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Abstract. In this paper we develop a natural generalization of Schauder basis theory, we term
operator-valued basis or simply ov-basis theory, using operator-algebraic methods. We prove
several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality.
We prove that the operators of a dual ov-basis are continuous. We also define the concepts of
Bessel, Hilbert ov-basis and obtain some characterizations of them. We study orthonormal
and Riesz ov-bases for Hilbert spaces. Finally we consider the stability of ov-bases under
small perturbations. We generalize a result of Paley-Wiener [4] to the situation of ov-basis.
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1. Introduction

Throughout this paper, H,K are separable Hilbert spaces and I, J, Jj denote the
countable (or finite) index sets and {Wj}j is a sequence of closed subspaces of K and
B(H,Wj) denote the collection of all bounded linear operators from H into Wj and
Λj ∈ B(H,Wj) for all j ∈ J . Also RT and NT denote the range and null spaces of an
operator T ∈ B(H,K) respectively. Recently, W. Sun [3] introduced a generalized frame
and a generalized Riesz basis for a Hilbert space and discussed some properties of them.
In this paper we introduce the concept of the operator-valued basis and then we redefined
the concepts of the orthonormal operator-valued basis and operator-valued Riesz basis
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for a Hilbert space. we develop the basis theory to the situation of operator-valued basis
theory in Hilbert spaces.

Definition 1.1 Let Λj ∈ B(H,Wj) be an onto operator for all j ∈ J . Then the family
Λ = {Λj}j∈J is called an operator-valued basis or simply ov-basis for H with respect to
{Wj}j∈J , if for any f ∈ H there exists an unique sequence {gj : gj ∈ Wj}j∈J such that

f =
∑
j∈J

Λ∗
jgj , (1)

with the convergence being in norm. If series (1) is unconditionally convergent, Λ is
called an unconditional ov-basis. We call this family an ov-basis for H with respect to K
if Wj = K for all j ∈ J .

Theorem 1.2 Let {Λj}j∈J be anov-basis for H with respect to {Wj}j∈J . Then

dimH =
∑
j∈J

dimWj

.

Proof. Let {eij}i∈Jj
be an orthonormal basis for Wj for all j ∈ J . We show that

{Λ∗
jeij}j∈J,i∈Jj

is a basis for H. Since {eij}i∈Jj
is an orthonormal basis for Wj , hence

every gj ∈ Wj has a unique expansion of the form gj =
∑

i∈Jj
< gj , eij > eij . This

implies that also every f ∈ H has a unique expansion of the form

f =
∑
j∈J

∑
i∈Jj

< gj , eij > Λ∗
jeij .

This shows that dimH =
∑

j∈J dimWj . ■

Corollary 1.3 Let {Λj}j∈J , {Γi}i∈I be ov-bases for H with respect to {Wj}j∈J , {Vi}i∈I
respectively. Then

∑
j∈J dimWj =

∑
i∈I dimVi.

2. Characterizations of ov-bases

Let Λ = {Λj}j∈J be a ov-basis for H with respect to {Wj}j∈J , then every f ∈ H has a
unique expansion of the form f =

∑
j∈J Λ

∗
jgj . It is clear that each gj ∈ Wj is a linear

operator of f . If we denote this linear operator by Γj : H → Wj , then gj = Γjf , and
we have f =

∑
j∈J Λ

∗
jΓjf . The sequence {Γj}j∈J is called the dual ov-basis of Λ. In the

next theorem we show that the operators of a dual ov-basis are continuous.

Theorem 2.1 Let Λ = {Λj}j∈J be a ov-basis for H with respect to {Wj}j∈J , and let
{Γj}j∈J be the dual ov-basis of Λ, then Γj ∈ B(H,Wj), for all j ∈ J . Moreover, if Γj ̸= 0
for some j ∈ J , then ∥Γj∥∥Λj∥ ⩾ 1.

Proof. Define the space

A =
{
{gj}j∈J | gj ∈ Wj ,

∑
j∈J

Λ∗
jgj is convergent

}
,
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with the norm defined by∥∥{gj}j∈J∥∥ = sup
0<|F |<∞

F⊆J

∥∥∥∑
i∈F

Λ∗
i gi

∥∥∥ < ∞.

It is clear that A endowed with this norm, is a normed space with respect to the pointwise
operations. We will show that the space A is a complete. Let {un}n∈N be a Cauchy
sequence in A. If un = {gnj}j∈J , then given any ε > 0, there exists a number N such
that

sup
0<|F |<∞

F⊆J

∥∥∥∑
i∈F

(Λ∗
i gni − Λ∗

i gmi)
∥∥∥ < ε (2)

for all m,n ⩾ N . Now for all j ∈ J and m,n ⩾ N we have

∥Λ∗
jgnj − Λ∗

jgmj∥ ⩽ sup
0<|F |<∞

F⊆J

∥∥∥∑
i∈F

(Λ∗
i gni − Λ∗

i gmi)
∥∥∥ < ε.

This shows that {Λ∗
jgnj}n∈N is a Cauchy sequence in H. Since Λj is onto hence by The-

orem 4.13 of [2] the sequence {gnj}n∈N is a Cauchy sequence in Wj and thus convergent.
Let gj ∈ Wj such that gj = limn→∞ gnj and u = {gj}j∈J . From (2), by letting m → ∞,
we obtain

sup
0<|F |<∞

F⊆J

∥∥∥∑
i∈F

(Λ∗
i gni − Λ∗

i gi)
∥∥∥ ⩽ ε (3)

for all n ⩾ N . Since for all finite non-empty subset F ⊂ J we have∥∥∥ ∑
i∈J−F

Λ∗
i gi

∥∥∥ ⩽
∥∥∥ ∑
i∈J−F

(Λ∗
i gNi − Λ∗

i gi)
∥∥∥+

∥∥∥ ∑
i∈J−F

Λ∗
i gNi

∥∥∥
⩽ sup

0<|F |<∞
F⊆J

∥∥∥∑
i∈F

(Λ∗
i gNi − Λ∗

i gi)
∥∥∥+ sup

0<|F |<∞
F⊆J

∥∥∥∑
i∈F

Λ∗
i gNi

∥∥∥
thus u ∈ A. Moreover (3) implies that the sequence {un}n∈N is convergent to u in A.
Therefore A is a Banach space. Define the mapping

T : A → H with T ({gj}j∈J) =
∑
j∈J

Λ∗
jgj .

Since Λ is a g-basis for H with respect to {Wj}j∈J hence T is linear, one-to-one and
onto. On the other hand, since

∥T ({gj}j∈J)∥ =
∥∥∥∑

j∈J
Λ∗
jgj

∥∥∥ ⩽ sup
0<|F |<∞

F⊆J

∥∥∥∑
i∈F

Λ∗
i gi

∥∥∥ = ∥{gj}j∈J∥.

Thus T is continuous and the open mapping theorem then guarantees that T−1 is also
continuous. This shows that A and H are Banach spaces isomorphic. Now suppose that
f =

∑
j∈J Λ

∗
jgj is a fixed, arbitrary element of H and let j ∈ J . Since Λj is onto thus by
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Theorem 4.13 of [2] there is a mj > 0 such that mj∥g∥ ⩽ ∥Λ∗
jg∥ for all g ∈ Wj . Moreover,

we have

∥Γjf∥ = ∥gj∥ ⩽
∥Λ∗

jgj∥
mj

⩽
sup 0<|F |<∞

F⊆J

∥∥∑
i∈F Λ∗

i gi
∥∥

mj
=

2∥T−1f∥
mj

⩽ 2∥T−1∥∥f∥
mj

.

This shows that each Γj is continuous and ∥Γj∥ ⩽ 2∥T−1∥
mj

. For the remaining inequality

assume that 0 ̸= gj = Γjf for some f ∈ H, then we have

∥gj∥ = ∥ΓjΛ
∗
jgj∥ ⩽ ∥Γj∥∥Λj∥∥gj∥,

which implies that ∥Γj∥∥Λj∥ ⩾ 1. ■

Let {Λj}j∈J be a ov-basis for H with respect to {Wj}j∈J and let {Γj}j∈J be the dual
ov-basis of {Λj}j∈J . Then F -partial sum operator of {Λj}j∈J defined by

SF : H → H with SF f =
∑
j∈F

Λ∗
jΓjf,

for all finite subset F ⊂ J . By Theorem 2.1, SF is a bounded operator and

1 ⩽ sup
0<|F |<∞

F⊆J

∥SF ∥ < ∞. (4)

A family of operators {Λj ∈ B(H,Wj) : j ∈ J} is called a complete sequence for H
with respect to {Wj}j∈J , if H = span{Λ∗

j (Wj)}j∈J . It is easy to check that {Λj}j∈J is a
complete sequence for H with respect to {Wj}j∈J , if and only if {f : Λjf = 0, j ∈ J} =
{0}.

Theorem 2.2 Let {Λj}j∈J be a complete sequence for H with respect to {Wj}j∈J . Then
{Λj}j∈J is a ov-basis for H with respect to {Wj}j∈J if and only if there exists a constant
M such that ∥∥∥∑

i∈F
Λ∗
i gi

∥∥∥ ⩽ M
∥∥∥∑

i∈G
Λ∗
i gi (5)

for all finite subsets F ⊂ G ⊂ J and arbitrary vectors gj ∈ Wj , j ∈ G.

Proof. First suppose that {Λj}j∈J is a ov-basis for H with respect to {Wj}j∈J and
let M = sup 0<|F |<∞

F⊆J

∥SF ∥, then for all finite subsets F ⊂ G ⊂ J and arbitrary vectors

gj ∈ Wj we have

∥∥∑
j∈F

Λ∗
jgj

∥∥ =
∥∥SF

(∑
j∈G

Λ∗
jgj

)∥∥ ⩽ M
∥∥∑
j∈G

Λ∗
jgj

∥∥.
To prove the opposite implication take f ∈ H. By hypothesis, there exist finite sub-
sets Fn ⊂ Fn+1 ⊂ J and vectors gnj ∈ Wj for all n ∈ N, j ∈ Fn such that
f = limn→∞

∑
j∈Fn

Λ∗
jgnj . For notational convenience, put gnj = 0 for j ̸∈ Fn, then
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for every m > n and j ∈ Fn we have

∥Λ∗
j (gnj − gmj)∥ ⩽ M

∥∥ ∑
i∈Fn

Λ∗
i (gni − gmi)

∥∥
⩽ M2

∥∥ ∑
i∈Fm

Λ∗
i (gni − gmi)

∥∥
= M2

∥∥ ∑
i∈Fn

Λ∗
i gni −

∑
i∈Fm

Λ∗
i gmi

∥∥ → 0 (n → ∞).

This shows that {Λ∗
jgnj}n∈N is a Cauchy sequence in H. Since Λj is onto hence by

Theorem 4.13 [2] the sequence {gnj}n∈N is a Cauchy sequence in Wj and thus convergent.
Let gj ∈ Wj such that gj = limn→∞ gnj , then f =

∑
j∈J Λ

∗
jgj . Now we show that this

representation is unique. If
∑

j∈J Λ
∗
jgj = 0, then for any finite subset F ⊂ J and j ∈ F

we have

∥Λ∗
jgj∥ ⩽ M

∥∥∑
i∈F

Λ∗
i gi

∥∥ → 0.

This shows that ∥Λ∗
jgj∥ = 0. Since Λ∗

j is one-to-one on Wj , hence gj = 0 which this
completes the proof. ■

Corollary 2.3 Let {Λj}j∈J be a ov-basis for H with respect to {Wj}j∈J , with dual
ov-basis {Γj}j∈J . Then {Γj}j∈J is a ov-basis for H with respect to {Wj}j∈J and

f =
∑
j∈J

Γ∗
jΛjf ∀f ∈ H.

Proof. First we prove that H = span{Γ∗
j (Wj)}j∈J . To see this, let f ⊥

span{Γ∗
j (Wj)}j∈J . Then

∥Γjf∥2 =< f,Γ∗
jΓjf >= 0,

which implies that Γjf = 0 for all j ∈ J . We also have

f =
∑
j∈J

Λ∗
jΓjf = 0.

Thus H = span{Γ∗
j (Wj)}j∈J . We now prove that {Γj}j∈J is a ov-basis for H with respect

to {Wj}j∈J . For this, we show that S∗
F f → f for all f ∈ H. First assume that f is a finite

linear combination of {Γ∗
jgj : gj ∈ Wj , j ∈ J}, say f =

∑
j∈G Γ∗

jgj and let F ⊇ G be
a finite arbitrary set. Then by hypothesis for any i, j ∈ J we have ΓjΛ

∗
iΓi = δijΓi hence

Γ∗
iΛiΓ

∗
j = δijΓ

∗
i . It follows that

S∗
F f =

∑
j∈G

S∗
FΓ

∗
jgj =

∑
j∈G

∑
i∈F

Γ∗
iΛiΓ

∗
jgj =

∑
j∈G

Γ∗
jgj = f.

Now if f ∈ H, then given ε > 0 we can find g =
∑

j∈G Γ∗
jgj such that ∥f − g∥ < ε

M+1 ,
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where M = sup 0<|F |<∞
F⊆J

∥SF ∥. We also have

∥S∗
F f − f∥ ⩽ ∥S∗

F f − S∗
F g∥+ ∥g − f∥ ⩽ (∥SF ∥+ 1)∥f − g∥ < ε

for every finite set F ⊇ G. Thus every f ∈ H has at least one representation of the form
f =

∑
j∈J Γ

∗
jΛjf . We show that this representation is unique. Assume that

∑
j∈J Γ

∗
jgj =

0 then by hypothesis for any i, j ∈ J we have ΓjΛ
∗
iΛi = δijΛi thus Λ∗

iΛiΓ
∗
j = δijΛ

∗
i . It

follows that

Λ∗
i gi = Λ∗

iΛi

(∑
j∈J

Γ∗
jgj

)
= 0.

Since Λ∗
i is one-to-one on Wi, therefore gi = 0 for all i ∈ J . This completes the proof. ■

Definition 2.4 Let {Λj}j∈J and {Γj}j∈J be sequences of operators for H with respect
to {Wj}j∈J .

(i) Let Λj be onto for all j ∈ J , then {Γj}j∈J is called a ov-biorthogonal sequence
of {Λj}j∈J , if ΓiΛ

∗
jgj = δijgj for all i, j ∈ J, gj ∈ Wj .

(ii) {Λj}j∈J is called minimal, if for each j ∈ J

Λ∗
j (Wj) ∩ span{Λ∗

k(Wk)} k∈J,

k ̸=j

= {0}.

(iii) We say that {Λj}j∈J is ω-independent if whenever
∑

j∈J Λ
∗
jgj = 0 for some

sequence {gj : gj ∈ Wj}j∈J , then necessarily gk = 0 for all k ∈ J .

Since Λ∗
jΛjΓ

∗
i = δijΛ

∗
j for all i, j ∈ J and Λ∗

j is one-to-one on Wj hence if {Γj}j∈J is
a ov-biorthogonal sequence of {Λj}j∈J , then {Λj}j∈J is also a ov-biorthogonal sequence
of {Γj}j∈J .

Proposition 2.5 Let {Λj}j∈J be a sequence of operators for H with respect to {Wj}j∈J
and let Λj be onto for all j ∈ J , then {Λj}j∈J is minimal if and only if it is ω-independent.

Proof. First assume that {Λj}j∈J is not ω-independent, then there is a sequence {gj :
gj ∈ Wj}j∈J with gk ̸= 0 for some k ∈ J , such that

∑
j∈J Λ

∗
jgj = 0. It follows Λ∗

kgk =∑
j∈J,

j ̸=k

Λ∗
j (−gj) which implies that Λ∗

kgk ∈ span{Λ∗
j (Wj)} j∈J,

j ̸=k

. That is, {Λj}j∈J is not

minimal. The other implication is obvious. ■

Proposition 2.6 Every ov-basis for a Hilbert space possesses a unique ov-biorthogonal
sequence.

Proof. By definition, the dual ov-basis of a ov-basis is a ov-biorthogonal sequence of
it. Moreover, if {Γj}j∈J and {Ψj}j∈J be ov-biorthogonal sequences of ov-basis {Λj}j∈J ,
then for all f ∈ H and i, j ∈ J we have ΨiΛ

∗
jΓjf = δijΓjf , which implies that

Λ∗
iΨif =

∑
j∈J

Λ∗
iΨiΛ

∗
jΓjf =

∑
j∈J

δijΛ
∗
iΓjf = Λ∗

iΓif.

Since Λ∗
i is one-to-one on Wi, hence Γi = Ψi. ■

Proposition 2.7 Let {Λj}j∈J be a sequence of operators for H with respect to {Wj}j∈J ,
and let Λj be onto for all j ∈ J . Then
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(i) {Λj}j∈J has a ov-biorthogonal sequence, if and only if {Λj}j∈J is minimal.
(ii) The ov-biorthogonal sequence of {Λj}j∈J is unique if and only if {Λj}j∈J is

complete.

Proof. For the proof of (i) suppose that {Γj}j∈J is a ov-biorthogonal sequence of
{Λj}j∈J , and let f ∈ Λ∗

k(Wk) ∩ span{Λ∗
j (Wj)} j∈J,

j ̸=k

for any given k ∈ J . Then there

exists a sequence {gj : gj ∈ Wj}j∈J such that f = Λ∗
kgk =

∑
j∈J,

j ̸=k

Λ∗
jgj . We also have

gk = ΓkΛ
∗
kgk =

∑
j∈J,

j ̸=k

ΓkΛ
∗
jgj =

∑
j∈J,

j ̸=k

δkjgj = 0,

which implies that f = 0. That is, {Λj}j∈J is minimal. For the opposite implication in
(i), suppose that {Λj}j∈J is minimal, and let H0 = span{Λ∗

j (Wj)}j∈J . From Proposition

2.5 it follows that {Λj}j∈J is a ov-basis for H0 with respect to {Wj}j∈J . Let {Γ′
j}j∈J be

dual ov-basis of {Λj}j∈J . If we define Γj = Γ′
jP for all j ∈ J , where P is the orthogonal

projection from H onto H0. Then {Γj}j∈J is a ov-biorthogonal sequence for {Λj}j∈J .
(ii) Let {Γj}j∈J be a ov-biorthogonal sequence of {Λj}j∈J . If {Λj}j∈J is not complete,

then the sequence {Ψj}j∈J defined by Ψj = Γj + Λj(IdH − P ) for all j ∈ J is a ov-
biorthogonal sequence for {Λj}j∈J . For the other implication in (ii), assume that {Λj}j∈J
is complete. If

∑
j∈J Λ

∗
jgj = 0 for any given sequence {gj : gj ∈ Wj}j∈J , then for every

k ∈ J we have

gk =
∑
j∈J

δkjgj =
∑
j∈J

ΓkΛ
∗
jgj = Γk(

∑
j∈J

Λ∗
jgj) = 0.

This shows that {Λj}j∈J is a ov-basis for H with respect to {Wj}j∈J . Now the conclusion
follows from Proposition 2.6. ■

Theorem 2.8 Let {Λj}j∈J be a ov-basis for H with respect to {Wj}j∈J and let T :
H → U be a bounded linear operator such that Γj = ΛjT

∗ for all j ∈ J . Then {Γj}j∈J
is a ov-basis for U with respect to {Wj}j∈J if and only if T is invertible.

Proof. Let T be invertible and let g ∈ U , then we can write g = Tf for some f ∈ H.
Since {Λj}j∈J is a ov-basis for H with respect to {Wj}j∈J hence f ∈ H has an unique
expansion of the form f =

∑
j∈J Λ

∗
jgj where gj ∈ Wj for all j ∈ J . It follows that

g = Tf =
∑
j∈J

TΛ∗
jgj =

∑
j∈J

Γ∗
jgj

which implies that {Γj}j∈J is a ov-basis for U with respect to {Wj}j∈J . Now we assume
{Λj}j∈J and {Γj}j∈J are ov-bases for H and U with respect to {Wj}j∈J respectively.
Since for every sequence {gj : gj ∈ Wj}j∈J we have T (

∑
j∈J Λ

∗
jgj) =

∑
j∈J Γ

∗
jgj .

Therefore T is invertible. ■

Definition 2.9 Let {Λj}j∈J and {Γj}j∈J be ov-bases for H and U with respect to
{Wj}j∈J respectively. Then {Λj}j∈J and {Γj}j∈J are said to be equivalent if for any
given sequence {gj : gj ∈ Wj}j∈J the series

∑
j∈J Λ

∗
jgj is convergent if and only if the

series
∑

j∈J Γ
∗
jgj is convergent.

Theorem 2.10 Two ov-bases {Λj}j∈J and {Γj}j∈J forH and U with respect to {Wj}j∈J
are equivalent if and only if there exists a bounded linear invertible operator T : H → U
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such that Γj = ΛjT
∗.

Proof. Assume that T : H → U be the bounded linear invertible operator such that
Γj = ΛjT

∗ for all j ∈ J . Then the sufficiency follows from the fact that for every sequence
{gj : gj ∈ Wj}j∈j we have∑

j∈J
Γ∗
jgj = T

(∑
j∈J

Λ∗
jgj

)
and

∑
j∈J

Λ∗
jgj = T−1

(∑
j∈J

Γ∗
jgj

)
.

Now suppose that {Λj}j∈J and {Γj}j∈J are equivalent ov-bases for H and U with respect
to {Wj}j∈J . If f ∈ H with unique expansion f =

∑
j∈J Λ

∗
jgj , then the series

∑
j∈J Γ

∗
jgj

converges to an element Tf ∈ U . Therefore, Tf is well defined. Since Λ∗
j is one-to-one

on Wj for all j ∈ J , hence it is easy to check that T is linear, bijective and Γj = ΛjT
∗.

To show that T is a bounded invertible operator, we define operators TF by TF f =∑
j∈F Γ∗

jgj for every non-empty finite subset F ⊂ J . Then Tf = limF TF f for every
f ∈ H. Since by Theorem 2.8 each TF is bounded thus the Banach-Steinhaus Theorem
implies that T is bounded. Moreover the open mapping Theorem guarantees that T is
invertible. ■

Theorem 2.11 The ov-biorthogonal sequences associated with equivalent ov-bases are
equivalent.

Proof. Let {Λj}j∈J and {Γj}j∈J be equivalent ov-bases for H and U with respect to
{Wj}j∈J and let, {Ψj}j∈J and {Φj}j∈J be ov-biorthogonal sequences for them respec-
tively. By assumption there exists a bounded invertible operator T : H → U such that
Γj = ΛjT

∗. For any f ∈ H we have

f = T−1Tf = T−1
(∑

j∈J
Γ∗
jΦjTf

)
= T−1

(∑
j∈J

TΛ∗
jΦjTf

)
=

∑
j∈J

Λ∗
jΦjTf.

By Proposition 2.6 it follows that Ψj = ΦjT for all j ∈ J . that is {Ψj}j∈J and {Φj}j∈J
are equivalent. ■

For each sequence {Wj}j∈J of closed subspaces of K, we define the Hilbert space
associated with {Wj}j∈J by(∑

j∈J
⊕Wj

)
ℓ2
=

{
{gj}j∈J |gj ∈ Wj and

∑
j∈J

∥gj∥2 < ∞
}
. (6)

with inner product given by

< {fk}k∈J , {gk}k∈J >=
∑
j∈J

< fj , gj > . (7)

Definition 2.12 Let {Λj}j∈J be a ov-basis for H with respect to {Wj}j∈J . We say
that {Λj}j∈J is a Bessel ov-basis if whenever

∑
j∈J Λ

∗
jgj converges, then {gj}j∈J ∈(∑

j∈J ⊕Wj

)
ℓ2
. It is called a Hilbert ov-basis, if the series

∑
j∈J Λ

∗
jgj is convergent

for all {gj}j∈J ∈
(∑

j∈J ⊕Wj

)
ℓ2
.

Theorem 2.13 Let {Λj}j∈J be a ov-basis for H with respect to {Wj}j∈J . Then {Λj}j∈J
is a Bessel ov-basis for H with respect to {Wj}j∈J if and only if there exists a constant
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A > 0 such that

A
∑
j∈F

∥gj∥2 ⩽
∥∥∑
j∈F

Λ∗
jgj

∥∥2
for any finite subset F ⊂ J and arbitrary vectors gj ∈ Wj .

Proof. The sufficiency is trivial. Assume that {Λj}j∈J is a Bessel ov-basis and consider
the space

A =
{
{gj}j∈J | gj ∈ Wj ,

∑
j∈J

Λ∗
jgj is convergent

}
.

Clearly A is a subspace of
(∑

j∈J ⊕Wj

)
ℓ2
. We show that A is closed. To see this, let

{gnj}j∈J be a sequence in A such that converges to some {gj}j∈J ∈
(∑

j∈J ⊕Wj

)
ℓ2
, then

gnj → gj for all j ∈ J . Let F be an arbitrary finite subset of J and n ∈ N, then we have∥∥∑
j∈F

Λ∗
jgj

∥∥ ⩽
∥∥∑
j∈F

Λ∗
j (gnj − gj)

∥∥+
∥∥∑
j∈F

Λ∗
jgnj

∥∥.
It follows that

∑
j∈J Λ

∗
jgj is Cauchy and hence convergent in H, which implies that A is

closed. Now define the operator T : A → H by

T ({gj}j∈J) =
∑
j∈J

Λ∗
jgj .

Then, it is obvious that T is linear, one-to-one. To show that T is a bounded operator, we
define the bounded operators TF : A → H by TF ({gj}j∈J) =

∑
j∈F Λ∗

jgj . Then TF → T
pointwise. Since each TF is bounded the Banach-Steinhaus Theorem follows that T is
bounded. Now by Theorems 4.13 and 4.15 of [2] there exists a constant A > 0 such that

A
∑
j∈F

∥gj∥2 ⩽
∥∥∑
j∈F

Λ∗
jgj

∥∥2
for any finite subset F ⊂ J and arbitrary vectors gj ∈ Wj . ■

Theorem 2.14 Let {Λj}j∈J be a ov-basis for H with respect to {Wj}j∈J . Then {Λj}j∈J
is a Hilbert ov-basis for H with respect to {Wj}j∈J if and only if there exists a constant
B > 0 such that ∥∥∑

j∈F
Λ∗
jgj

∥∥2 ⩽ B
∑
j∈F

∥gj∥2

for any finite subset F ⊂ J and arbitrary vectors gj ∈ Wj .

Proof. Suppose that {Λj}j∈J is a Hilbert ov-basis then the Banach-Steinhaus Theo-
rem guarantees that the operator T :

(∑
j∈J ⊕Wj

)
ℓ2

→ H defined by T ({gj}j∈J) =∑
j∈J Λ

∗
jgj is bounded. Therefore there exists a constant B > 0 such that

∥∥∑
j∈F

Λ∗
jgj

∥∥2 ⩽ B
∑
j∈F

∥gj∥2
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for any finite subset F ⊂ J and arbitrary vectors gj ∈ Wj . The opposite conclusion is
trivial. ■

Theorem 2.15 Let {Λj}j∈J be a ov-basis for H with respect to {Wj}j∈J , with dual
ov-basis {Γj}j∈J . Then {Λj}j∈J is a Bessel ov-basis if and only if {Γj}j∈J is a Hilbert
ov-basis.

Proof. First suppose that {Λj}j∈J is a Bessel ov-basis, then {Γjf}j∈J ∈
(∑

j∈J ⊕Wj

)
ℓ2

for all f ∈ H. Fix F ⊂ J with |F | < ∞ and let f =
∑

j∈F Γ∗
jgj . Then we have

∥∥∑
j∈F

Γ∗
jgj

∥∥4 = | < f,
∑
j∈F

Γ∗
jgj > |2 ⩽

(∑
j∈F

∥Γjf∥∥gj∥
)2

⩽
(∑
j∈J

∥Γjf∥2
)(∑

j∈F
∥gj∥2

)
.

This shows that {Γj}j∈J is a Hilbert ov-basis. For the other implication, assume that
{Γj}j∈J is a Hilbert ov-basis. Fix F ⊂ J with |F | < ∞ and let f =

∑
j∈F Λ∗

jgj , then
gj = Γjf for all j ∈ F . By Theorem 2.14 there exists a constant B > 0 such that

∥∥∑
j∈F

Γ∗
jΓjf

∥∥2 ⩽ B
∑
j∈F

∥Γjf∥2 = B < f,
∑
j∈F

Γ∗
jΓjf >

⩽ B∥f∥
∥∥∑
j∈F

Γ∗
jΓjf

∥∥.
Hence,

∥∥∑
j∈F

Γ∗
jΓjf

∥∥ ⩽ B
∥∥∑
j∈F

Λ∗
jgj

∥∥.
We also have ∑

j∈F
∥gj∥2 =

∑
j∈F

∥Γjf∥2 =< f,
∑
j∈F

Γ∗
jΓjf >

⩽
∥∥∑
j∈F

Λ∗
jgj

∥∥∥∥∑
j∈F

Γ∗
jΓjf

∥∥ ⩽ B
∥∥∑
j∈F

Λ∗
jgj

∥∥2.
Now applying Theorem 2.13 the result follows at once. ■

3. Orthonormal ov-bases and Riesz ov-bases

In this section we give some characterizations of orthonormal ov-bases and Riesz ov-
bases in Hilbert spaces. For more details about the theory and applications of orthonor-
mal ov-bases we refer the readers to [1].

Definition 3.1 Let {Ξj}j∈J be a sequence of operators for H with respect to {Wj}j∈J .
Then
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(i) {Ξj}j∈J is called an orthonormal ov-system for H with respect to {Wj}j∈J , if:

ΞiΞ
∗
jgj = δijgj ∀i, j ∈ J, gj ∈ Wj .

(ii) {Ξj}j∈J is called an orthonormal ov-basis for H with respect to {Wj}j∈J if it is
a complete orthonormal ov-system for H with respect to {Wj}j∈J .

Corollary 3.2 Let {Ξj}j∈J be an orthonormal ov-system forH with respect to {Wj}j∈J ,
then Ξj is onto and ∥Ξj∥ = 1 for all j ∈ J .

Proof. For any j ∈ J and g ∈ Wj , we have ΞjΞ
∗
jg = g which implies that Ξj is onto.

We further have ΞjΞ
∗
jΞj = Ξj . This shows that Ξ∗

jΞj is an orthogonal projection from
H onto RΞ∗

j
and hence ∥Ξ∗

jΞj∥ = 1. This yields

∥Ξj∥2 = sup
∥f∥=1

∥Ξjf∥2 = sup
∥f∥=1

< Ξjf,Ξjf >= sup
∥f∥=1

∥Ξ∗
jΞjf∥2 = 1

■

Example 3.3 Let H = K = CN+1 and let {ek}N+1
k=1 be the standard basis of CN+1. For

each 1 ⩽ j ⩽ N + 1 define the subspace Wj ⊂ K and the operator Ξj : H → Wj by

Wj = span{
N+1∑
k=1

k ̸=j

ek}, Ξj({zi}N+1
i=1 ) =

zj√
N

N+1∑
k=1

k ̸=j

ek.

Then {Ξj}N+1
j=1 is an orthonormal ov-basis for H with respect to {Wj}N+1

j=1 .

Corollary 3.4 Orthonormal ov-systems are ω-independent.

Proof. This follows immediately from the definition. ■

Theorem 3.5 Let {Ξj}j∈J be an orthonormal ov-system for H with respect to {Wj}j∈J ,
then the series

∑
j∈J Ξ

∗
jgj converges if and only if {gj}j∈J ∈

(∑
j∈J ⊕Wj

)
ℓ2

and in that
case ∥∥∑

j∈J
Ξ∗
jgj

∥∥2 = ∑
j∈J

∥gj∥2.

Proof. For any finite subset F ⊂ J we have
∥∥∑

j∈F Ξ∗
jgj

∥∥2 =
∑

j∈F ∥gj∥2. From this
the result follows. ■

Theorem 3.6 (Bessel’s inequality) Let {Ξj}j∈J be an orthonormal ov-system for H
with respect to {Wj}j∈J . Then ∑

j∈J
∥Ξjf∥2 ⩽ ∥f∥2

for all f ∈ H.
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Proof. Let f ∈ H. Fix F ⊂ J with |F | < ∞. Then By Theorem 3.5 we have∥∥∥f −
∑
j∈F

Ξ∗
jgj

∥∥∥2 = ∥f∥2 −
∑
j∈F

< Ξjf, gj > −
∑
j∈F

< gj ,Ξjf > +
∑
j∈F

∥gj∥2

= ∥f∥2 −
∑
j∈F

∥Ξjf∥2 +
∑
j∈F

∥Ξjf − gj∥2

for arbitrary vectors {gj : gj ∈ Wj}j∈F . In particular, if gj = Ξjf , then∥∥f −
∑
j∈F

Ξ∗
jΞjf

∥∥2 = ∥f∥2 −
∑
j∈F

∥Ξjf∥2.

From this we have
∑

j∈F ∥Ξjf∥2 ⩽ ∥f∥2, which implies that
∑

j∈J ∥Ξjf∥2 ⩽ ∥f∥2. ■

Corollary 3.7 Let {Ξj}j∈J be an orthonormal ov-system forH with respect to {Wj}j∈J ,
then for all f ∈ H the series

∑
j∈J Ξ

∗
jΞjf convergent and

∥∥f −
∑
j∈J

Ξ∗
jΞjf

∥∥2 ⩽ ∥∥f −
∑
j∈J

Ξ∗
jgj

∥∥2
for every {gj}j∈J ∈

(∑
j∈J ⊕Wj

)
ℓ2
.

Theorem 3.8 Let Ξ = {Ξj}j∈J be an orthonormal ov-system for H with respect to
{Wj}j∈J . Then the following conditions are equivalent:

(i) Ξ is an orthonormal ov-basis for H with respect to {Wj}j∈J .
(ii) f =

∑
j∈J Ξ

∗
jΞjf ∀f ∈ H.

(iii) ∥f∥2 =
∑

j∈J ∥Ξ∗
jΞjf∥2 ∀f ∈ H.

(iv) ∥f∥2 =
∑

j∈J ∥Ξjf∥2 ∀f ∈ H.

(v) < f, g >=
∑

j∈J < Ξjf,Ξjg > ∀f, g ∈ H.

(vi) If Ξjf = 0 for all j ∈ J , then f = 0.

Proof. The implication (i) ⇒ (ii) follows immediately from Corollary 3.7. To prove
(ii) ⇒ (iii) assume that f ∈ H. Since Ξ is an orthonormal ov-system, hence (Ξ∗

jΞj)
2f =

Ξ∗
jΞjf for all j ∈ J . This yields

∥f∥2 =<
∑
j∈J

Ξ∗
jΞjf, f >=

∑
j∈J

∥Ξ∗
jΞjf∥2,

which implies (iii). The implications (iii) ⇒ (iv) ⇒ (v) are clear. To prove (v) ⇒ (vi)
assume that Ξjf = 0 for all j ∈ J , then we have ∥f∥2 =

∑
j∈J ∥Ξjf∥2 = 0. It follows

that f = 0. To prove (vi) ⇒ (i) suppose that f ⊥ span{Ξ∗
j (Wj)}j∈J , then for every

j ∈ J we have ∥Ξjf∥2 =< f,Ξ∗
jΞjf >= 0 which implies that f = 0. Therefore H =

span{Ξ∗
j (Wj)}j∈J . ■

Theorem 3.9 Let {Ξj}j∈J be an orthonormal ov-basis for H with respect to {Wj}j∈J
and let T : H → U be a bounded linear operator such that Ξ′

j = ΞjT
∗ for all j ∈ J .

Then {Ξ′
j}j∈J is an orthonormal ov-basis for U with respect to {Wj}j∈J if and only if T

is unitary.
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Proof. First suppose that {Ξ′
j}j∈J is an orthonormal ov-basis for H with respect to

{Wj}j∈J . Then by Theorem 3.8 for every g ∈ U we have

∥T ∗g∥2 =
∑
j∈J

∥ΞjT
∗g∥2 =

∑
j∈J

∥Ξ′
jg∥2 = ∥g∥2.

Hence T is co-isometry. We also see from Theorem 2.10 that T is unitary. Now if T is
unitary then we have

∥g∥2 = ∥T ∗g∥2 =
∑
j∈J

∥ΞjT
∗g∥2 =

∑
j∈J

∥Ξ′
jg∥2

for all g ∈ U . From this follows that {Ξ′
j}j∈J is an orthonormal ov-basis for U with

respect to {Wj}j∈J . ■

Corollary 3.10 Let {Ξj}j∈J be an orthonormal ov-basis for H with respect to {Wj}j∈J .
Then the orthonormal ov-bases for H with respect to {Wj}j∈J are precisely the sets
{ΞjT}j∈J , where T : H → H is an unitary operator.

Corollary 3.11 Let {Wj}j∈J be a family of closed subspaces of H such that∑
j∈J

∥πWj
f∥2 = ∥f∥2 ∀f ∈ H,

where πWj
is the orthogonal projections from H onto Wj . Then {πWj

}j∈J is an orthonor-
mal ov-basis for H with respect to {Wj}j∈J .

Proof. For each j ∈ J and gj ∈ Wj we have

∥gj∥2 =
∑
i∈J

∥πWi
gj∥2 = ∥gj∥2 +

∑
i∈J

i ̸=j

∥πWi
gj∥2

which shows that πWi
gj = δijgj . It follows that {πWj

}j∈J is an orthonormal ov-system
for H with respect to {Wj}j∈J . Now the result follows from the Theorem 3.8. ■

In the following, we give some characterizations of Riesz ov-bases in Hilbert spaces.

Definition 3.12 A sequence of operators {Λj ∈ B(H,Wj) : j ∈ J} is called a Riesz
ov-basis for H with respect to {Wj}j∈J if there is an orthonormal ov-basis {Ξj}j∈J for
H with respect to {Wj}j∈J and a bounded invertible linear operator T on H such that
Λj = ΞjT

∗ for all j ∈ J .

Corollary 3.13 If {Λj}j∈J is a Riesz ov-basis for H with respect to {Wj}j∈J . Then

0 < inf
j∈J

∥Λj∥ ⩽ sup
j∈J

∥Λj∥ < ∞.

Proof. According to the definition we can write {Λj}j∈J = {ΞjT
∗}j∈J , where T is a

bounded bijective operator and {Ξj}j∈J is an orthonormal ov-basis. By Corollary 3.2 for
every j ∈ J we have

∥T−1∥−1 ⩽ ∥Λj∥ ⩽ ∥T∥.
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From this the result follows. ■

Theorem 3.14 If {Λj}j∈J = {ΞjT
∗}j∈J is a Riesz ov-basis for H with respect to

{Wj}j∈J . Then { Λj

∥Λj∥}j∈J is also a Riesz ov-basis for H with respect to {Wj}j∈J .

Proof. Define a mapping S : H → H by Sf =
∑

j∈J
Ξ∗

jΞjf

∥Λj∥ . By Theorem 3.8 and

Corollary 3.13 we have

∥T∥−1∥f∥ ⩽ ∥Sf∥ ⩽ ∥T−1∥∥f∥,

which implies that S is bounded and injective. Since S is self-adjoint hence S is invertible.
Moreover, the operator Θ = TS is also bounded, invertible and we have

ΞjΘ
∗ = ΞjST

∗ =
(∑

i∈J

ΞjΞ
∗
iΞi

∥Λj∥

)
T ∗

=
(∑

i∈J

δjiΞi

∥Λj∥

)
T ∗ =

ΞjT
∗

∥Λj∥
=

Λj

∥Λj∥
,

for any j ∈ J . Consequently { Λj

∥Λj∥}j∈J is a Riesz ov-basis for H with respect to {Wj}j∈J .
■

Corollary 3.15 Let {Λj}j∈J be a ov-basis for H with respect to {Wj}j∈J , with dual
ov-basis {Γj}j∈J . Then {Λj}j∈J is a Riesz ov-basis for H with respect to {Wj}j∈J if and
only if {Γj}j∈J is a Riesz ov-basis for H with respect to {Wj}j∈J .

Proof. This follows immediately from the definition and Theorem 2.11. ■

To check Riesz ov-baseness of a family of operators {Λj}j∈J for H with respect to
{Wj}j∈J , we derive the following useful characterization.

Theorem 3.16 Let {Λj}j∈J be a ov-basis for H with respect to {Wj}j∈J , with dual
ov-basis {Γj}j∈J . Then the following conditions are equivalent:

(i) The sequence {Λj}j∈J is a Riesz ov-basis for H with respect to {Wj}j∈J .
(ii) There is an equivalent inner product on H, with respect to which the sequence

{Γj}j∈J becomes an orthonormal ov-basis for H with respect to {Wj}j∈J .

Proof. (i) ⇒ (ii) Assume that {Λj}j∈J is a Riesz ov-basis for H, and write it in the
form {ΞjT

∗}j∈J as in the definition. Define a new inner product < ., . >T on H by

< f, g >T=< T ∗f, T ∗g > ∀f, g ∈ H.

If ∥.∥T is the norm generated by this inner product, then for all f ∈ H we have

∥T−1∥−1∥f∥ ⩽ ∥f∥T ⩽ ∥T∥∥f∥,

which implies that the new inner product is equivalent to the original one. By Theorem
2.11 for any g ∈ K and arbitrary vector gj ∈ Wj , i, j ∈ J we have

< ΓiΓ
∗
jgj , g > =< Γ∗

jgj ,Γ
∗
i g >T=< T ∗Γ∗

jgj , T
∗Γ∗

i g >

=< Ξ∗
jgj ,Ξ

∗
i g >=< ΞiΞ

∗
jgj , g >=< δijgj , g > .
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Now the Corollary 3.15 follows that {Γj}j∈J is an orthonormal ov-basis for H with inner
product < ., . >T with respect to {Wj}j∈J .

(ii) ⇒ (i) Suppose that < ., . >1 is an equivalent inner product on H with respect
to which {Γj}j∈J is an orthonormal ov-basis for H with respect to {Wj}j∈J . Therefore
there exist positive constants m,M such that

m∥f∥ ⩽ ∥f∥1 ⩽ M∥f∥ ∀f ∈ H.

By Theorem 3.5 we obtain

1

M2

∑
j∈F

∥gj∥2 =
1

M2

∥∥∑
j∈F

Γ∗
jgj

∥∥2
1
⩽

∥∥∑
j∈F

Γ∗
jgj

∥∥2
⩽ 1

m2

∥∥∑
j∈F

Γ∗
jgj

∥∥2
1
=

1

m2

∑
j∈F

∥gj∥2,

for any finite subset F ⊂ J and arbitrary vectors gj ∈ Wj . Now let {Ξj}j∈J be an
arbitrary orthonormal ov-basis for H with respect to {Wj}j∈J and define the mapping

T : H → H, with TΞ∗
jgj = Γ∗

jgj ∀gj ∈ Wj , j ∈ J.

Let f ∈ H with f =
∑

j∈J Ξ
∗
jgj , then we have

1

M2
∥f∥2 = 1

M2

∑
j∈J

∥gj∥2 ⩽ ∥T (f)∥2 ⩽ 1

m2

∑
j∈J

∥gj∥2 =
1

m2
∥f∥2.

It follows that T is invertible and TΞ∗
jΞj = Γ∗

jΞj , which from this ΞjT
∗ = Γj holds for

all j ∈ J . Thus {Γj}j∈J is a Riesz ov-basis for H with respect to {Wj}j∈J . From this the
result follows at once. ■

The next theorem was proved by Sun in [3] we prove this theorem with another way.

Theorem 3.17 Let {Λj}j∈J be a sequence of operators for H with respect to {Wj}j∈J ,
then the following conditions are equivalent:

(i) The sequence {Λj}j∈J is a Riesz ov-basis for H with respect to {Wj}j∈J .
(ii) The family {Λj}j∈J is a complete sequence for H with respect to {Wj}j∈J and

there exist positive constants A,B such that for any finite subset F ⊂ J and
arbitrary vectors gj ∈ Wj , we have

A
∑
j∈F

∥gj∥2 ⩽
∥∥∑
j∈F

Λ∗
jgj

∥∥2 ⩽ B
∑
j∈F

∥gj∥2.

Proof. (i) ⇒ (ii) Assume that {Λj}j∈J is a Riesz ov-basis for H, and write it in the
form {ΞjT

∗}j∈J as in the definition. Then for any finite subset F ⊂ J and arbitrary
vectors gj ∈ Wj we have

1

∥T−1∥2
∑
j∈F

∥gj∥2 =
1

∥T−1∥2
∥∥∑
j∈F

Ξ∗
jgj

∥∥2 ⩽ ∥∥∑
j∈F

Λ∗
jgj

∥∥2 ⩽ ∥T∥2
∑
j∈F

∥gj∥2.
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(ii) ⇒ (i) Let {Ξj}j∈J be an arbitrary orthonormal ov-basis for H with respect to
{Wj}j∈J and define the mapping

T : H → H, with TΞ∗
jgj = Λ∗

jgj ∀gj ∈ Wj , j ∈ J.

Suppose that f ∈ H with f =
∑

j∈J Ξ
∗
jgj , then we have

A∥f∥2 = A
∑
j∈J

∥gj∥2 ⩽ ∥T (f)∥2 ⩽ B
∑
j∈J

∥gj∥2 = B∥f∥2.

From this and completeness of {Λj}j∈J follows that T is invertible and TΞ∗
jΞj = Λ∗Ξj ,

which implies that ΞjT
∗ = Λj for all j ∈ J . ■

Let Λ = {Λj}j∈J be a ov-basis for H with respect to {Wj}j∈J . If f =
∑

j∈J Λ
∗
jgj , then

the coordinate representation of f ∈ H relative to the ov-basis Λ is [f ]Λ = {gj}j∈J .
Let Ξ = {Ξj}j∈J ,Ξ′ = {Ξ′

i}i∈I be orthonormal ov-bases for H and U respectively.
Then the matrix representation of the linear map T : H → U relative to the orthonormal
ov-bases Ξ,Ξ′ is the matrix [T ] = {Tij}i∈I,j∈J whose (i, j) entry is Tij = Ξ′

iTΞ
∗
j for all

i ∈ I, j ∈ J . For any f ∈ H we also have

[Tf ]Ξ′ = [T ][f ]Ξ.

Moreover, if S, T are linear maps on H represented by matrices [S], [T ] respectively, then
S+T and ST is represented by the matrices [S] + [T ] and [S][T ] respectively. Further T
is a invertible operator if and only if [T ] is invertible.

Let Λ = {Λj}j∈J = {ΞjT
∗}j∈J be a Riesz ov-basis for H with respect to {Wj}j∈J .

Then the analysis operator ΘΛ of Λ is defined by

ΘΛ : H →
(∑
j∈J

⊕Wj

)
ℓ2

with ΘΛf = {Λjf}j∈J ∀f ∈ H.

It can easily be shown that ΘΛ is linear, bounded and ∥ΘΛ∥ ⩽ ∥T∥. The synthesis
operator Θ∗

Λ which is the adjoint operator of ΘΛ is given by

Θ∗
Λ :

(∑
j∈J

⊕Wj

)
ℓ2
→ H with Θ∗

Λg =
∑
j∈J

Λ∗
jgj ∀g = {gj}j∈J ∈

(∑
j∈J

⊕Wj

)
ℓ2
.

Example 3.18 For every sequence of closed subspaces {Wj}j∈J of K the sequence
{Ξj}j∈J defined by

Ξjg = gj ∀j ∈ J, g = {gj}j∈J ∈
(∑
j∈J

⊕Wj

)
ℓ2

is an orthonormal ov-basis for
(∑

j∈J ⊕Wj

)
ℓ2

with respect to {Wj}j∈J which is called
the standard orthonormal ov-basis of it.

Let Λ = {Λj}j∈J be a Riesz ov-basis for H with respect to {Wj}j∈J . Then the matrix
representing of the linear operator ΘΛΘ

∗
Λ relative to the standard orthonormal ov-basis

of
(∑

j∈J ⊕Wj

)
ℓ2
is the matrix [ΘΛΘ

∗
Λ] = {ΛiΛ

∗
j}i∈I,j∈J which is called the Gram matrix

associated with Λ.
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Theorem 3.19 Let {Λj}j∈J be a sequence of operators for H with respect to {Wj}j∈J ,
then the following conditions are equivalent:

(i) The sequence {Λj}j∈J is a Riesz ov-basis for H with respect to {Wj}j∈J .
(ii) The family {Λj}j∈J is complete sequence for H with respect to {Wj}j∈J

and its Gram matrix {ΛiΛ
∗
j}i∈I,j∈J defines a bounded, invertible operator on(∑

j∈J ⊕Wj

)
ℓ2
.

Proof. (i) ⇒ (ii) Assume that {Λj}j∈J = {ΞjT
∗}j∈J is a Riesz ov-basis for H with

respect to {Wj}j∈J . If G = {Gij}i,j∈J denotes the matrix of the invertible operator T ∗T
relative to {Ξj}j∈J , then

Gij = ΞiT
∗TΞ∗

j = ΛiΛ
∗
j .

Therefore the Gram matrix of {Λj}j∈J is G.
(ii) ⇒ (i) Suppose that Gram matrix of {Λj}j∈J defines a bounded, invertible operator

on
(∑

j∈J ⊕Wj

)
ℓ2
. Let {Ξj}j∈J be an arbitrary orthonormal ov-basis for H with respect

to {Wj}j∈J and define the mapping

T : H → H, with TΞ∗
jgj =

∑
i∈J

Ξ∗
iΛiΛ

∗
jgj ∀gj ∈ Wj , j ∈ J.

It is straightforward that T is linear, bounded and invertible. Suppose that f ∈ H with
f =

∑
j∈J Ξ

∗
jgj , then we have

< Tf, f > =
∑
j∈J

∑
i∈J

< TΞ∗
jgj ,Ξ

∗
i gi >=

∑
j∈J

∑
i∈J

∑
k∈J

< ΞiΞ
∗
kΛkΛ

∗
jgj , gi >

=
∑
j∈J

∑
i∈J

< ΛiΛ
∗
jgj , gi >=

∥∥∑
j∈J

Λ∗
jgj

∥∥2.
Thus T is positive and self-adjoint. Since T is positive, it has a unique positive square-
root. Let P denote the square-root of T , then the above calculation follows that

1

∥T−1∥
∑
j∈J

∥gj∥2 ⩽
∥∥∑

j∈J
Λ∗
jgj

∥∥2 = ∥∥P (∑
j∈J

Ξ∗
jgj

)∥∥2 ⩽ ∥T∥2
∑
j∈J

∥gj∥2.

Now the result follows from Theorem 3.17. ■

4. Stability of ov-bases under perturbations

Stability of bases is important in practice and is therefore studied widely by many
authors, e.g., see [4]. In this section we study the stability of ov-bases for a Hilbert space
H. First we generalized a result of Paley-Wiener [4] to the situation of ov-basis.

Theorem 4.1 Let {Λj}j∈J be a ov-basis for H with respect to {Wj}j∈J and let {Γj}j∈J
be a sequence of operators for H with respect to {Wj}j∈J such that∥∥∑

j∈F
(Λ∗

jgj − Γ∗
jgj)

∥∥ ⩽ λ
∥∥∑
j∈F

Λ∗
jgj

∥∥
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for some constant 0 ⩽ λ < 1 and each finite subset F ⊂ J and arbitrary vectors gj ∈ Wj .
Then {Γj}j∈J is a ov-basis for H with respect to {Wj}j∈J .

Proof. By assumption the series
∑

j∈J(Λ
∗
jgj − Γ∗

jgj) is convergent whenever the series∑
j∈J Λ

∗
jgj is convergent for all arbitrary vectors gj ∈ Wj . If we define the mapping

T : H → H, with TΛ∗
jgj = Λ∗

jgj − Γ∗
jgj ∀gj ∈ Wj , j ∈ J.

Then T is a bounded operator and ∥T∥ ⩽ λ < 1. Thus the operator IdH−T is invertible
and we have (IdH − T )Λ∗

jΛj = Γ∗
jΛj , consequently Λ∗

jΛj(IdH − T ∗) = Λ∗
jΓj . Since Λ∗

j is
one-to-one on Wj , thus Λj(IdH − T ∗) = Γj . Now the conclusion follows from Theorem
2.8. ■

Corollary 4.2 Let {Λj}j∈J be a ov-basis for H with respect to {Wj}j∈J , with dual ov-
basis {Ψj}j∈J and let {Γj}j∈J be a sequence of operators for H with respect to {Wj}j∈J
such that ∑

j∈J
∥Λj − Γj∥∥Ψj∥ < 1.

Then {Γj}j∈J is a ov-basis for H with respect to {Wj}j∈J .

Proof. If λ =
∑

j∈J ∥Λj − Γj∥∥Ψj∥, then 0 ⩽ λ < 1. Fix F ⊂ J with |F | < ∞ and let

f =
∑

j∈F Λ∗
jgj for arbitrary vectors gj ∈ Wj . Then we compute

∥∥∑
j∈F

(Λ∗
jgj − Γ∗

jgj)
∥∥ =

∥∥∑
j∈F

(Λ∗
j − Γ∗

j )Ψjf
∥∥

⩽
∑
j∈F

∥(Λ∗
j − Γ∗

j )Ψjf∥

⩽
∑
j∈J

∥Λj − Γj∥∥Ψj∥∥f∥ = λ
∥∥∑
j∈F

Λ∗
jgj

∥∥.
From this the result follows by Theorem 4.1. ■

In the following we generalized a result of Krein-Milman-Rutman [4] to the situation
of ov-basis.

Theorem 4.3 Let {Λj}j∈J be a ov-basis for H with respect to {Wj}j∈J and let {Γj}j∈J
be a sequence of operators for H with respect to {Wj}j∈J . If there exists a sequence
{εj}j∈J of positive numbers, such that ∥Λj − Γj∥ < εj for all j ∈ J . Then {Γj}j∈J is a
ov-basis for H with respect to {Wj}j∈J .

Proof. If {Ψj}j∈J is the dual ov-basis of {Λj}j∈J . Then the result follows from Corollary
4.2, to choose εj small enough such that

∑
j∈J εj∥Ψj∥ < 1. ■
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