Journal of Linear and Topological Algebra Vol. 03, No. 04, 2014, 211- 217

On φ -Connes amenability of dual Banach algebras

A. Mahmoodi^{*}

Department of Mathematics, Islamic Azad University, Central Tehran Branch, Tehran, Iran.

Received 29 September 2014; Revised 14 November 2014; Accepted 10 December 2014.

Abstract. Let φ be a w^* -continuous homomorphism from a dual Banach algebra to \mathbb{C} . The notion of φ -Connes amenability is studied and some characterizations is given. A type of diagonal for dual Banach algebras is defined. It is proved that the existence of such a diagonal is equivalent to φ -Connes amenability. It is also shown that φ -Connes amenability is equivalent to so-called φ -splitting of a certain short exact sequence.

 \bigodot 2014 IAUCTB. All rights reserved.

Keywords: Dual Banach algebra, φ -Connes amenability, φ -injectivity.

2010 AMS Subject Classification: Primary: 22D15, 43A10; Secondary: 43A20, 46H25.

1. Introduction

Let \mathcal{A} be a Banach algebra and E be a Banach \mathcal{A} -bimodule. A continuous linear operator $D: \mathcal{A} \longrightarrow E$ is a *derivation* if it satisfies $D(ab) = D(a) \cdot b + a \cdot D(b)$ for all $a, b \in \mathcal{A}$. Given $x \in E$, the *inner* derivation $ad_x: \mathcal{A} \longrightarrow E$ is defined by $ad_x(a) = a \cdot x - x \cdot a$. Amenability for Banach algebras as introduced by B. E. Johnson [4], has proved to be an important and fertile notion. A Banach algebra \mathcal{A} is *amenable* if for every Banach \mathcal{A} -bimodule E, every derivation from \mathcal{A} into E^* , the dual of E, is inner. We recall that the projective tensor product $\mathcal{A} \otimes \mathcal{A}$ is a Banach \mathcal{A} -bimodule in the canonical way. Then the map $\pi: \mathcal{A} \otimes \mathcal{A} \longrightarrow \mathcal{A}$ defined by $\pi(a \otimes b) = ab$, is an \mathcal{A} -bimodule homomorphism.

Let \mathcal{A} be a Banach algebra. A Banach \mathcal{A} -bimodule E is *dual* if there is a closed submodule E_* of E^* such that $E = (E_*)^*$. We say E_* the *predual* of E. A dual Banach \mathcal{A} -bimodule E is *normal* if the module actions of \mathcal{A} on E are w^* -continuous. A Banach

 $^{^{*}}$ Corresponding author.

E-mail address: a_mahmoodi@iauctb.ac.ir (A. Mahmoodi).

algebra is *dual* if it is dual as a Banach \mathcal{A} -bimodule. We write $\mathcal{A} = (\mathcal{A}_*)^*$ if we wish to stress that \mathcal{A} is a dual Banach algebra with predual \mathcal{A}_* . Connes amenability, which seems to be a natural variant of amenability for dual Banach algebras, systematically was introduced by V. Runde [7]. Although, it had been studied previously under different names. A dual Banach algebra \mathcal{A} is *Connes amenable* if every w^* -continuous derivation from \mathcal{A} into a normal, dual Banach \mathcal{A} -bimodule is inner. Let $\mathcal{A} = (\mathcal{A}_*)^*$ be a dual Banach algebra and let E be a Banach \mathcal{A} -bimodule. Then $\sigma wc(E)$ stands for the set of all elements $x \in E$ such that the maps

$$\mathcal{A} \longrightarrow E \quad , \quad a \longmapsto \begin{cases} a \cdot x \\ x \cdot a \end{cases} ,$$

are w^* -weak continuous. It is a closed submodule of E.

A generalization of amenability which depends on homomorphisms was introduced by E. Kaniuth, A. T. Lau and J. Pym in [5]. This concept was also studied independently, by M. S. Monfared in [6]. Let \mathcal{A} be a Banach algebra and φ be a homomorphism from \mathcal{A} onto \mathbb{C} . We say \mathcal{A} is φ -amenable if there exists a bounded linear functional m on \mathcal{A}^* satisfying $m(\varphi) = 1$ and $m(f \cdot a) = \varphi(a)m(f)$, for all $a \in \mathcal{A}$ and $f \in \mathcal{A}^*$. We write $\Delta(\mathcal{A})$ for the set of all homomorphism from \mathcal{A} onto \mathbb{C} .

In this note we study φ -Connes amenability for dual Banach algebras. The organization of the paper is as follow. Firstly, in section 2, we study basic properties of φ -Connes amenability. We characterize it through vanishing of $H^1_{w^*}(\mathcal{A}, E)$ for certain Banach \mathcal{A} bimodule. A number of hereditary properties are also discussed.

In section 3, we define a type of virtual diagonal for a dual Banach algebra \mathcal{A} , showing that the existence of such a diagonal is equivalent to φ -Connes amenability of \mathcal{A} .

Finally in section 4, we give a characterization of φ -Connes amenability of a dual Banach algebra $\mathcal{A} = (\mathcal{A}_*)^*$ in terms of so-called φ -splitting of the short exact sequence

$$\sum: 0 \longrightarrow \mathcal{A}_* \xrightarrow{\pi^*} \sigma wc((\mathcal{A} \hat{\otimes} \mathcal{A})^*) \longrightarrow \sigma wc((\mathcal{A} \hat{\otimes} \mathcal{A})^*)/\pi^*(\mathcal{A}_*) \longrightarrow 0$$

2. Basic properties

Suppose that \mathcal{A} is a dual Banach algebra and φ is a homomorphism from \mathcal{A} onto \mathbb{C} . Then it is an easy observation that φ is w^* -continuous if and only if $\varphi \in \sigma wc(\mathcal{A}^*)$. For a dual Banach algebra \mathcal{A} , $\Delta_{w^*}(\mathcal{A})$ will denote the set of all w^* -continuous homomorphism from \mathcal{A} onto \mathbb{C} .

Definition 2.1 Suppose that \mathcal{A} is a dual Banach algebra and $\varphi \in \Delta_{w^*}(\mathcal{A})$. We call \mathcal{A} φ -Connes amenable if \mathcal{A} admits a φ -Connes mean m, i.e., there exists a bounded linear functional m on $\sigma wc(\mathcal{A}^*)$ satisfying $m(\varphi) = 1$ and $m(f \cdot a) = \varphi(a)m(f)$ for all $a \in \mathcal{A}$ and $f \in \sigma wc(\mathcal{A}^*)$.

We recall some terminology from [7]. Let \mathcal{A} be a dual Banach algebra and E be a normal, dual Banach \mathcal{A} -bimodule. We write $Z^1_{w^*}(\mathcal{A}, E)$ for the set of all w^* -continuous derivations from \mathcal{A} to E. Clearly $B^1(\mathcal{A}, E)$, the set of all inner derivations from \mathcal{A} to E, is a subspace of $Z^1_{w^*}(\mathcal{A}, E)$. Whence we have the meaningful definition $H^1_{w^*}(\mathcal{A}, E) = Z^1_{w^*}(\mathcal{A}, E)/B^1(\mathcal{A}, E)$.

Theorem 2.2 Suppose that \mathcal{A} is a dual Banach algebra and $\varphi \in \Delta_{w^*}(\mathcal{A})$. Then the following are equivalent:

(i) \mathcal{A} is φ -Connes amenable;

(*ii*) If $E = (E_*)^*$ is a normal, dual Banach \mathcal{A} -bimodule such that $x \cdot a = \varphi(a)x$ for all $x \in E$ and $a \in \mathcal{A}$, then $H^1_{w^*}(\mathcal{A}, E) = \{0\}$.

Proof. (i) \Longrightarrow (ii) Let m be φ -Connes mean for \mathcal{A} . Take E as in the clause (ii). Let $D: \mathcal{A} \longrightarrow E$ be a w^* -continuous derivation, so that $D(ab) = a \cdot D(b) + \varphi(b)D(a)$, $a, b \in \mathcal{A}$. From [9, Corollary 4.6], we know that D^* maps E_* into $\sigma wc(\mathcal{A}^*)$. Take $d = D^* |_{E_*}$ and $\tilde{D} = d^* : \sigma wc(\mathcal{A}^*)^* \longrightarrow E$. Set $x_0 = \tilde{D}(m) \in E$. Then for all $a \in \mathcal{A}$, $x \in E$ and $f \in E_*$ we have $\langle x, a \cdot f \rangle = \langle x \cdot a, f \rangle = \varphi(a) \langle x, f \rangle$, so that $a \cdot f = \varphi(a)f$ and hence $d(a \cdot f) = \varphi(a)d(f)$. For all $a \in \mathcal{A}$ and $f \in E_*$, we get for the right action of \mathcal{A} on E_*

$$\begin{split} \langle b, d(f \cdot a) \rangle &= \langle D(b), f \cdot a \rangle = \langle a \cdot D(b), f \rangle \\ &= \langle D(ab), f \rangle - \varphi(b) \langle D(a), f \rangle \\ &= \langle b, d(f) \cdot a \rangle - \varphi(b) \langle f, D(a) \rangle \;. \end{split}$$

Therefore $d(f \cdot a) = d(f) \cdot a - \langle f, D(a) \rangle \varphi$ for all $a \in \mathcal{A}$ and $f \in E_*$. It follows that

$$\langle f, a \, . \, x_0 \rangle = \langle f \, . \, a, D(m) \rangle = \langle d(f \, . \, a), m \rangle$$

= $\langle d(f) \, . \, a, m \rangle - \langle f, D(a) \rangle$
= $\varphi(a) \langle f, x_0 \rangle - \langle f, D(a) \rangle$

and hence $D(a) = \varphi(a)x_0 - a$. x_0 . Then we obtain $D(a) = a \cdot (-x_0) - (-x_0) \cdot a = ad_{-x_0}(a)$, for all $a \in \mathcal{A}$, as required.

 $(ii) \implies (i)$ It is easy because in order to prove φ -Connes amenability of \mathcal{A} , the condition $H^1_{w^*}(\mathcal{A}, E) = \{0\}$ only exploit for a normal, dual Banach \mathcal{A} -bimodule with right action given by $x \cdot a = \varphi(a)x$ for all $x \in E$ and $a \in \mathcal{A}$.

Let \mathcal{A} be a dual Banach algebra. It is known that its *unitization* $\mathcal{A}^{\sharp} = \mathcal{A} \oplus \mathbb{C}e$, is a dual Banach algebra as well, where e is the identity of \mathcal{A}^{\sharp} . We define $f_0 : \mathcal{A}^{\sharp} \longrightarrow \mathbb{C}$ by $f_0(e) = 1$ and $f_0 \mid_{\mathcal{A}} = 0$, so that $(\mathcal{A}^{\sharp})^* = \mathcal{A}^* \oplus \mathbb{C}f_0$. Let $\varphi \in \Delta_{w^*}(\mathcal{A})$ and let φ^{\sharp} be its unique extension to \mathcal{A}^{\sharp} , i.e., $\varphi^{\sharp}(a + \lambda e) = \varphi(a) + \lambda$, $a \in \mathcal{A}$, $\lambda \in \mathbb{C}$. It is obvious that $\varphi^{\sharp} \in \Delta_{w^*}(\mathcal{A}^{\sharp})$. For the right module action in f_0 , we have $f_0 \cdot (a + \lambda e) = \lambda f_0$, since $f_0 \cdot a = 0$, for all $a \in \mathcal{A}$. We may identify $(\mathbb{C}f_0)^*$ with $\mathbb{C}m_0$, where m_0 is a functional on $(\mathcal{A}^{\sharp})^*$ defined by $m_0(f_0) = 1$ and $m_0 \mid_{\mathcal{A}^*} = 0$. Therefore, if we consider $\mathbb{C}f_0$ as a sub \mathcal{A}^{\sharp} -bimodule of $(\mathcal{A}^{\sharp})^*$, then we see that $f_0 \in \sigma wc(\mathbb{C}f_0)$ so that $\sigma wc(\mathbb{C}f_0) = \mathbb{C}f_0$. Therefore, we conclude that $\sigma wc((\mathcal{A}^{\sharp})^*) = \sigma wc(\mathcal{A}^*) \oplus \mathbb{C}f_0$, so that $\sigma wc((\mathcal{A}^{\sharp})^*)^* = \sigma wc(\mathcal{A}^*)^* \oplus \mathbb{C}m_0$.

Now, we are ready to prove the following.

Theorem 2.3 Suppose that \mathcal{A} is a dual Banach algebra and $\varphi \in \Delta_{w^*}(\mathcal{A})$. Then \mathcal{A} is φ -Connes amenable if and only if \mathcal{A}^{\sharp} is φ^{\sharp} -Connes amenable.

Proof. Let \mathcal{A} be φ -Connes amenable and let $m \in \sigma wc(\mathcal{A}^*)^*$ be a φ -Connes mean for \mathcal{A} . We define $n \in \sigma wc((\mathcal{A}^{\sharp})^*)^*$ by

$$n(f + \lambda f_0) = m(f)$$
, $(f \in \sigma wc(\mathcal{A}^*), \lambda \in \mathbb{C})$.

Then $n(\varphi^{\sharp}) = n(\varphi + f_0) = m(\varphi) = 1$, and

$$n((f + \lambda f_0) \cdot (a + \mu e)) = m(f \cdot a + \mu f) = \varphi(a)m(f) + \mu m(f)$$
$$= (\varphi(a) + \mu)m(f) = \varphi^{\sharp}(a + \mu e)n(f + \lambda f_0)$$

for $f \in \sigma wc(\mathcal{A}^*)$, $a \in \mathcal{A}$, and $\lambda, \mu \in \mathbb{C}$. Thus n is a φ^{\sharp} -Connes mean for \mathcal{A}^{\sharp} .

Conversely, suppose that there exists $m \in \sigma wc((\mathcal{A}^{\sharp})^*)^*$ with $m(\varphi^{\sharp}) = 1$ and

$$m((f + \lambda f_0) \cdot (a + \mu e)) = \varphi^{\sharp}(a + \mu e)m(f + \lambda f_0)$$

for $f \in \sigma wc(\mathcal{A}^*)$, $a \in \mathcal{A}$, and $\lambda, \mu \in \mathbb{C}$. Since $f_0 \cdot a = 0$ for $a \in \mathcal{A}$, $m(f_0 \cdot a) = 0$. Choosing $a \in \mathcal{A}$ such that $\varphi(a) = 1$, we conclude that $m(f_0) = 0$. Then $n(\varphi) = 1$ and $n(f \cdot a) = \varphi^{\sharp}(a + 0e)m(f + 0e) = \varphi(a)n(f)$ for $f \in \sigma wc(\mathcal{A}^*)$ and $a \in \mathcal{A}$, as required.

Theorem 2.4 Suppose that \mathcal{A} and \mathcal{B} are dual Banach algebras, $\theta : \mathcal{A} \longrightarrow \mathcal{B}$ is a continuous and w^* -continuous homomorphism with w^* -dense range, and that $\varphi \in \Delta_{w^*}(\mathcal{B})$. If \mathcal{A} is $\varphi \circ \theta$ -Connes amenable, then \mathcal{B} is φ -Connes amenable.

Proof. Notice that $\varphi \circ \theta \in \Delta_{w^*}(\mathcal{A})$. Suppose that $m \in \sigma wc(\mathcal{A}^*)^*$ satisfies $m(\varphi \circ \theta) = 1$ and $m(f \cdot a) = (\varphi \circ \theta)(a)m(f)$ for all $a \in \mathcal{A}$ and $f \in \sigma wc(\mathcal{A}^*)$. Define $n \in \sigma wc(\mathcal{B}^*)^*$ by $n(g) = m(g \circ \theta)$ for $g \in \sigma wc(\mathcal{B}^*)$. Next, for $a \in \mathcal{A}$ and $g \in \sigma wc(\mathcal{B}^*)$ we have $(g \cdot \theta(a)) \circ \theta = (g \circ \theta) \cdot a$, and hence

$$n(g \cdot \theta(a)) = m((g \cdot \theta(a)) \circ \theta) = m((g \circ \theta) \cdot a)$$
$$= (\varphi \circ \theta)(a)m(g \circ \theta) = (\varphi \circ \theta)(a)n(g) \cdot a$$

Since $\theta(\mathcal{A})$ is w^* -dense in \mathcal{B} , the above equation suffices to prove φ -Connes amenability of \mathcal{B} .

Analogously, we may obtain the following.

Theorem 2.5 Suppose that \mathcal{A} is a Banach algebra, \mathcal{B} is a dual Banach algebra, θ : $\mathcal{A} \longrightarrow \mathcal{B}$ is a continuous homomorphism with w^* -dense range, and that $\varphi \in \Delta_{w^*}(\mathcal{B})$. If \mathcal{A} is $\varphi \circ \theta$ -amenable, then \mathcal{B} is φ -Connes amenable.

Let \mathcal{A} be an Arens regular Banach algebra which is an ideal in \mathcal{A}^{**} . It is immediate that \mathcal{A}^{**} is a dual Banach algebra [8]. Let $\varphi \in \Delta(\mathcal{A})$. Then $\tilde{\varphi}$, the extension of φ to \mathcal{A}^{**} , belongs to $\Delta_{w^*}(\mathcal{A}^{**})$. To see this, suppose that $\Lambda_{\alpha} \xrightarrow{w^*} \Lambda$ in \mathcal{A}^{**} and choose $a \in \mathcal{A}$ such that $\varphi(a) \neq 0$. Then $a\Lambda_{\alpha} \xrightarrow{wk} a\Lambda$ in \mathcal{A} , since \mathcal{A} is an ideal of \mathcal{A}^{**} . Therefore $\varphi(a) \lim_{\alpha} \tilde{\varphi}(\Lambda_{\alpha}) = \lim_{\alpha} \varphi(a\Lambda_{\alpha}) = \varphi(a\Lambda) = \varphi(a)\tilde{\varphi}(\Lambda)$, so that $\lim_{\alpha} \tilde{\varphi}(\Lambda_{\alpha}) = \tilde{\varphi}(\Lambda)$.

Theorem 2.6 Let \mathcal{A} be an Arens regular Banach algebra which is an ideal in \mathcal{A}^{**} , and let $\varphi \in \Delta(\mathcal{A})$. Then the following are equivalent:

(i) \mathcal{A} is φ -amenable.

(*ii*) \mathcal{A}^{**} is $\tilde{\varphi}$ -Connes amenable.

Proof. $(i) \longrightarrow (ii)$ Because $\varphi = \tilde{\varphi} \circ i$, where $i : \mathcal{A} \hookrightarrow \mathcal{A}^{**}$ is the inclusion map, this is an immediate consequence of Theorem 2.5.

 $(ii) \longrightarrow (i)$ By the assumption, there is $m \in \sigma wc(\mathcal{A}^{***})^*$ such that $m(\tilde{\varphi}) = 1$ and $m(F \cdot u) = \tilde{\varphi}(u)m(F)$, for $u \in \mathcal{A}^{**}$ and $F \in \sigma wc(\mathcal{A}^{***})$. Set $\bar{m} = m|_{\mathcal{A}^*}$, the restriction of m to \mathcal{A}^* . Since \mathcal{A}^{**} is a dual Banach algebra, $\mathcal{A}^* \subseteq \sigma wc(\mathcal{A}^{***})$ and therefore \bar{m} is

well-defined. Then, it is readily seen that $\overline{m}(\varphi) = m(\tilde{\varphi}) = 1$ and $\overline{m}(f \cdot a) = \varphi(a)\overline{m}(f)$, $a \in \mathcal{A}, f \in \mathcal{A}^*$.

Remark 1 Let \mathcal{A} be a (commutative) dual Banach algebra and let $\varphi \in \Delta_{w^*}(\mathcal{A})$. Suppose that \mathcal{A} admits a non-trivial bounded w^* -point derivation at φ , that is, there exists $0 \neq d \in \mathcal{A}^*$ such that d is w^* -continuous and $d(ab) = \varphi(a)d(b) + d(a)\varphi(b)$, $(a, b \in \mathcal{A})$. Then we say that \mathcal{A} is not φ -Connes amenable. To see this, we consider $\mathbb{C}^* = \mathbb{C}$ as a normal, dual Banach \mathcal{A} -bimodule with actions $a \cdot z = z \cdot a = \varphi(a)z$, for $a \in \mathcal{A}$ and $z \in \mathbb{C}$. Therefore d is a w^* -continuous derivation and then d is inner, by φ -Connes amenability of \mathcal{A} . But any derivation of \mathcal{A} on \mathbb{C} is zero.

Example 2.7 It is shown that the discrete convolution algebra $\ell^1(\mathbb{Z}^+)$ is isomorphic to the $A^+(\bar{\mathbb{D}})$, the commutative Banach algebra of all functions $f = \sum_{n=0}^{\infty} c_n Z^n$ in the disk algebra $A(\bar{\mathbb{D}})$ which have an absolutely convergent Taylor expansion on $\bar{\mathbb{D}}$, where \mathbb{D} denotes the open unit disk. The map $z \mapsto \varphi_z$, where φ_z is the point derivation at z, i.e, $\varphi_z(\sum_{n=0}^{\infty} c_n \delta_n) = \sum_{n=0}^{\infty} c_n z^n$, is a bijection between $\bar{\mathbb{D}}$ and $\Delta(\ell^1(\mathbb{Z}^+))$. The reader may see [1] for more information. When |z| = 1, we observe that φ_z is not w^* -continuous. On the other hand, if $z \in \mathbb{D}$ then φ_z is w^* -continuous. Therefore $\Delta_{w^*}(\ell^1(\mathbb{Z}^+)) = \mathbb{D}$. For $z \in \mathbb{D}$, the map $d : \ell^1(\mathbb{Z}^+) \longrightarrow \mathbb{C}$ given by

$$d(f) = f'(z) = \sum_{n=0}^{\infty} nc_n z^{n-1}$$
, $(f = \sum_{n=0}^{\infty} c_n \delta_n \in \ell^1(\mathbb{Z}^+))$

is a bounded w^* -point derivation at φ_z . We notice that the w^* -continuity of d is a consequence of the fact that $\lim_{n \to \infty} nz^{n-1} = 0$. Then by Remark 2.7, we conclude that $\ell^1(\mathbb{Z}^+)$ is not φ_z -Connes amenable for each $z \in \mathbb{D}$.

3. φ - σwc Diagonal

Let $\mathcal{A} = (\mathcal{A}_*)^*$ be a dual Banach algebra. It is known that $\pi^*(\mathcal{A}_*) \subseteq \sigma wc((\mathcal{A} \otimes \mathcal{A})^*)$ and then taking adjoint, we can extend π to an \mathcal{A} -bimodule homomorphism $\pi_{\sigma wc}$ from $\sigma wc((\mathcal{A} \otimes \mathcal{A})^*)^*$ to \mathcal{A} . A σwc -virtual diagonal for \mathcal{A} is an element $M \in \sigma wc((\mathcal{A} \otimes \mathcal{A})^*)^*$ such that $a \cdot M = M \cdot a$ and $a\pi_{\sigma wc}(M) = a$ for $a \in \mathcal{A}$. It is known that Connes amenability of \mathcal{A} is equivalent to existence of a σwc -virtual diagonal for \mathcal{A} . The reader is referred to [9] for the proofs and more details.

From [9], we also know that $\pi^*(\sigma wc(\mathcal{A}^*)) \subseteq \sigma wc((\mathcal{A}\hat{\otimes}\mathcal{A})^*)$. So if $\varphi \in \Delta_{w^*}(\mathcal{A})$, then $\varphi \otimes \varphi = \pi^*(\varphi) \in \sigma wc((\mathcal{A}\hat{\otimes}\mathcal{A})^*)$, where $\varphi \otimes \varphi(a \otimes b) = \varphi(a)\varphi(b)$, for $a, b \in \mathcal{A}$.

Definition 3.1 Let \mathcal{A} be a dual Banach algebra, and let $\varphi \in \Delta_{w^*}(\mathcal{A})$. An element $M \in \sigma wc((\mathcal{A} \otimes \mathcal{A})^*)^*$ is a φ - σwc virtual diagonal for \mathcal{A} if

(i)
$$a \cdot M = \varphi(a)M \quad (a \in \mathcal{A});$$

(ii) $\langle \varphi \otimes \varphi, M \rangle = 1$.

Remark 2 Let \mathcal{A} be a dual Banach algebra. Taking adjoint of the restriction map $\pi^* \mid_{\sigma wc(\mathcal{A}^*)}$, we obtain an \mathcal{A} -bimodule homomorphism $\pi^0_{\sigma wc}$: $\sigma wc((\mathcal{A} \otimes \mathcal{A})^*)^* \longrightarrow \sigma wc(\mathcal{A}^*)^*$. Because we choose homomorphisms from $\sigma wc(\mathcal{A}^*)$, which is larger than \mathcal{A}_* , working with $\pi^0_{\sigma wc}$ seems more natural than that of $\pi_{\sigma wc}$. As a consequence, we observe that $\langle \varphi \otimes \varphi, M \rangle = \langle \varphi, \pi^0_{\sigma wc}(M) \rangle$, whenever $\varphi \in \Delta_{w^*}(\mathcal{A})$ and $M \in \sigma wc((\mathcal{A} \otimes \mathcal{A})^*)^*$.

With these preparations, we can now characterize φ -Connes amenable dual Banach algebras through the existence of φ - σwc virtual diagonals.

Theorem 3.2 Let \mathcal{A} be a dual Banach algebra, and let $\varphi \in \Delta_{w^*}(\mathcal{A})$. Then the following are equivalent:

- (i) \mathcal{A} is φ -Connes amenable.
- (*ii*) There is a φ - σwc virtual diagonal for \mathcal{A} .

Proof. $(i) \longrightarrow (ii)$ Consider the Banach \mathcal{A} -bimodule $\mathcal{A} \hat{\otimes} \mathcal{A}$ with the module actions given by

$$a \cdot (b \otimes c) = ab \otimes c \text{ and } (b \otimes c) \cdot a = \varphi(a)b \otimes c (a, b, c \in \mathcal{A})$$
.

Put $E = \frac{\sigma wc((\mathcal{A}\hat{\otimes}\mathcal{A})^*)}{\mathbb{C}(\varphi\otimes\varphi)}$. Then $E^* = \mathbb{C}(\varphi\otimes\varphi)^{\perp} = \{\Lambda \in \sigma wc((\mathcal{A}\hat{\otimes}\mathcal{A})^*)^* : \Lambda(\varphi\otimes\varphi) = 0\}$ is a normal, dual Banach \mathcal{A} -bimodule for which the right module action is given by $\Lambda : a = \varphi(a)\Lambda, a \in \mathcal{A}, \Lambda \in E^*$. Choose $M_0 \in \sigma wc((\mathcal{A}\hat{\otimes}\mathcal{A})^*)^*$ such that $M_0(\varphi\otimes\varphi) = 1$. Then we see that the image of the inner derivation $ad_{M_0} : \mathcal{A} \longrightarrow \sigma wc((\mathcal{A}\hat{\otimes}\mathcal{A})^*)^*$ is a subset of E^* . By our assumption, there exists $M_1 \in E^*$ such that $ad_{M_0} = ad_{M_1}$. Then it is easy to check that $M := M_0 - M_1$ is a φ - σwc virtual diagonal for \mathcal{A} .

 $(ii) \longrightarrow (i)$ Suppose that $M \in \sigma wc((\mathcal{A} \hat{\otimes} \mathcal{A})^*)^*$ is a φ - σwc virtual diagonal for \mathcal{A} . It is clear that $\pi^0_{\sigma wc}(M)(\varphi) = 1$. For $f \in \sigma wc(\mathcal{A}^*)$ and $a \in \mathcal{A}$, then we have

$$\pi^0_{\sigma wc}(M)(f \cdot a) = \langle f, a \cdot \pi^0_{\sigma wc}(M) \rangle = \langle f, \pi^0_{\sigma wc}(a \cdot M) \rangle = \varphi(a) \pi^0_{\sigma wc}(M)(f) \ .$$

This shows that $\pi^0_{\sigma wc}(M)$ is a φ -Connes mean for \mathcal{A} , as required.

4. φ -splitting

Let \mathcal{A} be a Banach algebra and let X, Y and Z be Banach \mathcal{A} -bimodules. We recall that a short exact sequence $\Theta: 0 \longrightarrow X \xrightarrow{f} Y \xrightarrow{g} Z \longrightarrow 0$ is *admissible*, if there exists a bounded linear map $\rho: Y \longrightarrow X$ such that $\rho \circ f$ is the identity map on X. Further, Θ *splits* if we may choose ρ to be an \mathcal{A} -bimodule homomorphism.

Let $\mathcal{A} = (\mathcal{A}_*)^*$ be a unital dual Banach algebra. Then the short exact sequence

$$\sum : 0 \longrightarrow \mathcal{A}_* \xrightarrow{\pi^*} \sigma wc((\mathcal{A} \hat{\otimes} \mathcal{A})^*) \longrightarrow \sigma wc((\mathcal{A} \hat{\otimes} \mathcal{A})^*)/\pi^*(\mathcal{A}_*) \longrightarrow 0$$

of \mathcal{A} -bimodules is admissible (indeed, the map $\rho : \sigma wc(\mathcal{A} \otimes \mathcal{A})^* \longrightarrow \mathcal{A}_*$ defined by $\rho(T) = T(e)$ is a bounded left inverse to $\pi^*|_{\mathcal{A}_*}$). In this section we restrict ourselves to the case where $\varphi \in \Delta_{w^*}(\mathcal{A}) \cap \mathcal{A}_*$. In fact, we choose φ 's in \mathcal{A}_* because we are interested in the splitting of the short exact sequence Σ . Then our result would be comparable to the Daws's theorem; \mathcal{A} is Connes-amenable if and only if Σ splits [2, Proposition 4.4].

Definition 4.1 Let $\mathcal{A} = (\mathcal{A}_*)^*$ be a unital dual Banach algebra, and let $\varphi \in \Delta_{w^*}(\mathcal{A}) \cap \mathcal{A}_*$. We say that $\sum \varphi$ -splits if there exists a bounded linear map $\rho : \sigma wc((\mathcal{A} \otimes \mathcal{A})^*) \longrightarrow \mathcal{A}_*$ such that $\rho \circ \pi^*(\varphi) = \varphi$ and $\rho(T \cdot a) = \varphi(a)\rho(T)$, for all $a \in \mathcal{A}$ and $T \in \sigma wc((\mathcal{A} \otimes \mathcal{A})^*)$.

Theorem 4.2 Let $\mathcal{A} = (\mathcal{A}_*)^*$ be a unital dual Banach algebra, and let $\varphi \in \Delta_{w^*}(\mathcal{A}) \cap \mathcal{A}_*$. Then the following are equivalent:

- (i) \mathcal{A} is φ -Connes amenable;
- (*ii*) the short exact sequence $\sum \varphi$ -splits.

Proof. (i) \longrightarrow (ii) Suppose that M is a φ - σwc virtual diagonal for \mathcal{A} . Define the map

 $\rho:\sigma wc((\mathcal{A}\hat{\otimes}\mathcal{A})^*)\longrightarrow \mathcal{A}^*$ by

$$\langle a, \rho(T) \rangle := \langle T . a, M \rangle \quad (a \in \mathcal{A}, \ T \in \sigma wc((\mathcal{A} \hat{\otimes} \mathcal{A})^*)).$$

The same argument as in the proof of [2, Proposition 4.4], shows that ρ maps into \mathcal{A}_* . Then for $a \in \mathcal{A}$

$$\langle a, \rho \circ \pi^*(\varphi) \rangle = \langle \pi^*(\varphi) \ . \ a, M \rangle = \langle \pi^*(\varphi), a \ . \ M \rangle = \varphi(a) \langle \pi^*(\varphi), M \rangle = \varphi(a) \ ,$$

hence $\rho \circ \pi^*(\varphi) = \varphi$. Next, for $a, b \in \mathcal{A}$

$$\begin{aligned} \langle b, \rho(T \cdot a) &= \langle T \cdot ab, M \rangle = \langle T, ab \cdot M \rangle = \varphi(ab) \langle T, M \rangle \\ &= \varphi(a) \langle T, b \cdot M \rangle = \varphi(a) \langle T \cdot b, M \rangle = \varphi(a) \langle b, \rho(T) \rangle \end{aligned}$$

so that $\rho(T \cdot a) = \varphi(a)\rho(T)$, as required.

 $(ii) \longrightarrow (i)$ Let the map $\rho : \sigma wc((\mathcal{A} \hat{\otimes} \mathcal{A})^*) \longrightarrow \mathcal{A}_*$ be such that $\rho \circ \pi^*(\varphi) = \varphi$ and $\rho(T \cdot a) = \varphi(a)\rho(T)$, for all $a \in \mathcal{A}$ and $T \in \sigma wc((\mathcal{A} \hat{\otimes} \mathcal{A})^*)$. Take $M = \rho^*(e)$, where e is the identity of \mathcal{A} . Then we have

$$\langle T, a \, . \, M - \varphi(a)M \rangle = \langle \rho(T \, . \, a), e \rangle - \varphi(a) \langle T, M \rangle = \varphi(a) \langle \rho(T), e \rangle - \varphi(a) \langle T, M \rangle = 0 \; .$$

We also observe that

$$\langle \varphi \otimes \varphi, M \rangle = \langle \pi^*(\varphi), M \rangle = \langle \rho \circ \pi^*(\varphi), e \rangle = \langle \varphi, e \rangle = 1$$
,

so that M is a φ - σwc virtual diagonal for \mathcal{A} and therefore \mathcal{A} is φ -Connes amenable, by Theorem 3.3.

Acknowledgement

This research was supported by Islamic Azad University Central Tehran Branch and the author acknowledge it with thanks.

References

- [1] H. G. Dales, Banach algebras and automatic continuity, Clarendon Press, Oxford, 2000.
- [2] M. Daws, Connes-amenability of bidual and weighted semigroup algebras, Math. Scand. 99 (2006), 217-246.
- [3] M. Daws, Dual Banach algebras: representations and injectivity, Studia Math. 178 (2007), 231-275.
- [4] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
- [5] E. Kaniuth, A. T. Lau, J. Pym, On φ-amenability of Banach algebras, Math. Proc. Camb. Phil. Soc. 144 (2008), 85-96.
- [6] M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Camb. Phil. Soc. 144 (2008), 697-706.
- [7] V. Runde, Amenability for dual Banach algebras, Studia Math. 148 (2001), 47-66.
- [8] V. Runde, Lectures on amenability, Lecture Notes in Mathematics 1774, Springer Verlag, Berlin, 2002.
 [9] V. Runde, Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predua
- [9] V. Runde, Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule, *Math. Scand.* 95 (2004), 124-144.