ψ(t)
(
X0 +

∫ t

0
Ψ(s)−1(C(s)ds+ E(s)dW )

)
, (15)

where Ψ(0) is the Fundamental matrix of the following O.D.E. system:

dΨ

dt
= A(t).Ψ, Ψ(0) = I.

In other words, we have:(
Ψ̇11 Ψ̇12

Ψ̇21 Ψ̇21

)
=

(
Ψ21 Ψ22

B(t)Ψ11 +A(t)Ψ21 B(t)Ψ21 +A(t)Ψ22

)

and Ψij(0) = δij =

{
1, i = j

0, i = j
.
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Consequently it turns out two second-order equations by different initial Conditions:{
Ψ̈11 = B(t)Ψ11 +A(t)Ψ̇11

Ψ11(0) = 1, Ψ̇11(0) = 0
,

{
Ψ̈12 = B(t)Ψ12 +A(t)Ψ̇12

Ψ12(0) = 0, Ψ̇12(0) = 1
(16)

so the explicit solution could be computed as follow(
X1

Ẋ1

)
=

(
Ψ11 Ψ12

Ψ̇11 Ψ̇12

)(
X(0)

X ′(0)

)
+

∫ t

0

1

detΨ

(
Ψ̇12 −Ψ12

−Ψ̇11 Ψ11

)
(

0

C(s)

)
ds+

(
0 0

λγA(t) (1− λ)γ(t)

)(
dW2

dW1

)
Hence, we should utilize this equality for equation solution:

X1 = Xt = Ψ11X(0) + Ψ12X
′(0) + Ψ11

∫ t

0

1

detΨ
(−Ψ12)(C(s)ds

+ λγ(s)dW2 + (1− λ)γ(s)dW1) (17)

+ Ψ12

∫ t

0

1

detΨ
(Ψ11)(C(s)ds+ λγ(s)dW2 + (1− λ)γ(s)dW1).

the equation (16) are second-order Linear O.D.E. we could solve them by various methods
like series solution respect to nonsingular point or Frobinios series respect to regular
points.Also, we could apply sinc method to solve directly this equation or convert it to
a Linear system equation and solve it by 4th-order Rung − kutta method.

afterwards, we decide to Compute from equality (17) that it could be done by numerical
methods like E.M. predictor-corrector E.M. and milstein method.

Also in matrix form which is convenient forMatlab software, we could get the following
recursive procedure.

X(t) = Ψ(t)
(
X0 +

∫ t

0
Ψ(s)−1(C(s)ds+ E(s)dWs)

)
Ψ−1(ti+1).X(ti+1) = X0 +

∫ ti+1

0 Ψ(s)−1(C(s)ds+ E(s)dWs)
)

Ψ−1(ti)X(ti) = X0 +
∫ ti
0 Ψ(s)−1(C(s)ds+ E(s)dWs)

)
Consequently, we could have:

X(ti+1) = X(i+ 1) = Ψ(ti+1)
(
Ψ−1(ti)Xi +

∫ ti+1

ti

Ψ(s)−1(C(s)ds+E(s)dWs)
)

X(i+ 1) = Ψ(ti+1)Ψ(ti)
−1(Xi + C(ti)∆ti + E(ti)∆Wi) (18)

such that;

δWi = W (ti+1)−W (ti) ∼=
√

δtiξi (ξi ∼ N(0, 1))

The last approximation has been concluded from Independent Increment property of
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wiener process (for any t, s ∈ [0, T ]; W (t)−W (s) = W (t− s) ∼ N(0, t− s)).

of course,W (t) could be computed by an infinite series of Haar functions with standard
Gaussian random variables [6], or even have been expressed according to fundamental
conditions in definition of Wiener process.
Example 1 Consider the stochastic differential equation :t ∈ [a, b], (0 < a < b < 1){

X ′′ = 1+β(t)ξ2
t−1 X ′ +

(
1+α(t)ξ1

t + 1
1−t

)
X + γ(t)ξ3 +

t−2
t−1 ;

X(0) = 0, X ′(0) = 1.

that ξ3 = λξ1 + (1 − λ)ξ2, 0 ⩽ λ ⩽ 1, and ξi =
dWi

dt (i = 1, 2, 3) are white noise. α(t)
is a continuous function on interval[a, b].

At first, we convert this equation to a linear system,{
X ′

1 = X2,

X ′
2 =

(
1+α(t)ξ1

t + 1
1−t

)
X1 +

(
1+β(t)ξ2

t−1

)
X2 +

t−2
t−1 + γ(t)ξ3.

dXt = (A(t).Xt +B(t))dt+ (F1(t).Xt + E1(t)).dW1 + (F2(t).Xt + E2(t)).dW2

such that,A(t) =

(
0 1

1
t +

1
1−t

1
t−1

)
, F1(t) =

(
0 0

α(t)
t 0

)
, F2(t) =

(
0 0

0 β(t)
t−1

)
,

E1(t) =
(

0
γ(t)λ

)
, E2(t) =

(
0

γ(t)(λ−1)

)
and B(t) =

( 0
t−2
2−1

)
corresponding fundamental matrix for system is

Ψ̇ = A(t)Ψ,Ψ(0) = I

(
Ψ̇11 Ψ̇12

Ψ̇21 Ψ̇22

)
=

(
0 1
1

1−t
1

t−1

)(
Ψ11 Ψ12

Ψ21 Ψ22

)
and Ψij(0) = δij =

{
0 i ̸= j

1 i = j
and so we have:

{
Ψ̈11 =

(
1
t +

1
1−t

)
Ψ11 +

1
t−1Ψ̇11,

Ψ11(0) = 1, Ψ̇11(0) = 0
,

{
Ψ̈12 =

(
1
t +

1
1−t

)
Ψ12 +

1
t−1Ψ̇12,

Ψ12(0) = 0, Ψ̇12(0) = 1.

These are special case of heun equation that multiplying in t(t − 1), they could be
solved by robinious Series around t = 0 (since t = 0 is a regular singular point for them),
and their solutions is: Ψ12 = t, Ψ11 = 1 + t ln(t).

Therefore, the matrix Ψ is indicated as follow:

Ψ =

(
1 + t ln(t) t
1 + ln(t) 1

)
,Ψ−1 =

1

1− t

(
1 −t

−1− ln(t) 1 + t ln(t)

)

According to (10), we can conclude in narrow sense case:(
X1

X2

)
= Ψ

((X1(0)

X2(0)

)
+

∫ t

0
Ψ−1(s).

(( 0
s−2
s−1

)
ds+

(
0

α(s)λ

)
dW1
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Figure 1. The exact solution with mean of M = 100 numerical solution by
E.M. Method with N = 28 subinterval of [0, 1] and also 5 individual numerical
solution has been shown.In this case the least square error is 0.02135.

+

(
0

(1− λ)α(s)

)
dW2

))
that the solution of initial S.D.E. is

X1 = X =
(
Ψ11 Ψ12

) ((X(0)

X ′(0)

)
+

∫ t

0
Ψ−1(s)

(( 0
s−2
s−1

)
ds

+

(
0

α(s)λ

)
dW1 +

(
0

(1− λ)α(s)

)
dW2

))
with attention to this issue that expectation of itô Integral is zero so we have

E[Xt] = X(0)(1 + t ln(t)) +X ′(0)t+
(
Ψ11 Ψ12

) ∫ t

0
Ψ−1(s).

(
0

s−2
s−1

)
ds

with initial conditions and asymptotic stability of S.D.E., if α(t) → 0, then implicit
solution of it’s correspond O.D.E.{

Ẍ = 1
t−1Ẋ +

(
1
t −

1
t−1

)
X + t−2

t−1

X(0) = 0, Ẋ(0) = 1

is the same expectation of S.D.E.:

E[Xt] = t+ (1 + t ln(t)).

∫ t

0

s(s− 2)

(s− 1)2
ds+ t

∫ t

0

2− s

(s− 1)2
(1 + s ln s)ds = t+ t2.

We have showed the maximum absolute errors in numerical solution of the example in
the table for different N , where ∥LEN

EM (h)∥ are least squares errors for E.M. method
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Table 1. Generated errors via Numerical

methods E.M. andMilstein

N ∥EN
EM (h)∥a ∥EN

M (h)∥b

27 5.2× 10−2 3.24× 10−2

28 2.36× 10−2 2.09× 10−2

29 2.31× 10−2 1.22× 10−2

210 2.12× 10−2 4.241× 10−3

aThe value of least squares error generated
by E.M. method.

bThe value of least squares error generated
by Milstein method

and ∥LEN
M (h)∥ are least squares errors for Milstein method.

Afterwards, we intend to express an explicitly solution of second-order linear SDEs
systems. At first, let express the basic theorem related to general vector linear equation[2].

Theorem 2.5 Suppose Xt ∈ Rn is a stochastic process and consider the following S.D.E
in L2(0, T ) : {

dXt = (A(t).Xt +B(t))dt+ (C(t).Xt +D(t))dW,

X(0) = X0. (0 ⩽ t ⩽ T )
(19)

where W (.), is a m-dimensional Brownian motion, the square matrixes A,C ∈ Mn×n of
time independent variable, and vector time dependent functions B,D ∈ Rn. Therefore,
the exact solution of this system is

Xt = Ψt

(
X0 +

∫ t

0
Ψ−1

s dYs
)
,

such that stochastic process Yt, and the fundamental matrix Ψt ∈ Mn×n holds in fol-
lowing SDEs: {

dYt = (B(t)− C(t)D(t))dt+ (D(t))dWt,

dΨt = A(t)Ψtdt+ C(t)ΨtdWt , Ψ0 = I.
(20)

As we can see easily, with integration by part formula, dY could be represented based
on a Lebesgue integral:

dYt = (B(t)− C(t)D(t))dt+ (D(t))dWt

= (B(t)− C(t)D(t))dt+ (D(t))Wt −WtD
′(t)dt

= (D(t))Wt + (B(t)− C(t)D(t) +WtD
′(t))dt.

Also,in virtue of zero value of itô integral expectation, E[Xt] = M(t), holds in following
ODE:

Ṁ(t) = A(t)M(t) +B(t) , M(0) = X0.

Unfortunately, the explicit solution for fundamental matrix of stochastic equations
system is represented under some special conditions on related coefficients which don’t
hold in general case.
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Theorem 2.6 Under previous theorem conditions, if A(t) and C(t), are commutative
matrixes, then there is an explicit stochastic solution for fundamental matrix is:

Ψ(t) = exp
( ∫ t

0
(A(s)− C2(s)

2
)ds+

∫ t

0
C(s)dWs

)
. (21)

Proof : On account of commutative matrixes, it’s enough to do itô formula for

Ψ(t) = exp(Y ) such that dYt = (A(t)− C2(t)
2 )dt+ C(t)dWt.

dΨ(t) = dexp(Y ) = exp(Y )dY +
1

2
exp(Y )(dY )2 (22)

= exp(Y )
(
(A(t)− C2(t)

2
+

1

2
C2(t)) + C(t)dWt

)
(23)

= exp(Y )
(
A(t)dt+ C(t)dWt

)
(24)

and therefore the proof of theorem is completed. □.
Thus we propose to find and explicit solution for fundamental matrix equation which
has been produced from linear equations system(27), by appropriate change of variable.
Before any thing, we pay attention to next theorem

Theorem 2.7 The solution of(28), such that C(t) is a invertible matrix, could be rep-
resented as a function of following SDE:

dZt = P (t)dt+Q(t)dWt , P (t) =
(
Q(t)C−1(t)

)(
A(t)− 1

2
C(t)2

)
. (25)

that Q(t), is considered as a rotation matrix and

Ψ(t) = U(Zt) = U = exp
(
ZtC(t)Q−1(t)

)
.

Proof : Considering dZt = P (t)dt + Q(t)dWt , Q(t) =

(
â(t) −b̂(t)

b̂(t) â(t)

)
and applying

itô formula under change of variable method for U(Zt) = Ψ(t), on fundamental matrix
equation(28), we get: {

U ′(P (t)) + 1
2U

′′Q2(t) = UA(t)

U ′Q(t) = UC(t)
(26)

Since Q(t) is a commutative and invertible matrix, therefore;U ′ = UC(t)Q−1(t) and
consequently U = exp

(
ZtC(t)Q−1(t)

)
. Afterwards, with substituting this solution in

first equation of (26), we get

UC(t)Q−1(t)(P (t)) +
1

2
U(C(t)Q−1(t))2Q2(t) = UA(t).

in other words, we conclude

P (t) =
(
C(t)Q−1(t)

)−1(
A(t)− 1

2
(Q−1(t)C(t))2Q2(t)

)
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=
(
Q(t)C−1(t)

)(
A(t)− 1

2
C(t)2

)
.

thus, the proof is completed. □.

Example 2 Consider the following stochastic model{
dX = 3

4 t
2X2dt+ tX3/2dW,

X(0) = 0.

It could be checked that for this equation the necessary condition holds. according
to (26)u′b(t) = tu3/2. since u is just a function of Y , so it should be b(t) = t, u = 4

Y 2

and also a(t)
b(t) = 0 or a(t) = 0. thus dY = tdW and Y =

∫ t
0 sdWs + Y (0). Finally

X = u(Y ) = 4
( ∫ t

0 sdWs+Y (0)
)−2

In the end, we represent the explicit solution of (27),
based on the theorems (2.7) and(2.5).

Theorem 2.8 Suppose (Xt, Vt)
T ∈ R2 is a stochastic process and consider the following

S.D.E in L2(0, T ).

{
d
(
Xt

Vt

)
=

(
Γ(t)

(
Xt

Vt

)
+
(

0
h(t)

))
dt+

(
Σ(t)

(
Xt

Vt

)
+
( 0
ĥ(t)

))
dWt,(

X0

V0

)
=

(x(0)
x′(0)

)
.

(27)

Whence, solution of this system is
(
Xt

Vt

)
= Ψt

((
X0

V0

)
+

∫ t
0 Ψ

−1
s dYs

)
, such that stochastic

process Yt =
(
Y1

Y2

)
, and the fundamental matrix Ψt ∈ Mn×n holds in following SDEs:{

dYt = (
(

0
h(t)

)
− Σ(t)

( 0
ĥ(t)

)
)dt+

( 0
ĥ(t)

)
dWt,

dΨt = Γ(t)Ψtdt+Σ(t)ΨtdWt , Ψ0 = I.
(28)

and also the solution of last equation is Ψ(t) = U(Zt) = U = exp
(
ZtC(t)Q−1(t)

)
, that

Zt, is the solution of following SDE, and Q(t), is considered as a rotation matrix:

dZt = P (t)dt+Q(t)dWt , P (t) =
(
Q(t)Σ−1(t)

)(
Γ(t)− 1

2
Σ(t)2

)
. (29)

That is, the fundamental matrix is

Ψ(t) = exp
(
(

∫ t

0
P (s)ds+

∫ t

0
Q(s)dWs)C(t)Q−1(t)

)

3. Conclusion

As it was indicated in this paper, we performed a survey on stochastic ordinary differ-
ential equations from second-order with time-varying and Gaussian random coefficients.
We indicated a complete analysis for stochastic second-order equations in special case
of scalar linear second-order equations (damped harmonic oscillators with additive or
multiplicative noises). Afterwards, with making a system of stochastic differential equa-
tions from this mentioned equation, In the case of linear stochastic differential equations
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system and by computing fundamental matrix of this system, it calculated based on the
exact solution of this system. We approximated its solution based on a method with
an analytical approach different from other numerical methods. Finally, this stochastic
equation was solved by conventional numerically method like E.M. or Milstein. Also its
asymptotic stability and statistical concepts like expectation and variance of solutions
was discussed.

Acknowledgements

The authors would like to thank the referees for their valuable nice comments. Mean
while, the authors thanks Dr. Mohammad hossein Beheshti from Islamic Azad University,
Varamin branch for his suitable viewpoints.

References

[1] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, Oxford, UK,
(1997).

[2] L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, (1974).
[3] K. Burrage, I. Lenane, and G. Lythe, Numerical methods for second-order stochastic differential equations,

SIAM J. SCI. Compute., Vol. 29, No. 1, pp. 245264, (2007).
[4] R. Cairoli, J. Walsh, Stochastic integrals in the plane, in Acta Math., 134, pp. 111183., (1975).
[5] Dongbin Xiu, D Daniel M. Tartakovsky, Numerical solution for differential equation in random domain, SIAM

J. Sci. Compute. Vol. 28, No. 3, pp. 1167-1185 (2006).
[6] Lawrence C. Evans.:An Introduction to Stochastic Differential Equations Version 1.2 (2004).
[7] C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences, 3rd ed.,

Springer-Verlag, Berlin, (2004).
[8] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differ- ential equations,

SIAM Review 43, 525-546, (2001).
[9] E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd

ed., Springer-Verlag, Berlin, (1993).
[10] N. V. Krylov, Introduction to the Theory of Diffusion Processes, American Math Society, (1995).
[11] J. Lamperti, A simple construction of certain diffusion processes, J. Math. Kyoto, 161-170, (1964).
[12] G. N. Milstein and M. V. Tretyakov, Quasi-symplectic methods for Langevin-type equations, IMA J. Numer.

Anal., 23, pp. 593626, (2003).
[13] H. McKean, Stochastic Integrals, Academic Press, (1969).
[14] C. A. Marsh and J. M. Yeomans, Dissipative particle dynamics: The equilibrium for finite time steps, Euro-

phys. Lett., 37, pp. 511516, (1997).
[15] B. K. Oksendal, Stochastic Differential Equations: An Introduction with Applications, 4th ed., Springer,

(1995).
[16] H. R. Rezazadeha, M. Magasedib, B. Shojaeec.Numerical Solution of Heun Equation Via Linear Stochastic

Differential Equation, Journal of Linear and Topological Algebra Vol. 01, No. 02, 79- 89, (2012).
[17] Wuan Luo. Wiener Chaos Expansion and Numerical Solutions of Stochastic Partial Differential Equations.

California Institute of Technology Pasadena, California,(2006).


