Journal of Linear and Topological Algebra Vol. 03*, No.* 04*,* 2014*,* 211*-* 217

On *φ***-Connes amenability of dual Banach algebras**

A. Mahmoodi*[∗]*

Department of Mathematics, Islamic Azad University, Central Tehran Branch, Tehran, Iran.

Received 29 September 2014; Revised 14 November 2014; Accepted 10 December 2014.

Abstract. Let φ be a w^{*}-continuous homomorphism from a dual Banach algebra to \mathbb{C} . The notion of *φ*-Connes amenability is studied and some characterizations is given. A type of diagonal for dual Banach algebras is defined. It is proved that the existence of such a diagonal is equivalent to *φ*-Connes amenability. It is also shown that *φ*-Connes amenability is equivalent to so-called φ -splitting of a certain short exact sequence.

*⃝*c 2014 IAUCTB. All rights reserved.

Keywords: Dual Banach algebra, *φ*-Connes amenability, *φ*-injectivity.

2010 AMS Subject Classification: Primary: 22D15, 43A10; Secondary: 43A20, 46H25.

1. Introduction

Let *A* be a Banach algebra and *E* be a Banach *A*-bimodule. A continuous linear operator $D: \mathcal{A} \longrightarrow E$ is a *derivation* if it satisfies $D(ab) = D(a) \cdot b + a \cdot D(b)$ for all $a, b \in \mathcal{A}$. Given $x \in E$, the *inner* derivation $ad_x : A \longrightarrow E$ is defined by $ad_x(a) = a \cdot x - x \cdot a$. Amenability for Banach algebras as introduced by B. E. Johnson [4], has proved to be an important and fertile notion. A Banach algebra *A* is *amenable* if for every Banach *A*-bimodule *E*, every derivation from *A* into *E∗* , the dual of *E*, is inner. We recall that the projective tensor product *A⊗A*ˆ is a Banach *A*-bimodule in the canonical way. Then the map $\pi : \mathcal{A} \hat{\otimes} \mathcal{A} \longrightarrow \mathcal{A}$ defined by $\pi(a \otimes b) = ab$, is an \mathcal{A} -bimodule homomorphism.

Let *A* be a Banach algebra. A Banach *A*-bimodule *E* is *dual* if there is a closed submodule E_* of E^* such that $E = (E_*)^*$. We say E_* the *predual* of *E*. A dual Banach *A*-bimodule *E* is *normal* if the module actions of *A* on *E* are *w ∗* -continuous. A Banach

Print ISSN: 2252-0201 [©] 2014 IAUCTB. All rights reserved.

Online ISSN: 2345-5934 *bttp://ilta.jauctb.ac.ir*

*[∗]*Corresponding author.

E-mail address: a mahmoodi@iauctb.ac.ir (A. Mahmoodi).

algebra is *dual* if it is dual as a Banach *A*-bimodule. We write $A = (A_*)^*$ if we wish to stress that $\mathcal A$ is a dual Banach algebra with predual $\mathcal A_*$. Connes amenability, which seems to be a natural variant of amenability for dual Banach algebras, systematically was introduced by V. Runde [7]. Although, it had been studied previously under different names. A dual Banach algebra *A* is *Connes amenable* if every *w ∗* -continuous derivation from *A* into a normal, dual Banach *A*-bimodule is inner. Let $A = (A_*)^*$ be a dual Banach algebra and let *E* be a Banach *A*-bimodule. Then *σwc*(*E*) stands for the set of all elements $x \in E$ such that the maps

$$
\mathcal{A} \longrightarrow E \ , \quad a \longmapsto \begin{cases} a \cdot x \\ x \cdot a \end{cases} ,
$$

are *w ∗* -weak continuous. It is a closed submodule of *E*.

A generalization of amenability which depends on homomorphisms was introduced by E. Kaniuth, A. T. Lau and J. Pym in [5]. This concept was also studied independently, by M. S. Monfared in [6]. Let *A* be a Banach algebra and *φ* be a homomorphism from *A* onto C. We say *A* is φ -amenable if there exists a bounded linear functional *m* on \mathcal{A}^* satisfying $m(\varphi) = 1$ and $m(f \cdot a) = \varphi(a)m(f)$, for all $a \in \mathcal{A}$ and $f \in \mathcal{A}^*$. We write $\Delta(\mathcal{A})$ for the set of all homomorphism from *A* onto C.

In this note we study *φ*-Connes amenability for dual Banach algebras. The organization of the paper is as follow. Firstly, in section 2, we study basic properties of φ -Connes amenability. We characterize it through vanishing of $H_{w^*}^1(\mathcal{A}, E)$ for certain Banach \mathcal{A} bimodule. A number of hereditary properties are also discussed.

In section 3, we define a type of virtual diagonal for a dual Banach algebra *A*, showing that the existence of such a diagonal is equivalent to φ -Connes amenability of \mathcal{A} .

Finally in section 4, we give a characterization of φ -Connes amenability of a dual Banach algebra $\mathcal{A} = (\mathcal{A}_*)^*$ in terms of so-called φ -splitting of the short exact sequence

$$
\sum: 0 \longrightarrow \mathcal{A}_* \xrightarrow{\pi^*} \sigma wc((\mathcal{A} \hat{\otimes} \mathcal{A})^*) \longrightarrow \sigma wc((\mathcal{A} \hat{\otimes} \mathcal{A})^*)/\pi^*(\mathcal{A}_*) \longrightarrow 0.
$$

2. Basic properties

Suppose that *A* is a dual Banach algebra and φ is a homomorphism from *A* onto \mathbb{C} . Then it is an easy observation that φ is w^* -continuous if and only if $\varphi \in \sigma wc(\mathcal{A}^*)$. For a dual Banach algebra *A*, ∆*w[∗]* (*A*) will denote the set of all *w ∗* -continuous homomorphism from *A* onto C.

Definition 2.1 Suppose that *A* is a dual Banach algebra and $\varphi \in \Delta_{w^*}(\mathcal{A})$. We call *A φ*-*Connes amenable* if *A* admits a *φ*-*Connes mean m*, i.e., there exists a bounded linear functional *m* on $\sigma wc(\mathcal{A}^*)$ satisfying $m(\varphi) = 1$ and $m(f \cdot a) = \varphi(a)m(f)$ for all $a \in \mathcal{A}$ and $f \in \sigma wc(\mathcal{A}^*)$.

We recall some terminology from [7]. Let *A* be a dual Banach algebra and *E* be a normal, dual Banach *A*-bimodule. We write $Z_{w^*}^1(\mathcal{A}, E)$ for the set of all w^* -continuous derivations from *A* to *E*. Clearly $B^1(\mathcal{A}, E)$, the set of all inner derivations from *A* to *E*, is a subspace of $Z^1_{w^*}(A, E)$. Whence we have the meaningful definition $H^1_{w^*}(A, E)$ $Z^1_{w^*}(\mathcal{A}, E)/B^1(\mathcal{A}, E).$

Theorem 2.2 Suppose that *A* is a dual Banach algebra and $\varphi \in \Delta_{w^*}(A)$. Then the following are equivalent:

(*i*) $\mathcal A$ is φ -Connes amenable;

(*ii*) If $E = (E_*)^*$ is a normal, dual Banach *A*-bimodule such that $x \cdot a = \varphi(a)x$ for all $x \in E$ and $a \in A$, then $H^1_{w^*}(A, E) = \{0\}.$

Proof. (*i*) \implies (*ii*) Let *m* be *φ*-Connes mean for *A*. Take *E* as in the clause (*ii*). Let $D: \mathcal{A} \longrightarrow E$ be a w^* -continuous derivation, so that $D(ab) = a \cdot D(b) + \varphi(b)D(a), a, b \in \mathcal{A}$. From [9, Corollary 4.6], we know that D^* maps E_* into $\sigma wc(\mathcal{A}^*)$. Take $d = D^* \mid_{E_*}$ and $\tilde{D} = d^* : \sigma wc(\mathcal{A}^*)^* \longrightarrow E$. Set $x_0 = \tilde{D}(m) \in E$. Then for all $a \in \mathcal{A}, x \in E$ and $f \in E_*$ we have $\langle x, a \cdot f \rangle = \langle x \cdot a, f \rangle = \varphi(a) \langle x, f \rangle$, so that *a* . $f = \varphi(a) f$ and hence $d(a, f) = \varphi(a)d(f)$. For all $a \in \mathcal{A}$ and $f \in E_*$, we get for the right action of \mathcal{A} on E_*

$$
\langle b, d(f \cdot a) \rangle = \langle D(b), f \cdot a \rangle = \langle a \cdot D(b), f \rangle
$$

$$
= \langle D(ab), f \rangle - \varphi(b) \langle D(a), f \rangle
$$

$$
= \langle b, d(f) \cdot a \rangle - \varphi(b) \langle f, D(a) \rangle.
$$

Therefore $d(f \cdot a) = d(f) \cdot a - \langle f, D(a) \rangle \varphi$ for all $a \in \mathcal{A}$ and $f \in E_*$. It follows that

$$
\langle f, a \cdot x_0 \rangle = \langle f \cdot a, \tilde{D}(m) \rangle = \langle d(f \cdot a), m \rangle
$$

$$
= \langle d(f) \cdot a, m \rangle - \langle f, D(a) \rangle
$$

$$
= \varphi(a) \langle f, x_0 \rangle - \langle f, D(a) \rangle
$$

and hence $D(a) = \varphi(a)x_0 - a$. x_0 . Then we obtain $D(a) = a$. $(-x_0) - (-x_0)$. $a =$ $ad_{-x_0}(a)$, for all $a \in \mathcal{A}$, as required.

 $(iii) \implies (i)$ It is easy because in order to prove φ -Connes amenability of *A*, the condition $H^1_{w^*}(\mathcal{A}, E) = \{0\}$ only exploit for a normal, dual Banach *A*-bimodule with right action given by *x* . $a = \varphi(a)x$ for all $x \in E$ and $a \in \mathcal{A}$.

Let *A* be a dual Banach algebra. It is known that its *unitization* $A^{\sharp} = A \oplus \mathbb{C}e$, is a dual Banach algebra as well, where *e* is the identity of \mathcal{A}^{\sharp} . We define $f_0: \mathcal{A}^{\sharp} \longrightarrow \mathbb{C}$ by $f_0(e) = 1$ and $f_0 |_{\mathcal{A}} = 0$, so that $(\mathcal{A}^{\sharp})^* = \mathcal{A}^* \oplus \mathbb{C} f_0$. Let $\varphi \in \Delta_{w^*}(\mathcal{A})$ and let φ^{\sharp} be its unique extension to \mathcal{A}^{\sharp} , i.e., $\varphi^{\sharp}(a + \lambda e) = \varphi(a) + \lambda$, $a \in \mathcal{A}$, $\lambda \in \mathbb{C}$. It is obvious that $\varphi^{\sharp} \in \Delta_{w^*}(\mathcal{A}^{\sharp})$. For the right module action in f_0 , we have f_0 *.* $(a + \lambda e) = \lambda f_0$, since *f*₀ *. a* = 0, for all *a* ∈ *A*. We may identify $(\mathbb{C}f_0)^*$ with $\mathbb{C}m_0$, where m_0 is a functional on $(\mathcal{A}^{\sharp})^*$ defined by $m_0(f_0) = 1$ and $m_0 \downharpoonright_{\mathcal{A}^*} = 0$. Therefore, if we consider $\mathbb{C} f_0$ as a sub \mathcal{A}^{\sharp} bimodule of $(A^{\sharp})^*$, then we see that $f_0 \in \sigma wc(\mathbb{C} f_0)$ so that $\sigma wc(\mathbb{C} f_0) = \mathbb{C} f_0$. Therefore, we conclude that $\sigma wc((\mathcal{A}^{\sharp})^*) = \sigma wc(\mathcal{A}^*) \oplus \mathbb{C} f_0$, so that $\sigma wc((\mathcal{A}^{\sharp})^*)^* = \sigma wc(\mathcal{A}^*)^* \oplus \mathbb{C} m_0$.

Now, we are ready to prove the following.

Theorem 2.3 Suppose that *A* is a dual Banach algebra and $\varphi \in \Delta_{w^*}(A)$. Then *A* is *φ*-Connes amenable if and only if A ^{*‡*} is *φ*^{*‡*}-Connes amenable.

Proof. Let *A* be *φ*-Connes amenable and let $m \in \sigma wc(\mathcal{A}^*)^*$ be a *φ*-Connes mean for *A*. We define $n \in \sigma wc((\mathcal{A}^{\sharp})^*)^*$ by

$$
n(f + \lambda f_0) = m(f) , \quad (f \in \sigma wc(\mathcal{A}^*), \ \lambda \in \mathbb{C}) .
$$

Then $n(\varphi^{\sharp}) = n(\varphi + f_0) = m(\varphi) = 1$, and

$$
n((f + \lambda f_0) \cdot (a + \mu e)) = m(f \cdot a + \mu f) = \varphi(a)m(f) + \mu m(f)
$$

$$
= (\varphi(a) + \mu)m(f) = \varphi^{\sharp}(a + \mu e)n(f + \lambda f_0)
$$

for $f \in \sigma wc(\mathcal{A}^*), a \in \mathcal{A}$, and $\lambda, \mu \in \mathbb{C}$. Thus *n* is a φ^{\sharp} -Connes mean for \mathcal{A}^{\sharp} .

Conversely, suppose that there exists $m \in \sigma wc((\mathcal{A}^{\sharp})^*)^*$ with $m(\varphi^{\sharp}) = 1$ and

$$
m((f + \lambda f_0) \cdot (a + \mu e)) = \varphi^{\sharp}(a + \mu e)m(f + \lambda f_0)
$$

for $f \in \sigma wc(\mathcal{A}^*)$, $a \in \mathcal{A}$, and $\lambda, \mu \in \mathbb{C}$. Since f_0 *.* $a = 0$ for $a \in \mathcal{A}$, $m(f_0 \cdot a) = 0$. Choosing $a \in \mathcal{A}$ such that $\varphi(a) = 1$, we conclude that $m(f_0) = 0$. Then $n(\varphi) = 1$ and $n(f \cdot a) = \varphi^{\sharp}(a + 0e)m(f + 0e) = \varphi(a)n(f)$ for $f \in \sigma wc(\mathcal{A}^*)$ and $a \in \mathcal{A}$, as required.

Theorem 2.4 Suppose that *A* and *B* are dual Banach algebras, $\theta : A \rightarrow B$ is a continuous and *w*^{*}-continuous homomorphism with *w*^{*}-dense range, and that $\varphi \in \Delta_{w^*}(\mathcal{B})$. If *A* is $\varphi \circ \theta$ -Connes amenable, then *B* is φ -Connes amenable.

Proof. Notice that $\varphi \circ \theta \in \Delta_{w^*}(\mathcal{A})$. Suppose that $m \in \sigma wc(\mathcal{A}^*)^*$ satisfies $m(\varphi \circ \theta) = 1$ and $m(f \cdot a) = (\varphi \circ \theta)(a)m(f)$ for all $a \in \mathcal{A}$ and $f \in \sigma wc(\mathcal{A}^*)$. Define $n \in \sigma wc(\mathcal{B}^*)^*$ by $n(g) = m(g \circ \theta)$ for $g \in \sigma wc(\mathcal{B}^*)$. Next, for $a \in \mathcal{A}$ and $g \in \sigma wc(\mathcal{B}^*)$ we have $(g \cdot \theta(a)) \circ \theta = (g \circ \theta) \cdot a$, and hence

$$
n(g \cdot \theta(a)) = m((g \cdot \theta(a)) \circ \theta) = m((g \circ \theta) \cdot a)
$$

= $(\varphi \circ \theta)(a)m(g \circ \theta) = (\varphi \circ \theta)(a)n(g)$.

Since $\theta(\mathcal{A})$ is w^{*}-dense in \mathcal{B} , the above equation suffices to prove φ -Connes amenability of β .

Analogously, we may obtain the following.

Theorem 2.5 Suppose that *A* is a Banach algebra, *B* is a dual Banach algebra, *θ* : $A \longrightarrow B$ is a continuous homomorphism with *w*^{*}-dense range, and that $\varphi \in \Delta_{w^*}(\mathcal{B})$. If *A* is $\varphi \circ \theta$ -amenable, then *B* is φ -Connes amenable.

Let *A* be an Arens regular Banach algebra which is an ideal in *A∗∗*. It is immediate that \mathcal{A}^{**} is a dual Banach algebra [8]. Let $\varphi \in \Delta(\mathcal{A})$. Then $\tilde{\varphi}$, the extension of φ to \mathcal{A}^{**} , belongs to $\Delta_{w^*}(\mathcal{A}^{**})$. To see this, suppose that $\Lambda_{\alpha} \stackrel{w^*}{\longrightarrow} \Lambda$ in \mathcal{A}^{**} and choose $a \in \mathcal{A}$ such that $\varphi(a) \neq 0$. Then $a\Lambda_{\alpha} \stackrel{wk}{\longrightarrow} a\Lambda$ in A, since A is an ideal of \mathcal{A}^{**} . Therefore $\varphi(a) \lim_{\alpha} \tilde{\varphi}(\Lambda_{\alpha}) = \lim_{\alpha} \varphi(a\Lambda_{\alpha}) = \varphi(a\Lambda) = \varphi(a)\tilde{\varphi}(\Lambda)$, so that $\lim_{\alpha} \tilde{\varphi}(\Lambda_{\alpha}) = \tilde{\varphi}(\Lambda)$.

Theorem 2.6 Let *A* be an Arens regular Banach algebra which is an ideal in *A∗∗*, and let $\varphi \in \Delta(\mathcal{A})$. Then the following are equivalent:

(*i*) $\mathcal A$ is φ -amenable.

(*ii*) A^{**} is $\tilde{\varphi}$ -Connes amenable.

Proof. (*i*) \rightarrow (*ii*) Because $\varphi = \tilde{\varphi} \circ \imath$, where $\imath : A \hookrightarrow A^{**}$ is the inclusion map, this is an immediate consequence of Theorem 2.5.

 $(ii) \rightarrow (i)$ By the assumption, there is $m \in \sigma wc(\mathcal{A}^{**})^*$ such that $m(\tilde{\varphi}) = 1$ and $m(F \cdot u) = \tilde{\varphi}(u)m(F)$, for $u \in A^{**}$ and $F \in \sigma wc(A^{**})$. Set $\bar{m} = m|_{A^{*}}$, the restriction of *m* to \mathcal{A}^* . Since \mathcal{A}^{**} is a dual Banach algebra, $\mathcal{A}^* \subseteq \sigma wc(\mathcal{A}^{***})$ and therefore \bar{m} is well-defined. Then, it is readily seen that $\bar{m}(\varphi) = m(\tilde{\varphi}) = 1$ and $\bar{m}(f \cdot a) = \varphi(a)\bar{m}(f)$, $a \in \mathcal{A}, f \in \mathcal{A}^*$. . ■

Remark 1 Let *A* be a (commutative) dual Banach algebra and let $\varphi \in \Delta_{w^*}(\mathcal{A})$. Suppose *that A admits* a non-trivial bounded w^* -point derivation at φ , that is, there exists 0 \neq $d \in A^*$ such that d is w^{*}-continuous and $d(ab) = \varphi(a)d(b) + d(a)\varphi(b)$, $(a, b \in A)$. Then *we say that* A *is not* φ -Connes amenable. To see this, we consider $\mathbb{C}^* = \mathbb{C}$ *as a normal*, *dual Banach A-bimodule with actions* $a \cdot z = z \cdot a = \varphi(a)z$, for $a \in A$ and $z \in \mathbb{C}$. *Therefore d is a* w^* -continuous derivation and then *d is inner,* by φ -Connes amenability *of A. But any derivation of A on* C *is zero.*

Example 2.7 It is shown that the discrete convolution algebra $\ell^1(\mathbb{Z}^+)$ is isomorphic to the $A^+(\overline{\mathbb{D}})$, the commutative Banach algebra of all functions $f = \sum_{n=0}^{\infty} c_n Z^n$ in the disk algebra $A(\mathbb{D})$ which have an absolutely convergent Taylor expansion on \mathbb{D} , where \mathbb{D} denotes the open unit disk. The map $z \mapsto \varphi_z$, where φ_z is the point derivation at *z*, i.e, $\varphi_z(\sum_{n=0}^{\infty} c_n \delta_n) = \sum_{n=0}^{\infty} c_n z^n$, is a bijection between $\overline{\mathbb{D}}$ and $\Delta(\ell^1(\mathbb{Z}^+))$. The reader may see [1] for more information. When $|z| = 1$, we observe that φ_z is not w^{*}-continuous. On the other hand, if $z \in \mathbb{D}$ then φ_z is w^* -continuous. Therefore $\Delta_{w^*}(\ell^1(\mathbb{Z}^+)) = \mathbb{D}$. For $z \in \mathbb{D}$, the map $d: \ell^1(\mathbb{Z}^+) \longrightarrow \mathbb{C}$ given by

$$
d(f) = f'(z) = \sum_{n=0}^{\infty} nc_n z^{n-1} , \quad (f = \sum_{n=0}^{\infty} c_n \delta_n \in \ell^1(\mathbb{Z}^+))
$$

is a bounded w^{*}-point derivation at φ_z . We notice that the w^{*}-continuity of *d* is a consequence of the fact that $\lim_{n\to\infty} nz^{n-1} = 0$. Then by Remark 2.7, we conclude that $\ell^1(\mathbb{Z}^+)$ is not φ_z -Connes amenable for each $z \in \mathbb{D}$.

3. *φ***-***σwc* **Diagonal**

Let $\mathcal{A} = (\mathcal{A}_*)^*$ be a dual Banach algebra. It is known that $\pi^*(\mathcal{A}_*) \subseteq \sigma wc((\mathcal{A} \hat{\otimes} \mathcal{A})^*)$ and then taking adjoint, we can extend π to an *A*-bimodule homomorphism $\pi_{\sigma wc}$ from $\sigma wc((\mathcal{A}\hat{\otimes}\mathcal{A})^*)^*$ to \mathcal{A} . A σwc -*virtual diagonal* for \mathcal{A} is an element $M \in \sigma wc((\mathcal{A}\hat{\otimes}\mathcal{A})^*)^*$ such that $a \cdot M = M$. a and $a\pi_{\sigma wc}(M) = a$ for $a \in A$. It is known that Connes amenability of *A* is equivalent to existence of a *σwc*-virtual diagonal for *A*. The reader is referred to [9] for the proofs and more details.

From [9], we also know that $\pi^*(\sigma wc(\mathcal{A}^*)) \subseteq \sigma wc((\mathcal{A} \hat{\otimes} \mathcal{A})^*)$. So if $\varphi \in \Delta_{w^*}(\mathcal{A})$, then $\varphi \otimes \varphi = \pi^*(\varphi) \in \sigma wc((\mathcal{A} \hat{\otimes} \mathcal{A})^*)$, where $\varphi \otimes \varphi(a \otimes b) = \varphi(a) \varphi(b)$, for $a, b \in \mathcal{A}$.

Definition 3.1 Let *A* be a dual Banach algebra, and let $\varphi \in \Delta_{w^*}(\mathcal{A})$. An element $M \in \sigma wc((\mathcal{A}\hat{\otimes}\mathcal{A})^*)^*$ is a φ - σwc *virtual diagonal* for \mathcal{A} if

$$
(i) \ a \cdot \widetilde{M} = \varphi(a)M \ (a \in \mathcal{A}) ;(ii) \ \langle \varphi \otimes \varphi, M \rangle = 1 .
$$

Remark 2 Let A be a dual Banach algebra. Taking adjoint of the restriction map π^{*} $|σwc(A*)$, we obtain an *A-bimodule homomorphism* $π$ ⁰_{*σwc*} : $σwc((A\hat{\otimes}A)^*)^*$ → *σwc*(*A∗*) *∗ . Because we choose homomorphisms from σwc*(*A∗*)*, which is larger than A∗, working with* $\pi_{\sigma wc}^0$ seems more natural than that of $\pi_{\sigma wc}$. As a consequence, we observe that $\langle \varphi \otimes \varphi, M \rangle = \langle \varphi, \pi_{\sigma wc}^0(M) \rangle$, whenever $\varphi \in \Delta_{w^*}(A)$ and $M \in \sigma wc((A \hat{\otimes} A)^*)^*$.

With these preparations, we can now characterize *φ*-Connes amenable dual Banach algebras through the existence of *φ*-*σwc* virtual diagonals.

Theorem 3.2 Let *A* be a dual Banach algebra, and let $\varphi \in \Delta_{w^*}(\mathcal{A})$. Then the following are equivalent:

- (*i*) $\mathcal A$ is φ -Connes amenable.
- (*ii*) There is a φ -*σwc* virtual diagonal for A.

Proof. (*i*) *−→* (*ii*) Consider the Banach *A*-bimodule *A⊗A*ˆ with the module actions given by

$$
a \cdot (b \otimes c) = ab \otimes c
$$
 and $(b \otimes c) \cdot a = \varphi(a)b \otimes c \quad (a, b, c \in \mathcal{A})$.

 $\text{Put } E = \frac{\sigma wc((\mathcal{A}\hat{\otimes}\mathcal{A})^*)}{\sigma (\varphi \otimes \varphi)}$ $\mathcal{L}(\mathcal{A}\otimes\mathcal{A})^*$. Then $E^* = \mathbb{C}(\varphi\otimes\varphi)^\perp = {\Lambda \in \sigma wc((\mathcal{A}\otimes\mathcal{A})^*)^* : \Lambda(\varphi\otimes\varphi) = 0}$ is a normal, dual Banach A -bimodule for which the right module action is given by Λ *.* $a = \varphi(a)\Lambda$, $a \in \mathcal{A}$, $\Lambda \in E^*$. Choose $M_0 \in \sigma wc((\mathcal{A} \hat{\otimes} \mathcal{A})^*)^*$ such that $M_0(\varphi \otimes \varphi) = 1$. Then we see that the image of the inner derivation $ad_{M_0}: A \longrightarrow \sigma wc((A \hat{\otimes} A)^*)^*$ is a subset of E^* . By our assumption, there exists $M_1 \in E^*$ such that $ad_{M_0} = ad_{M_1}$. Then it is easy to check that $M := M_0 - M_1$ is a φ -*σwc* virtual diagonal for *A*.

 (ii) → (*i*) Suppose that $M \in \sigma wc((A \hat{\otimes} A)^*)^*$ is a φ - σwc virtual diagonal for *A*. It is clear that $\pi_{\sigma wc}^0(M)(\varphi) = 1$. For $f \in \sigma wc(\mathcal{A}^*)$ and $a \in \mathcal{A}$, then we have

$$
\pi_{\sigma wc}^0(M)(f \cdot a) = \langle f, a \cdot \pi_{\sigma wc}^0(M) \rangle = \langle f, \pi_{\sigma wc}^0(a \cdot M) \rangle = \varphi(a) \pi_{\sigma wc}^0(M)(f) .
$$

This shows that $\pi_{\sigma wc}^0(M)$ is a φ -Connes mean for *A*, as required.

4. *φ***-splitting**

Let *A* be a Banach algebra and let *X*, *Y* and *Z* be Banach *A*-bimodules. We recall that a short exact sequence $\Theta: 0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \longrightarrow 0$ is *admissible*, if there exists a bounded linear map $\rho: Y \longrightarrow X$ such that $\rho \circ f$ is the identity map on X. Further, Θ *splits* if we may choose ρ to be an *A*-bimodule homomorphism.

Let $\mathcal{A} = (\mathcal{A}_*)^*$ be a unital dual Banach algebra. Then the short exact sequence

$$
\sum: 0 \longrightarrow \mathcal{A}_* \xrightarrow{\pi^*} \sigma wc((\mathcal{A} \hat{\otimes} \mathcal{A})^*) \longrightarrow \sigma wc((\mathcal{A} \hat{\otimes} \mathcal{A})^*)/\pi^* (\mathcal{A}_*) \longrightarrow 0
$$

of *A*-bimodules is admissible (indeed, the map $\rho : \sigma wc(\hat{A}\hat{\otimes} \hat{\mathcal{A}})^* \longrightarrow \hat{\mathcal{A}}_*$ defined by $\rho(T) =$ *T*(*e*) is a bounded left inverse to $\pi^*|_{\mathcal{A}_*}$. In this section we restrict ourselves to the case where $\varphi \in \Delta_{w^*}(\mathcal{A}) \cap \mathcal{A}_*$. In fact, we choose φ 's in \mathcal{A}_* because we are interested in the splitting of the short exact sequence Σ . Then our result would be comparable to the Daws's theorem; *A* is Connes-amenable if and only if \sum splits [2, Proposition 4.4].

Definition 4.1 Let $\mathcal{A} = (\mathcal{A}_*)^*$ be a unital dual Banach algebra, and let $\varphi \in \Delta_{w^*}(\mathcal{A})$ \mathcal{A}_* . We say that $\sum \varphi$ -*splits* if there exists a bounded linear map $\rho : \sigma wc((\mathcal{A}\hat{\otimes}\mathcal{A})^*) \longrightarrow \mathcal{A}_*$ such that $\rho \circ \pi^*(\overline{\varphi}) = \varphi$ and $\rho(T \cdot a) = \varphi(a)\rho(T)$, for all $a \in \mathcal{A}$ and $T \in \sigma \text{wc}((\mathcal{A} \hat{\otimes} \mathcal{A})^*)$.

Theorem 4.2 Let $\mathcal{A} = (\mathcal{A}_*)^*$ be a unital dual Banach algebra, and let $\varphi \in \Delta_{w^*}(\mathcal{A}) \cap \mathcal{A}_*$. Then the following are equivalent:

- (*i*) $\mathcal A$ is φ -Connes amenable;
- (*ii*) the short exact sequence $\sum \varphi$ -splits.

Proof. (*i*) \rightarrow (*ii*) Suppose that *M* is a φ -*σwc* virtual diagonal for *A*. Define the map

 $\rho: \sigma wc((\mathcal{A} \hat{\otimes} \mathcal{A})^*) \longrightarrow \mathcal{A}^*$ by

$$
\langle a, \rho(T) \rangle := \langle T \, . \, a, M \rangle \quad (a \in \mathcal{A}, \ T \in \sigma wc((\mathcal{A} \hat{\otimes} \mathcal{A})^*)).
$$

The same argument as in the proof of [2, Proposition 4.4], shows that ρ maps into \mathcal{A}_{*} . Then for $a \in \mathcal{A}$

$$
\langle a, \rho \circ \pi^*(\varphi) \rangle = \langle \pi^*(\varphi) \cdot a, M \rangle = \langle \pi^*(\varphi), a \cdot M \rangle = \varphi(a) \langle \pi^*(\varphi), M \rangle = \varphi(a) ,
$$

hence $\rho \circ \pi^*(\varphi) = \varphi$. Next, for $a, b \in \mathcal{A}$

$$
\langle b, \rho(T \cdot a) = \langle T \cdot ab, M \rangle = \langle T, ab \cdot M \rangle = \varphi(ab)\langle T, M \rangle
$$

= $\varphi(a)\langle T, b \cdot M \rangle = \varphi(a)\langle T \cdot b, M \rangle = \varphi(a)\langle b, \rho(T) \rangle$

so that $\rho(T \cdot a) = \varphi(a)\rho(T)$, as required.

 $(ii) \rightarrow (i)$ Let the map $\rho : \sigma wc((\mathcal{A}\hat{\otimes}\mathcal{A})^*) \rightarrow \mathcal{A}_*$ be such that $\rho \circ \pi^*(\varphi) = \varphi$ and $\rho(T \cdot a) = \varphi(a)\rho(T)$, for all $a \in \mathcal{A}$ and $T \in \sigma wc((\mathcal{A}\hat{\otimes}\mathcal{A})^*)$. Take $M = \rho^*(e)$, where *e* is the identity of *A*. Then we have

$$
\langle T, a \cdot M - \varphi(a) M \rangle = \langle \rho(T \cdot a), e \rangle - \varphi(a) \langle T, M \rangle = \varphi(a) \langle \rho(T), e \rangle - \varphi(a) \langle T, M \rangle = 0.
$$

We also observe that

$$
\langle \varphi \otimes \varphi, M \rangle = \langle \pi^*(\varphi), M \rangle = \langle \rho \circ \pi^*(\varphi), e \rangle = \langle \varphi, e \rangle = 1,
$$

so that *M* is a φ -*σwc* virtual diagonal for *A* and therefore *A* is φ -Connes amenable, by Theorem 3.3.

Acknowledgement

This research was supported by Islamic Azad University Central Tehran Branch and the author acknowledge it with thanks.

References

- [1] H. G. Dales, Banach algebras and automatic continuity, *Clarendon Press*, Oxford, 2000.
- [2] M. Daws, Connes-amenability of bidual and weighted semigroup algebras, *Math. Scand.* **99** (2006), 217-246.
- [3] M. Daws, Dual Banach algebras: representations and injectivity, *Studia Math.* **178** (2007), 231-275.
- [4] B. E. Johnson, Cohomology in Banach algebras, *Mem. Amer. Math. Soc.* **127** (1972).
- [5] E. Kaniuth, A. T. Lau, J. Pym, On *φ*-amenability of Banach algebras, *Math. Proc. Camb. Phil. Soc.* **144** (2008), 85-96.
- [6] M. S. Monfared, Character amenability of Banach algebras, *Math. Proc. Camb. Phil. Soc.* **144** (2008), 697- 706.
- [7] V. Runde, Amenability for dual Banach algebras, *Studia Math.* **148** (2001), 47-66.
- [8] V. Runde, Lectures on amenability, *Lecture Notes in Mathematics* **1774**, Springer Verlag, Berlin, 2002.
- [9] V. Runde, Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule, *Math. Scand.* **95** (2004), 124-144.