Journal of Linear and Topological Algebra Vol. 02, No. 04, 2013, 201-218

Operator-valued bases on Hilbert spaces

M. S. Asgari^{*}

Department of Mathematics, Islamic Azad University, Central Tehran Branch, PO. Code 13185-768, Tehran, Iran.

Received 11 July 2013; revised 12 December 2013; accepted 25 December 2013.

Abstract. In this paper we develop a natural generalization of Schauder basis theory, we term operator-valued basis or simply *ov*-basis theory, using operator-algebraic methods. We prove several results for *ov*-basis concerning duality, orthogonality, biorthogonality and minimality. We prove that the operators of a dual *ov*-basis are continuous. We also define the concepts of Bessel, Hilbert *ov*-basis and obtain some characterizations of them. We study orthonormal and Riesz *ov*-bases for Hilbert spaces. Finally we consider the stability of *ov*-bases under small perturbations. We generalize a result of Paley-Wiener [4] to the situation of *ov*-basis.

 \bigodot 2013 IAUCTB. All rights reserved.

Keywords: *ov*-bases; dual *ov*-bases; Bessel *ov*-bases; Hilbert *ov*-bases; *ov*-biorthogonal sequence.

2010 AMS Subject Classification: Primary 41A58; Secondary 42C15.

1. Introduction

Throughout this paper, \mathcal{H}, \mathcal{K} are separable Hilbert spaces and I, J, J_j denote the countable (or finite) index sets and $\{W_j\}_j$ is a sequence of closed subspaces of \mathcal{K} and $B(\mathcal{H}, W_j)$ denote the collection of all bounded linear operators from \mathcal{H} into W_j and $\Lambda_j \in B(\mathcal{H}, W_j)$ for all $j \in J$. Also \mathcal{R}_T and \mathcal{N}_T denote the range and null spaces of an operator $T \in B(\mathcal{H}, \mathcal{K})$ respectively. Recently, W. Sun [3] introduced a generalized frame and a generalized Riesz basis for a Hilbert space and discussed some properties of them. In this paper we introduce the concept of the operator-valued basis and then we redefined the concepts of the orthonormal operator-valued basis and operator-valued Riesz basis

^{*}Corresponding author.

E-mail address: moh.asgari@iauctb.ac.ir (M. S. Asgari).

for a Hilbert space. we develop the basis theory to the situation of operator-valued basis theory in Hilbert spaces.

Definition 1.1 Let $\Lambda_j \in B(\mathcal{H}, W_j)$ be an onto operator for all $j \in J$. Then the family $\Lambda = {\Lambda_j}_{j \in J}$ is called an operator-valued basis or simply *ov*-basis for \mathcal{H} with respect to ${\{W_j\}_{j \in J}}$, if for any $f \in \mathcal{H}$ there exists an unique sequence ${\{g_j : g_j \in W_j\}_{j \in J}}$ such that

$$f = \sum_{j \in J} \Lambda_j^* g_j, \tag{1}$$

with the convergence being in norm. If series (1) is unconditionally convergent, Λ is called an unconditional *ov*-basis. We call this family an *ov*-basis for \mathcal{H} with respect to \mathcal{K} if $W_j = \mathcal{K}$ for all $j \in J$.

Theorem 1.2 Let $\{\Lambda_j\}_{j\in J}$ be an *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$. Then

$$\dim \mathcal{H} = \sum_{j \in J} \dim W_j$$

Proof. Let $\{e_{ij}\}_{i \in J_j}$ be an orthonormal basis for W_j for all $j \in J$. We show that $\{\Lambda_j^* e_{ij}\}_{j \in J, i \in J_j}$ is a basis for \mathcal{H} . Since $\{e_{ij}\}_{i \in J_j}$ is an orthonormal basis for W_j , hence every $g_j \in W_j$ has a unique expansion of the form $g_j = \sum_{i \in J_j} \langle g_j, e_{ij} \rangle \langle e_{ij} \rangle$. This implies that also every $f \in \mathcal{H}$ has a unique expansion of the form

$$f = \sum_{j \in J} \sum_{i \in J_j} \langle g_j, e_{ij} \rangle \Lambda_j^* e_{ij}.$$

This shows that $\dim \mathcal{H} = \sum_{j \in J} \dim W_j$.

Corollary 1.3 Let $\{\Lambda_j\}_{j\in J}, \{\Gamma_i\}_{i\in I}$ be *ov*-bases for \mathcal{H} with respect to $\{W_j\}_{j\in J}, \{V_i\}_{i\in I}$ respectively. Then $\sum_{j\in J} \dim W_j = \sum_{i\in I} \dim V_i$.

2. Characterizations of *ov*-bases

Let $\Lambda = {\Lambda_j}_{j \in J}$ be a *ov*-basis for \mathcal{H} with respect to ${W_j}_{j \in J}$, then every $f \in \mathcal{H}$ has a unique expansion of the form $f = \sum_{j \in J} \Lambda_j^* g_j$. It is clear that each $g_j \in W_j$ is a linear operator of f. If we denote this linear operator by $\Gamma_j : \mathcal{H} \to W_j$, then $g_j = \Gamma_j f$, and we have $f = \sum_{j \in J} \Lambda_j^* \Gamma_j f$. The sequence ${\Gamma_j}_{j \in J}$ is called the dual *ov*-basis of Λ . In the next theorem we show that the operators of a dual *ov*-basis are continuous.

Theorem 2.1 Let $\Lambda = {\Lambda_j}_{j \in J}$ be a *ov*-basis for \mathcal{H} with respect to ${W_j}_{j \in J}$, and let ${\Gamma_j}_{j \in J}$ be the dual *ov*-basis of Λ , then $\Gamma_j \in B(\mathcal{H}, W_j)$, for all $j \in J$. Moreover, if $\Gamma_j \neq 0$ for some $j \in J$, then $\|\Gamma_j\| \|\Lambda_j\| \ge 1$.

Proof. Define the space

$$\mathcal{A} = \Big\{ \{g_j\}_{j \in J} | g_j \in W_j, \ \sum_{j \in J} \Lambda_j^* g_j \text{ is convergent} \Big\},\$$

with the norm defined by

$$\left\|\{g_j\}_{j\in J}\right\| = \sup_{0 < |F| < \infty \atop F \subseteq J} \left\|\sum_{i\in F} \Lambda_i^* g_i\right\| < \infty.$$

It is clear that \mathcal{A} endowed with this norm, is a normed space with respect to the pointwise operations. We will show that the space \mathcal{A} is a complete. Let $\{u_n\}_{n\in\mathbb{N}}$ be a Cauchy sequence in \mathcal{A} . If $u_n = \{g_{nj}\}_{j\in J}$, then given any $\varepsilon > 0$, there exists a number N such that

$$\sup_{\substack{0 < |F| < \infty \\ F \subseteq J}} \left\| \sum_{i \in F} (\Lambda_i^* g_{ni} - \Lambda_i^* g_{mi}) \right\| < \varepsilon$$
(2)

for all $m, n \ge N$. Now for all $j \in J$ and $m, n \ge N$ we have

$$\|\Lambda_j^* g_{nj} - \Lambda_j^* g_{mj}\| \leqslant \sup_{0 < |F| < \infty \atop F \subseteq J} \left\| \sum_{i \in F} (\Lambda_i^* g_{ni} - \Lambda_i^* g_{mi}) \right\| < \varepsilon.$$

This shows that $\{\Lambda_j^* g_{nj}\}_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathcal{H} . Since Λ_j is onto hence by Theorem 4.13 of [2] the sequence $\{g_{nj}\}_{n \in \mathbb{N}}$ is a Cauchy sequence in W_j and thus convergent. Let $g_j \in W_j$ such that $g_j = \lim_{n \to \infty} g_{nj}$ and $u = \{g_j\}_{j \in J}$. From (2), by letting $m \to \infty$, we obtain

$$\sup_{\substack{0 < |F| < \infty \\ F \subseteq J}} \left\| \sum_{i \in F} (\Lambda_i^* g_{ni} - \Lambda_i^* g_i) \right\| \leq \varepsilon$$
(3)

for all $n \ge N$. Since for all finite non-empty subset $F \subset J$ we have

$$\left\|\sum_{i\in J-F}\Lambda_{i}^{*}g_{i}\right\| \leq \left\|\sum_{i\in J-F}\left(\Lambda_{i}^{*}g_{Ni}-\Lambda_{i}^{*}g_{i}\right)\right\|+\left\|\sum_{i\in J-F}\Lambda_{i}^{*}g_{Ni}\right\|$$
$$\leq \sup_{0<|F|<\infty\atop F\subseteq J}\left\|\sum_{i\in F}\left(\Lambda_{i}^{*}g_{Ni}-\Lambda_{i}^{*}g_{i}\right)\right\|+\sup_{0<|F|<\infty\atop F\subseteq J}\left\|\sum_{i\in F}\Lambda_{i}^{*}g_{Ni}\right\|$$

thus $u \in \mathcal{A}$. Moreover (3) implies that the sequence $\{u_n\}_{n \in \mathbb{N}}$ is convergent to u in \mathcal{A} . Therefore \mathcal{A} is a Banach space. Define the mapping

$$T: \mathcal{A} \to \mathcal{H}$$
 with $T(\{g_j\}_{j \in J}) = \sum_{j \in J} \Lambda_j^* g_j$

Since Λ is a g-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ hence T is linear, one-to-one and onto. On the other hand, since

$$\|T(\{g_j\}_{j\in J})\| = \left\|\sum_{j\in J} \Lambda_j^* g_j\right\| \le \sup_{\substack{0 < |F| < \infty \\ F \subseteq J}} \left\|\sum_{i\in F} \Lambda_i^* g_i\right\| = \|\{g_j\}_{j\in J}\|.$$

Thus T is continuous and the open mapping theorem then guarantees that T^{-1} is also continuous. This shows that \mathcal{A} and \mathcal{H} are Banach spaces isomorphic. Now suppose that $f = \sum_{j \in J} \Lambda_j^* g_j$ is a fixed, arbitrary element of \mathcal{H} and let $j \in J$. Since Λ_j is onto thus by Theorem 4.13 of [2] there is a $m_j > 0$ such that $m_j ||g|| \leq ||\Lambda_j^* g||$ for all $g \in W_j$. Moreover, we have

$$\|\Gamma_j f\| = \|g_j\| \leqslant \frac{\|\Lambda_j^* g_j\|}{m_j} \leqslant \frac{\sup_{0 \le |F| \le \infty} \left\|\sum_{i \in F} \Lambda_i^* g_i\right\|}{m_j} = \frac{2\|T^{-1}f\|}{m_j} \leqslant \frac{2\|T^{-1}\|\|f\|}{m_j}.$$

This shows that each Γ_j is continuous and $\|\Gamma_j\| \leq \frac{2\|T^{-1}\|}{m_j}$. For the remaining inequality assume that $0 \neq g_j = \Gamma_j f$ for some $f \in \mathcal{H}$, then we have

$$\|g_j\| = \|\Gamma_j \Lambda_j^* g_j\| \leqslant \|\Gamma_j\| \|\Lambda_j\| \|g_j\|,$$

which implies that $\|\Gamma_j\| \|\Lambda_j\| \ge 1$.

Let $\{\Lambda_j\}_{j\in J}$ be a *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ and let $\{\Gamma_j\}_{j\in J}$ be the dual *ov*-basis of $\{\Lambda_j\}_{j\in J}$. Then *F*-partial sum operator of $\{\Lambda_j\}_{j\in J}$ defined by

$$S_F: \mathcal{H} \to \mathcal{H} \quad \text{with} \quad S_F f = \sum_{j \in F} \Lambda_j^* \Gamma_j f,$$

for all finite subset $F \subset J$. By Theorem 2.1, S_F is a bounded operator and

$$1 \leqslant \sup_{\substack{0 < |F| < \infty \\ F \subset J}} \|S_F\| < \infty.$$

$$\tag{4}$$

A family of operators $\{\Lambda_j \in B(\mathcal{H}, W_j) : j \in J\}$ is called a complete sequence for \mathcal{H} with respect to $\{W_j\}_{j \in J}$, if $\mathcal{H} = \overline{\operatorname{span}}\{\Lambda_j^*(W_j)\}_{j \in J}$. It is easy to check that $\{\Lambda_j\}_{j \in J}$ is a complete sequence for \mathcal{H} with respect to $\{W_j\}_{j \in J}$, if and only if $\{f : \Lambda_j f = 0, j \in J\} = \{0\}$.

Theorem 2.2 Let $\{\Lambda_j\}_{j\in J}$ be a complete sequence for \mathcal{H} with respect to $\{W_j\}_{j\in J}$. Then $\{\Lambda_j\}_{j\in J}$ is a *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ if and only if there exists a constant M such that

$$\left\|\sum_{i\in F}\Lambda_i^*g_i\right\| \leqslant M \left\|\sum_{i\in G}\Lambda_i^*g_i\right\|$$
(5)

for all finite subsets $F \subset G \subset J$ and arbitrary vectors $g_j \in W_j, j \in G$.

Proof. First suppose that $\{\Lambda_j\}_{j\in J}$ is a *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ and let $M = \sup_{\substack{0 < |F| < \infty \\ F \subseteq J}} ||S_F||$, then for all finite subsets $F \subset G \subset J$ and arbitrary vectors $g_j \in W_j$ we have

$$\left\|\sum_{j\in F}\Lambda_j^*g_j\right\| = \left\|S_F\left(\sum_{j\in G}\Lambda_j^*g_j\right)\right\| \leqslant M\left\|\sum_{j\in G}\Lambda_j^*g_j\right\|.$$

To prove the opposite implication take $f \in \mathcal{H}$. By hypothesis, there exist finite subsets $F_n \subset F_{n+1} \subset J$ and vectors $g_{nj} \in W_j$ for all $n \in \mathbb{N}, j \in F_n$ such that $f = \lim_{n\to\infty} \sum_{j\in F_n} \Lambda_j^* g_{nj}$. For notational convenience, put $g_{nj} = 0$ for $j \notin F_n$, then for every m > n and $j \in F_n$ we have

$$\begin{split} \|\Lambda_j^*(g_{nj} - g_{mj})\| &\leq M \Big\| \sum_{i \in F_n} \Lambda_i^*(g_{ni} - g_{mi}) \Big\| \\ &\leq M^2 \Big\| \sum_{i \in F_m} \Lambda_i^*(g_{ni} - g_{mi}) \Big\| \\ &= M^2 \Big\| \sum_{i \in F_n} \Lambda_i^* g_{ni} - \sum_{i \in F_m} \Lambda_i^* g_{mi} \Big\| \to 0 \quad (n \to \infty). \end{split}$$

This shows that $\{\Lambda_j^* g_{nj}\}_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathcal{H} . Since Λ_j is onto hence by Theorem 4.13 [2] the sequence $\{g_{nj}\}_{n \in \mathbb{N}}$ is a Cauchy sequence in W_j and thus convergent. Let $g_j \in W_j$ such that $g_j = \lim_{n \to \infty} g_{nj}$, then $f = \sum_{j \in J} \Lambda_j^* g_j$. Now we show that this representation is unique. If $\sum_{j \in J} \Lambda_j^* g_j = 0$, then for any finite subset $F \subset J$ and $j \in F$ we have

$$\|\Lambda_j^* g_j\| \leqslant M \Big\| \sum_{i \in F} \Lambda_i^* g_i \Big\| \to 0.$$

This shows that $\|\Lambda_j^* g_j\| = 0$. Since Λ_j^* is one-to-one on W_j , hence $g_j = 0$ which this completes the proof.

Corollary 2.3 Let $\{\Lambda_j\}_{j\in J}$ be a *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$, with dual *ov*-basis $\{\Gamma_j\}_{j\in J}$. Then $\{\Gamma_j\}_{j\in J}$ is a *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ and

$$f = \sum_{j \in J} \Gamma_j^* \Lambda_j f \qquad \forall f \in \mathcal{H}$$

Proof. First we prove that $\mathcal{H} = \overline{\operatorname{span}}\{\Gamma_j^*(W_j)\}_{j \in J}$. To see this, let $f \perp \overline{\operatorname{span}}\{\Gamma_j^*(W_j)\}_{j \in J}$. Then

$$\|\Gamma_j f\|^2 = < f, \Gamma_j^* \Gamma_j f > = 0,$$

which implies that $\Gamma_j f = 0$ for all $j \in J$. We also have

$$f = \sum_{j \in J} \Lambda_j^* \Gamma_j f = 0$$

Thus $\mathcal{H} = \overline{\operatorname{span}} \{\Gamma_j^*(W_j)\}_{j \in J}$. We now prove that $\{\Gamma_j\}_{j \in J}$ is a *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j \in J}$. For this, we show that $S_F^* f \to f$ for all $f \in \mathcal{H}$. First assume that f is a finite linear combination of $\{\Gamma_j^* g_j : g_j \in W_j, j \in J\}$, say $f = \sum_{j \in G} \Gamma_j^* g_j$ and let $F \supseteq G$ be a finite arbitrary set. Then by hypothesis for any $i, j \in J$ we have $\Gamma_j \Lambda_i^* \Gamma_i = \delta_{ij} \Gamma_i$ hence $\Gamma_i^* \Lambda_i \Gamma_j^* = \delta_{ij} \Gamma_i^*$. It follows that

$$S_F^*f = \sum_{j \in G} S_F^* \Gamma_j^* g_j = \sum_{j \in G} \sum_{i \in F} \Gamma_i^* \Lambda_i \Gamma_j^* g_j = \sum_{j \in G} \Gamma_j^* g_j = f.$$

Now if $f \in \mathcal{H}$, then given $\varepsilon > 0$ we can find $g = \sum_{j \in G} \Gamma_j^* g_j$ such that $||f - g|| < \frac{\varepsilon}{M+1}$,

where $M = \sup_{\substack{0 < |F| < \infty \\ F \subseteq J}} ||S_F||$. We also have

$$||S_F^*f - f|| \leq ||S_F^*f - S_F^*g|| + ||g - f|| \leq (||S_F|| + 1)||f - g|| < \varepsilon$$

for every finite set $F \supseteq G$. Thus every $f \in \mathcal{H}$ has at least one representation of the form $f = \sum_{j \in J} \Gamma_j^* \Lambda_j f$. We show that this representation is unique. Assume that $\sum_{j \in J} \Gamma_j^* g_j = 0$ then by hypothesis for any $i, j \in J$ we have $\Gamma_j \Lambda_i^* \Lambda_i = \delta_{ij} \Lambda_i$ thus $\Lambda_i^* \Lambda_i \Gamma_j^* = \delta_{ij} \Lambda_i^*$. It follows that

$$\Lambda_i^* g_i = \Lambda_i^* \Lambda_i \Big(\sum_{j \in J} \Gamma_j^* g_j \Big) = 0.$$

Since Λ_i^* is one-to-one on W_i , therefore $g_i = 0$ for all $i \in J$. This completes the proof. **Definition 2.4** Let $\{\Lambda_j\}_{j\in J}$ and $\{\Gamma_j\}_{j\in J}$ be sequences of operators for \mathcal{H} with respect to $\{W_j\}_{j\in J}$.

- (i) Let Λ_j be onto for all $j \in J$, then $\{\Gamma_j\}_{j \in J}$ is called a *ov*-biorthogonal sequence of $\{\Lambda_j\}_{j \in J}$, if $\Gamma_i \Lambda_j^* g_j = \delta_{ij} g_j$ for all $i, j \in J$, $g_j \in W_j$.
- (*ii*) $\{\Lambda_j\}_{j\in J}$ is called minimal, if for each $j\in J$

$$\Lambda_j^*(W_j) \cap \overline{\operatorname{span}}\{\Lambda_k^*(W_k)\}_{k \in J, \atop k \neq j} = \{0\}$$

(*iii*) We say that $\{\Lambda_j\}_{j\in J}$ is ω -independent if whenever $\sum_{j\in J} \Lambda_j^* g_j = 0$ for some sequence $\{g_j: g_j \in W_j\}_{j\in J}$, then necessarily $g_k = 0$ for all $k \in J$.

Since $\Lambda_j^* \Lambda_j \Gamma_i^* = \delta_{ij} \Lambda_j^*$ for all $i, j \in J$ and Λ_j^* is one-to-one on W_j hence if $\{\Gamma_j\}_{j \in J}$ is a *ov*-biorthogonal sequence of $\{\Lambda_j\}_{j \in J}$, then $\{\Lambda_j\}_{j \in J}$ is also a *ov*-biorthogonal sequence of $\{\Gamma_j\}_{j \in J}$.

Proposition 2.5 Let $\{\Lambda_j\}_{j\in J}$ be a sequence of operators for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ and let Λ_j be onto for all $j \in J$, then $\{\Lambda_j\}_{j\in J}$ is minimal if and only if it is ω -independent.

Proof. First assume that $\{\Lambda_j\}_{j\in J}$ is not ω -independent, then there is a sequence $\{g_j : g_j \in W_j\}_{j\in J}$ with $g_k \neq 0$ for some $k \in J$, such that $\sum_{j\in J} \Lambda_j^* g_j = 0$. It follows $\Lambda_k^* g_k = \sum_{\substack{j\in J, \ j\neq k}} \Lambda_j^* (-g_j)$ which implies that $\Lambda_k^* g_k \in \overline{\operatorname{span}}\{\Lambda_j^* (W_j)\}_{j\in J}$. That is, $\{\Lambda_j\}_{j\in J}$ is not minimal. The other implication is obvious.

Proposition 2.6 Every *ov*-basis for a Hilbert space possesses a unique *ov*-biorthogonal sequence.

Proof. By definition, the dual *ov*-basis of a *ov*-basis is a *ov*-biorthogonal sequence of it. Moreover, if $\{\Gamma_j\}_{j\in J}$ and $\{\Psi_j\}_{j\in J}$ be *ov*-biorthogonal sequences of *ov*-basis $\{\Lambda_j\}_{j\in J}$, then for all $f \in \mathcal{H}$ and $i, j \in J$ we have $\Psi_i \Lambda_i^* \Gamma_j f = \delta_{ij} \Gamma_j f$, which implies that

$$\Lambda_i^* \Psi_i f = \sum_{j \in J} \Lambda_i^* \Psi_i \Lambda_j^* \Gamma_j f = \sum_{j \in J} \delta_{ij} \Lambda_i^* \Gamma_j f = \Lambda_i^* \Gamma_i f.$$

Since Λ_i^* is one-to-one on W_i , hence $\Gamma_i = \Psi_i$.

Proposition 2.7 Let $\{\Lambda_j\}_{j\in J}$ be a sequence of operators for \mathcal{H} with respect to $\{W_j\}_{j\in J}$, and let Λ_j be onto for all $j \in J$. Then

- (i) $\{\Lambda_i\}_{i \in J}$ has a *ov*-biorthogonal sequence, if and only if $\{\Lambda_i\}_{i \in J}$ is minimal.
- (*ii*) The *ov*-biorthogonal sequence of $\{\Lambda_j\}_{j\in J}$ is unique if and only if $\{\Lambda_j\}_{j\in J}$ is complete.

Proof. For the proof (i) suppose that $\{\Gamma_j\}_{j\in J}$ is a *ov*-biorthogonal sequence of $\{\Lambda_j\}_{j\in J}$, and let $f \in \Lambda_k^*(W_k) \cap \overline{\operatorname{span}}\{\Lambda_j^*(W_j)\}_{j\in J}$ for any given $k \in J$. Then there exists a sequence $\{g_j: g_j \in W_j\}_{j\in J}$ such that $f = \Lambda_k^* g_k = \sum_{j\in J, j\neq k} \Lambda_j^* g_j$. We also have

$$g_k = \Gamma_k \Lambda_k^* g_k = \sum_{j \in J, \ j \neq k} \Gamma_k \Lambda_j^* g_j = \sum_{j \in J, \ j \neq k} \delta_{kj} g_j = 0,$$

which implies that f = 0. That is, $\{\Lambda_j\}_{j \in J}$ is minimal. For the opposite implication in (i), suppose that $\{\Lambda_j\}_{j \in J}$ is minimal, and let $\mathcal{H}_0 = \overline{\operatorname{span}}\{\Lambda_j^*(W_j)\}_{j \in J}$. From Proposition 2.5 it follows that $\{\Lambda_j\}_{j \in J}$ is a *ov*-basis for \mathcal{H}_0 with respect to $\{W_j\}_{j \in J}$. Let $\{\Gamma'_j\}_{j \in J}$ be dual *ov*-basis of $\{\Lambda_j\}_{j \in J}$. If we define $\Gamma_j = \Gamma'_j P$ for all $j \in J$, where P is the orthogonal projection from \mathcal{H} onto \mathcal{H}_0 . Then $\{\Gamma_j\}_{j \in J}$ is a *ov*-biorthogonal sequence for $\{\Lambda_j\}_{j \in J}$.

(*ii*) Let $\{\Gamma_j\}_{j\in J}$ be a *ov*-biorthogonal sequence of $\{\Lambda_j\}_{j\in J}$. If $\{\Lambda_j\}_{j\in J}$ is not complete, then the sequence $\{\Psi_j\}_{j\in J}$ defined by $\Psi_j = \Gamma_j + \Lambda_j(Id_{\mathcal{H}} - P)$ for all $j \in J$ is a *ov*biorthogonal sequence for $\{\Lambda_j\}_{j\in J}$. For the other implication in (*ii*), assume that $\{\Lambda_j\}_{j\in J}$ is complete. If $\sum_{j\in J} \Lambda_j^* g_j = 0$ for any given sequence $\{g_j : g_j \in W_j\}_{j\in J}$, then for every $k \in J$ we have

$$g_k = \sum_{j \in J} \delta_{kj} g_j = \sum_{j \in J} \Gamma_k \Lambda_j^* g_j = \Gamma_k (\sum_{j \in J} \Lambda_j^* g_j) = 0.$$

This shows that $\{\Lambda_j\}_{j\in J}$ is a *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$. Now the conclusion follows from Proposition 2.6.

Theorem 2.8 Let $\{\Lambda_j\}_{j\in J}$ be a *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ and let $T : \mathcal{H} \to \mathcal{U}$ be a bounded linear operator such that $\Gamma_j = \Lambda_j T^*$ for all $j \in J$. Then $\{\Gamma_j\}_{j\in J}$ is a *ov*-basis for \mathcal{U} with respect to $\{W_j\}_{j\in J}$ if and only if T is invertible.

Proof. Let T be invertible and let $g \in \mathcal{U}$, then we can write g = Tf for some $f \in \mathcal{H}$. Since $\{\Lambda_j\}_{j \in J}$ is a *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j \in J}$ hence $f \in \mathcal{H}$ has an unique expansion of the form $f = \sum_{j \in J} \Lambda_j^* g_j$ where $g_j \in W_j$ for all $j \in J$. It follows that

$$g = Tf = \sum_{j \in J} T\Lambda_j^* g_j = \sum_{j \in J} \Gamma_j^* g_j$$

which implies that $\{\Gamma_j\}_{j\in J}$ is a *ov*-basis for \mathcal{U} with respect to $\{W_j\}_{j\in J}$. Now we assume $\{\Lambda_j\}_{j\in J}$ and $\{\Gamma_j\}_{j\in J}$ are *ov*-bases for \mathcal{H} and \mathcal{U} with respect to $\{W_j\}_{j\in J}$ respectively. Since for every sequence $\{g_j : g_j \in W_j\}_{j\in J}$ we have $T(\sum_{j\in J}\Lambda_j^*g_j) = \sum_{j\in J}\Gamma_j^*g_j$. Therefore T is invertible.

Definition 2.9 Let $\{\Lambda_j\}_{j\in J}$ and $\{\Gamma_j\}_{j\in J}$ be *ov*-bases for \mathcal{H} and \mathcal{U} with respect to $\{W_j\}_{j\in J}$ respectively. Then $\{\Lambda_j\}_{j\in J}$ and $\{\Gamma_j\}_{j\in J}$ are said to be equivalent if for any given sequence $\{g_j: g_j \in W_j\}_{j\in J}$ the series $\sum_{j\in J} \Lambda_j^* g_j$ is convergent if and only if the series $\sum_{j\in J} \Gamma_j^* g_j$ is convergent.

Theorem 2.10 Two *ov*-bases $\{\Lambda_j\}_{j\in J}$ and $\{\Gamma_j\}_{j\in J}$ for \mathcal{H} and \mathcal{U} with respect to $\{W_j\}_{j\in J}$ are equivalent if and only if there exists a bounded linear invertible operator $T: \mathcal{H} \to \mathcal{U}$

such that $\Gamma_j = \Lambda_j T^*$.

Proof. Assume that $T : \mathcal{H} \to \mathcal{U}$ be the bounded linear invertible operator such that $\Gamma_j = \Lambda_j T^*$ for all $j \in J$. Then the sufficiency follows from the fact that for every sequence $\{g_j : g_j \in W_j\}_{j \in j}$ we have

$$\sum_{j \in J} \Gamma_j^* g_j = T \Big(\sum_{j \in J} \Lambda_j^* g_j \Big) \quad \text{and} \quad \sum_{j \in J} \Lambda_j^* g_j = T^{-1} \Big(\sum_{j \in J} \Gamma_j^* g_j \Big).$$

Now suppose that $\{\Lambda_j\}_{j\in J}$ and $\{\Gamma_j\}_{j\in J}$ are equivalent *ov*-bases for \mathcal{H} and \mathcal{U} with respect to $\{W_j\}_{j\in J}$. If $f \in \mathcal{H}$ with unique expansion $f = \sum_{j\in J} \Lambda_j^* g_j$, then the series $\sum_{j\in J} \Gamma_j^* g_j$ converges to an element $Tf \in \mathcal{U}$. Therefore, Tf is well defined. Since Λ_j^* is one-to-one on W_j for all $j \in J$, hence it is easy to check that T is linear, bijective and $\Gamma_j = \Lambda_j T^*$. To show that T is a bounded invertible operator, we define operators T_F by $T_F f =$ $\sum_{j\in F} \Gamma_j^* g_j$ for every non-empty finite subset $F \subset J$. Then $Tf = \lim_F T_F f$ for every $f \in \mathcal{H}$. Since by Theorem 2.8 each T_F is bounded thus the Banach-Steinhaus Theorem implies that T is bounded. Moreover the open mapping Theorem guarantees that T is invertible.

Theorem 2.11 The *ov*-biorthogonal sequences associated with equivalent *ov*-bases are equivalent.

Proof. Let $\{\Lambda_j\}_{j\in J}$ and $\{\Gamma_j\}_{j\in J}$ be equivalent *ov*-bases for \mathcal{H} and \mathcal{U} with respect to $\{W_j\}_{j\in J}$ and let, $\{\Psi_j\}_{j\in J}$ and $\{\Phi_j\}_{j\in J}$ be *ov*-biorthogonal sequences for them respectively. By assumption there exists a bounded invertible operator $T: \mathcal{H} \to \mathcal{U}$ such that $\Gamma_j = \Lambda_j T^*$. For any $f \in \mathcal{H}$ we have

$$f = T^{-1}Tf = T^{-1}\left(\sum_{j\in J}\Gamma_j^*\Phi_j Tf\right) = T^{-1}\left(\sum_{j\in J}T\Lambda_j^*\Phi_j Tf\right) = \sum_{j\in J}\Lambda_j^*\Phi_j Tf.$$

By Proposition 2.6 it follows that $\Psi_j = \Phi_j T$ for all $j \in J$. that is $\{\Psi_j\}_{j \in J}$ and $\{\Phi_j\}_{j \in J}$ are equivalent.

For each sequence $\{W_j\}_{j\in J}$ of closed subspaces of \mathcal{K} , we define the Hilbert space associated with $\{W_j\}_{j\in J}$ by

$$\left(\sum_{j\in J} \oplus W_j\right)_{\ell^2} = \left\{\{g_j\}_{j\in J} | g_j \in W_j \text{ and } \sum_{j\in J} \|g_j\|^2 < \infty\right\}.$$
 (6)

with inner product given by

$$<\{f_k\}_{k\in J}, \{g_k\}_{k\in J}> = \sum_{j\in J} < f_j, g_j>.$$
 (7)

Definition 2.12 Let $\{\Lambda_j\}_{j\in J}$ be a *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$. We say that $\{\Lambda_j\}_{j\in J}$ is a Bessel *ov*-basis if whenever $\sum_{j\in J}\Lambda_j^*g_j$ converges, then $\{g_j\}_{j\in J} \in (\sum_{j\in J}\oplus W_j)_{\ell^2}$. It is called a Hilbert *ov*-basis, if the series $\sum_{j\in J}\Lambda_j^*g_j$ is convergent for all $\{g_j\}_{j\in J} \in (\sum_{j\in J}\oplus W_j)_{\ell^2}$.

Theorem 2.13 Let $\{\Lambda_j\}_{j\in J}$ be a *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$. Then $\{\Lambda_j\}_{j\in J}$ is a Bessel *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ if and only if there exists a constant

A > 0 such that

$$A\sum_{j\in F} \|g_j\|^2 \leqslant \Big\|\sum_{j\in F} \Lambda_j^* g_j\Big\|^2$$

for any finite subset $F \subset J$ and arbitrary vectors $g_j \in W_j$.

Proof. The sufficiency is trivial. Assume that $\{\Lambda_j\}_{j\in J}$ is a Bessel *ov*-basis and consider the space

$$\mathcal{A} = \Big\{ \{g_j\}_{j \in J} | g_j \in W_j, \ \sum_{j \in J} \Lambda_j^* g_j \text{ is convergent} \Big\}.$$

Clearly \mathcal{A} is a subspace of $\left(\sum_{j\in J} \oplus W_j\right)_{\ell^2}$. We show that \mathcal{A} is closed. To see this, let $\{g_{nj}\}_{j\in J}$ be a sequence in \mathcal{A} such that converges to some $\{g_j\}_{j\in J} \in \left(\sum_{j\in J} \oplus W_j\right)_{\ell^2}$, then $g_{nj} \to g_j$ for all $j \in J$. Let F be an arbitrary finite subset of J and $n \in \mathbb{N}$, then we have

$$\left\|\sum_{j\in F}\Lambda_j^*g_j\right\| \leqslant \left\|\sum_{j\in F}\Lambda_j^*(g_{nj}-g_j)\right\| + \left\|\sum_{j\in F}\Lambda_j^*g_{nj}\right\|$$

It follows that $\sum_{j \in J} \Lambda_j^* g_j$ is Cauchy and hence convergent in \mathcal{H} , which implies that \mathcal{A} is closed. Now define the operator $T : \mathcal{A} \to \mathcal{H}$ by

$$T(\{g_j\}_{j\in J}) = \sum_{j\in J} \Lambda_j^* g_j.$$

Then, it is obvious that T is linear, one-to-one. To show that T is a bounded operator, we define the bounded operators $T_F : \mathcal{A} \to \mathcal{H}$ by $T_F(\{g_j\}_{j \in J}) = \sum_{j \in F} \Lambda_j^* g_j$. Then $T_F \to T$ pointwise. Since each T_F is bounded the Banach-Steinhaus Theorem follows that T is bounded. Now by Theorems 4.13 and 4.15 of [2] there exists a constant A > 0 such that

$$A\sum_{j\in F} \|g_j\|^2 \leqslant \Big\|\sum_{j\in F} \Lambda_j^* g_j\Big\|^2$$

for any finite subset $F \subset J$ and arbitrary vectors $g_j \in W_j$.

Theorem 2.14 Let $\{\Lambda_j\}_{j\in J}$ be a *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$. Then $\{\Lambda_j\}_{j\in J}$ is a Hilbert *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ if and only if there exists a constant B > 0 such that

$$\Big\|\sum_{j\in F}\Lambda_j^*g_j\Big\|^2\leqslant B\sum_{j\in F}\|g_j\|^2$$

for any finite subset $F \subset J$ and arbitrary vectors $g_j \in W_j$.

Proof. Suppose that $\{\Lambda_j\}_{j\in J}$ is a Hilbert *ov*-basis then the Banach-Steinhaus Theorem guarantees that the operator $T: (\sum_{j\in J} \oplus W_j)_{\ell^2} \to \mathcal{H}$ defined by $T(\{g_j\}_{j\in J}) = \sum_{j\in J} \Lambda_j^* g_j$ is bounded. Therefore there exists a constant B > 0 such that

$$\left\|\sum_{j\in F}\Lambda_j^*g_j\right\|^2\leqslant B\sum_{j\in F}\|g_j\|^2$$

for any finite subset $F \subset J$ and arbitrary vectors $g_j \in W_j$. The opposite conclusion is trivial.

Theorem 2.15 Let $\{\Lambda_j\}_{j\in J}$ be a *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$, with dual *ov*-basis $\{\Gamma_j\}_{j\in J}$. Then $\{\Lambda_j\}_{j\in J}$ is a Bessel *ov*-basis if and only if $\{\Gamma_j\}_{j\in J}$ is a Hilbert *ov*-basis.

Proof. First suppose that $\{\Lambda_j\}_{j\in J}$ is a Bessel *ov*-basis, then $\{\Gamma_j f\}_{j\in J} \in (\sum_{j\in J} \oplus W_j)_{\ell^2}$ for all $f \in \mathcal{H}$. Fix $F \subset J$ with $|F| < \infty$ and let $f = \sum_{j\in F} \Gamma_j^* g_j$. Then we have

$$\begin{split} \left\| \sum_{j \in F} \Gamma_{j}^{*} g_{j} \right\|^{4} &= | < f, \sum_{j \in F} \Gamma_{j}^{*} g_{j} > |^{2} \leqslant \big(\sum_{j \in F} \|\Gamma_{j} f\| \|g_{j}\| \big)^{2} \\ &\leqslant \big(\sum_{j \in J} \|\Gamma_{j} f\|^{2} \big) \big(\sum_{j \in F} \|g_{j}\|^{2} \big). \end{split}$$

This shows that $\{\Gamma_j\}_{j\in J}$ is a Hilbert *ov*-basis. For the other implication, assume that $\{\Gamma_j\}_{j\in J}$ is a Hilbert *ov*-basis. Fix $F \subset J$ with $|F| < \infty$ and let $f = \sum_{j\in F} \Lambda_j^* g_j$, then $g_j = \Gamma_j f$ for all $j \in F$. By Theorem 2.14 there exists a constant B > 0 such that

$$\begin{split} \left\| \sum_{j \in F} \Gamma_j^* \Gamma_j f \right\|^2 &\leq B \sum_{j \in F} \|\Gamma_j f\|^2 = B < f, \sum_{j \in F} \Gamma_j^* \Gamma_j f > \\ &\leq B \|f\| \left\| \sum_{j \in F} \Gamma_j^* \Gamma_j f \right\|. \end{split}$$

Hence,

$$\left\|\sum_{j\in F}\Gamma_{j}^{*}\Gamma_{j}f\right\| \leqslant B\left\|\sum_{j\in F}\Lambda_{j}^{*}g_{j}\right\|.$$

We also have

$$\sum_{j \in F} \|g_j\|^2 = \sum_{j \in F} \|\Gamma_j f\|^2 = \langle f, \sum_{j \in F} \Gamma_j^* \Gamma_j f \rangle$$
$$\leqslant \|\sum_{j \in F} \Lambda_j^* g_j\| \|\sum_{j \in F} \Gamma_j^* \Gamma_j f\| \leqslant B \|\sum_{j \in F} \Lambda_j^* g_j\|^2.$$

Now applying Theorem 2.13 the result follows at once.

3. Orthonormal ov-bases and Riesz ov-bases

In this section we give some characterizations of orthonormal ov-bases and Riesz ov-bases in Hilbert spaces. For more details about the theory and applications of orthonormal ov-bases we refer the readers to [1].

Definition 3.1 Let $\{\Xi_j\}_{j\in J}$ be a sequence of operators for \mathcal{H} with respect to $\{W_j\}_{j\in J}$. Then (i) $\{\Xi_i\}_{i \in J}$ is called an orthonormal *ov*-system for \mathcal{H} with respect to $\{W_i\}_{i \in J}$, if:

$$\Xi_i \Xi_j^* g_j = \delta_{ij} g_j \quad \forall i, j \in J, \ g_j \in W_j$$

(*ii*) $\{\Xi_j\}_{j\in J}$ is called an orthonormal *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ if it is a complete orthonormal *ov*-system for \mathcal{H} with respect to $\{W_j\}_{j\in J}$.

Corollary 3.2 Let $\{\Xi_j\}_{j\in J}$ be an orthonormal *ov*-system for \mathcal{H} with respect to $\{W_j\}_{j\in J}$, then Ξ_j is onto and $\|\Xi_j\| = 1$ for all $j \in J$.

Proof. For any $j \in J$ and $g \in W_j$, we have $\Xi_j \Xi_j^* g = g$ which implies that Ξ_j is onto. We further have $\Xi_j \Xi_j^* \Xi_j = \Xi_j$. This shows that $\Xi_j^* \Xi_j$ is an orthogonal projection from \mathcal{H} onto $\mathcal{R}_{\Xi_j^*}$ and hence $\|\Xi_j^* \Xi_j\| = 1$. This yields

$$\|\Xi_j\|^2 = \sup_{\|f\|=1} \|\Xi_j f\|^2 = \sup_{\|f\|=1} \langle \Xi_j f, \Xi_j f \rangle = \sup_{\|f\|=1} \|\Xi_j^* \Xi_j f\|^2 = 1$$

Example 3.3 Let $\mathcal{H} = \mathcal{K} = \mathbb{C}^{N+1}$ and let $\{e_k\}_{k=1}^{N+1}$ be the standard basis of \mathbb{C}^{N+1} . For each $1 \leq j \leq N+1$ define the subspace $W_j \subset \mathcal{K}$ and the operator $\Xi_j : \mathcal{H} \to W_j$ by

$$W_j = \operatorname{span}\{\sum_{\substack{k=1\\k\neq j}}^{N+1} e_k\}, \quad \Xi_j(\{z_i\}_{i=1}^{N+1}) = \frac{z_j}{\sqrt{N}} \sum_{\substack{k=1\\k\neq j}}^{N+1} e_k.$$

Then $\{\Xi_j\}_{j=1}^{N+1}$ is an orthonormal *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j=1}^{N+1}$.

Corollary 3.4 Orthonormal *ov*-systems are ω -independent.

Proof. This follows immediately from the definition.

Theorem 3.5 Let $\{\Xi_j\}_{j\in J}$ be an orthonormal *ov*-system for \mathcal{H} with respect to $\{W_j\}_{j\in J}$, then the series $\sum_{j\in J} \Xi_j^* g_j$ converges if and only if $\{g_j\}_{j\in J} \in (\sum_{j\in J} \oplus W_j)_{\ell^2}$ and in that case

$$\left\|\sum_{j\in J}\Xi_{j}^{*}g_{j}\right\|^{2}=\sum_{j\in J}\|g_{j}\|^{2}.$$

Proof. For any finite subset $F \subset J$ we have $\left\|\sum_{j \in F} \Xi_j^* g_j\right\|^2 = \sum_{j \in F} \|g_j\|^2$. From this the result follows.

Theorem 3.6 (Bessel's inequality) Let $\{\Xi_j\}_{j\in J}$ be an orthonormal *ov*-system for \mathcal{H} with respect to $\{W_j\}_{j\in J}$. Then

$$\sum_{j\in J} \|\Xi_j f\|^2 \leqslant \|f\|^2$$

for all $f \in \mathcal{H}$.

Proof. Let $f \in \mathcal{H}$. Fix $F \subset J$ with $|F| < \infty$. Then By Theorem 3.5 we have

$$\begin{split} \left\| f - \sum_{j \in F} \Xi_j^* g_j \right\|^2 &= \|f\|^2 - \sum_{j \in F} < \Xi_j f, g_j > -\sum_{j \in F} < g_j, \Xi_j f > +\sum_{j \in F} \|g_j\|^2 \\ &= \|f\|^2 - \sum_{j \in F} \|\Xi_j f\|^2 + \sum_{j \in F} \|\Xi_j f - g_j\|^2 \end{split}$$

for arbitrary vectors $\{g_j: g_j \in W_j\}_{j \in F}$. In particular, if $g_j = \Xi_j f$, then

$$\left\| f - \sum_{j \in F} \Xi_j^* \Xi_j f \right\|^2 = \|f\|^2 - \sum_{j \in F} \|\Xi_j f\|^2$$

From this we have $\sum_{j\in F} \|\Xi_j f\|^2 \leq \|f\|^2$, which implies that $\sum_{j\in J} \|\Xi_j f\|^2 \leq \|f\|^2$.

Corollary 3.7 Let $\{\Xi_j\}_{j\in J}$ be an orthonormal *ov*-system for \mathcal{H} with respect to $\{W_j\}_{j\in J}$, then for all $f \in \mathcal{H}$ the series $\sum_{j \in J} \Xi_j^* \Xi_j f$ convergent and

$$\left\|f - \sum_{j \in J} \Xi_j^* \Xi_j f\right\|^2 \leq \left\|f - \sum_{j \in J} \Xi_j^* g_j\right\|^2$$

for every $\{g_i\}_{i \in J} \in \left(\sum_{i \in J} \oplus W_i\right)_{\ell^2}$.

Theorem 3.8 Let $\Xi = \{\Xi_i\}_{i \in J}$ be an orthonormal *ov*-system for \mathcal{H} with respect to $\{W_i\}_{i \in J}$. Then the following conditions are equivalent:

- (i) Ξ is an orthonormal *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$.

- (i) $f = \sum_{j \in J} \Xi_j^* \Xi_j f \quad \forall f \in \mathcal{H}.$ (ii) $\|f\|^2 = \sum_{j \in J} \|\Xi_j^* \Xi_j f\|^2 \quad \forall f \in \mathcal{H}.$ (iv) $\|f\|^2 = \sum_{j \in J} \|\Xi_j f\|^2 \quad \forall f \in \mathcal{H}.$ (v) $\langle f, g \rangle = \sum_{j \in J} \langle \Xi_j f, \Xi_j g \rangle \quad \forall f, g \in \mathcal{H}.$ (vi) If $\Xi_j f = 0$ for all $j \in J$, then f = 0.

Proof. The implication $(i) \Rightarrow (ii)$ follows immediately from Corollary 3.7. To prove $(ii) \Rightarrow (iii)$ assume that $f \in \mathcal{H}$. Since Ξ is an orthonormal ov-system, hence $(\Xi_i^* \Xi_j)^2 f =$ $\Xi_j^* \Xi_j f$ for all $j \in J$. This yields

$$||f||^2 = <\sum_{j\in J} \Xi_j^* \Xi_j f, f > = \sum_{j\in J} ||\Xi_j^* \Xi_j f||^2,$$

which implies (*iii*). The implications (*iii*) \Rightarrow (*iv*) \Rightarrow (*v*) are clear. To prove (*v*) \Rightarrow (*vi*) assume that $\Xi_j f = 0$ for all $j \in J$, then we have $||f||^2 = \sum_{j \in J} ||\Xi_j f||^2 = 0$. It follows that f = 0. To prove (*vi*) \Rightarrow (*i*) suppose that $f \perp \overline{\text{span}} \{\Xi_j^*(W_j)\}_{j \in J}$, then for every $j \in J$ we have $\|\Xi_j f\|^2 = \langle f, \Xi_j \Xi_j f \rangle = 0$ which implies that f = 0. Therefore $\mathcal{H} =$ $\overline{\operatorname{span}}\{\Xi_j^*(W_j)\}_{j\in J}.$

Theorem 3.9 Let $\{\Xi_j\}_{j\in J}$ be an orthonormal *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ and let $T : \mathcal{H} \to \mathcal{U}$ be a bounded linear operator such that $\Xi'_j = \Xi_j T^*$ for all $j \in J$. Then $\{\Xi'_i\}_{i \in J}$ is an orthonormal *ov*-basis for \mathcal{U} with respect to $\{W_j\}_{j \in J}$ if and only if T is unitary.

Proof. First suppose that $\{\Xi'_j\}_{j\in J}$ is an orthonormal *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$. Then by Theorem 3.8 for every $g \in \mathcal{U}$ we have

$$||T^*g||^2 = \sum_{j \in J} ||\Xi_j T^*g||^2 = \sum_{j \in J} ||\Xi_j'g||^2 = ||g||^2.$$

Hence T is co-isometry. We also see from Theorem 2.10 that T is unitary. Now if T is unitary then we have

$$||g||^{2} = ||T^{*}g||^{2} = \sum_{j \in J} ||\Xi_{j}T^{*}g||^{2} = \sum_{j \in J} ||\Xi_{j}'g||^{2}$$

for all $g \in \mathcal{U}$. From this follows that $\{\Xi'_j\}_{j \in J}$ is an orthonormal *ov*-basis for \mathcal{U} with respect to $\{W_j\}_{j \in J}$.

Corollary 3.10 Let $\{\Xi_j\}_{j\in J}$ be an orthonormal *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$. Then the orthonormal *ov*-bases for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ are precisely the sets $\{\Xi_j T\}_{j\in J}$, where $T: \mathcal{H} \to \mathcal{H}$ is an unitary operator.

Corollary 3.11 Let $\{W_i\}_{i \in J}$ be a family of closed subspaces of \mathcal{H} such that

$$\sum_{j\in J} \|\pi_{W_j}f\|^2 = \|f\|^2 \qquad \forall f \in \mathcal{H},$$

where π_{W_j} is the orthogonal projections from \mathcal{H} onto W_j . Then $\{\pi_{W_j}\}_{j\in J}$ is an orthonormal *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$.

Proof. For each $j \in J$ and $g_j \in W_j$ we have

$$||g_j||^2 = \sum_{i \in J} ||\pi_{W_i}g_j||^2 = ||g_j||^2 + \sum_{i \in J \atop i \neq j} ||\pi_{W_i}g_j||^2$$

which shows that $\pi_{W_i}g_j = \delta_{ij}g_j$. It follows that $\{\pi_{W_j}\}_{j \in J}$ is an orthonormal *ov*-system for \mathcal{H} with respect to $\{W_j\}_{j \in J}$. Now the result follows from the Theorem 3.8.

In the following, we give some characterizations of Riesz *ov*-bases in Hilbert spaces.

Definition 3.12 A sequence of operators $\{\Lambda_j \in B(\mathcal{H}, W_j) : j \in J\}$ is called a Riesz ov-basis for \mathcal{H} with respect to $\{W_j\}_{j \in J}$ if there is an orthonormal ov-basis $\{\Xi_j\}_{j \in J}$ for \mathcal{H} with respect to $\{W_j\}_{j \in J}$ and a bounded invertible linear operator T on \mathcal{H} such that $\Lambda_j = \Xi_j T^*$ for all $j \in J$.

Corollary 3.13 If $\{\Lambda_j\}_{j\in J}$ is a Riesz *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$. Then

$$0 < \inf_{j \in J} \|\Lambda_j\| \leq \sup_{j \in J} \|\Lambda_j\| < \infty.$$

Proof. According to the definition we can write $\{\Lambda_j\}_{j\in J} = \{\Xi_j T^*\}_{j\in J}$, where T is a bounded bijective operator and $\{\Xi_j\}_{j\in J}$ is an orthonormal *ov*-basis. By Corollary 3.2 for every $j \in J$ we have

$$||T^{-1}||^{-1} \leq ||\Lambda_j|| \leq ||T||.$$

From this the result follows.

Theorem 3.14 If $\{\Lambda_j\}_{j\in J} = \{\Xi_j T^*\}_{j\in J}$ is a Riesz *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$. Then $\{\frac{\Lambda_j}{\|\Lambda_j\|}\}_{j\in J}$ is also a Riesz *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$.

Proof. Define a mapping $S : \mathcal{H} \to \mathcal{H}$ by $Sf = \sum_{j \in J} \frac{\Xi_j \Xi_j f}{\|\Lambda_j\|}$. By Theorem 3.8 and Corollary 3.13 we have

$$||T||^{-1}||f|| \leq ||Sf|| \leq ||T^{-1}|| ||f||,$$

which implies that S is bounded and injective. Since S is self-adjoint hence S is invertible. Moreover, the operator $\Theta = TS$ is also bounded, invertible and we have

$$\Xi_j \Theta^* = \Xi_j ST^* = \left(\sum_{i \in J} \frac{\Xi_j \Xi_i^* \Xi_i}{\|\Lambda_j\|}\right) T^*$$
$$= \left(\sum_{i \in J} \frac{\delta_{ji} \Xi_i}{\|\Lambda_j\|}\right) T^* = \frac{\Xi_j T^*}{\|\Lambda_j\|} = \frac{\Lambda_j}{\|\Lambda_j\|},$$

for any $j \in J$. Consequently $\{\frac{\Lambda_j}{\|\Lambda_j\|}\}_{j \in J}$ is a Riesz *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j \in J}$.

Corollary 3.15 Let $\{\Lambda_j\}_{j\in J}$ be a *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$, with dual *ov*-basis $\{\Gamma_j\}_{j\in J}$. Then $\{\Lambda_j\}_{j\in J}$ is a Riesz *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ if and only if $\{\Gamma_j\}_{j\in J}$ is a Riesz *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$.

Proof. This follows immediately from the definition and Theorem 2.11.

To check Riesz *ov*-baseness of a family of operators $\{\Lambda_j\}_{j\in J}$ for \mathcal{H} with respect to $\{W_j\}_{j\in J}$, we derive the following useful characterization.

Theorem 3.16 Let $\{\Lambda_j\}_{j\in J}$ be a *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$, with dual *ov*-basis $\{\Gamma_j\}_{j\in J}$. Then the following conditions are equivalent:

- (i) The sequence $\{\Lambda_j\}_{j\in J}$ is a Riesz ov-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$.
- (*ii*) There is an equivalent inner product on \mathcal{H} , with respect to which the sequence $\{\Gamma_j\}_{j\in J}$ becomes an orthonormal *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$.

Proof. $(i) \Rightarrow (ii)$ Assume that $\{\Lambda_j\}_{j \in J}$ is a Riesz *ov*-basis for \mathcal{H} , and write it in the form $\{\Xi_j T^*\}_{j \in J}$ as in the definition. Define a new inner product $\langle ., . \rangle_T$ on \mathcal{H} by

$$< f, g >_T = < T^*f, T^*g > \quad \forall f, g \in \mathcal{H}.$$

If $\|.\|_T$ is the norm generated by this inner product, then for all $f \in \mathcal{H}$ we have

$$||T^{-1}||^{-1}||f|| \leq ||f||_T \leq ||T|| ||f||,$$

which implies that the new inner product is equivalent to the original one. By Theorem 2.11 for any $g \in \mathcal{K}$ and arbitrary vector $g_j \in W_j$, $i, j \in J$ we have

$$<\Gamma_i\Gamma_j^*g_j, g> = <\Gamma_j^*g_j, \Gamma_i^*g>_T =$$
$$= <\Xi_j^*g_j, \Xi_i^*g> = <\Xi_i\Xi_j^*g_j, g> = <\delta_{ij}g_j, g>$$

Now the Corollary 3.15 follows that $\{\Gamma_j\}_{j\in J}$ is an orthonormal *ov*-basis for \mathcal{H} with inner product $\langle ., . \rangle_T$ with respect to $\{W_j\}_{j\in J}$.

 $(ii) \Rightarrow (i)$ Suppose that $\langle ., . \rangle_1$ is an equivalent inner product on \mathcal{H} with respect to which $\{\Gamma_j\}_{j\in J}$ is an orthonormal *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$. Therefore there exist positive constants m, M such that

$$m\|f\| \leq \|f\|_1 \leq M\|f\| \quad \forall f \in \mathcal{H}.$$

By Theorem 3.5 we obtain

$$\frac{1}{M^2} \sum_{j \in F} \|g_j\|^2 = \frac{1}{M^2} \|\sum_{j \in F} \Gamma_j^* g_j\|_1^2 \le \|\sum_{j \in F} \Gamma_j^* g_j\|^2$$
$$\le \frac{1}{m^2} \|\sum_{j \in F} \Gamma_j^* g_j\|_1^2 = \frac{1}{m^2} \sum_{j \in F} \|g_j\|^2,$$

for any finite subset $F \subset J$ and arbitrary vectors $g_j \in W_j$. Now let $\{\Xi_j\}_{j \in J}$ be an arbitrary orthonormal *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j \in J}$ and define the mapping

$$T: \mathcal{H} \to \mathcal{H}, \quad \text{with} \quad T\Xi_j^* g_j = \Gamma_j^* g_j \quad \forall g_j \in W_j, \ j \in J.$$

Let $f \in \mathcal{H}$ with $f = \sum_{j \in J} \Xi_j^* g_j$, then we have

$$\frac{1}{M^2} \|f\|^2 = \frac{1}{M^2} \sum_{j \in J} \|g_j\|^2 \leqslant \|T(f)\|^2 \leqslant \frac{1}{m^2} \sum_{j \in J} \|g_j\|^2 = \frac{1}{m^2} \|f\|^2.$$

It follows that T is invertible and $T\Xi_j^*\Xi_j = \Gamma_j^*\Xi_j$, which from this $\Xi_j T^* = \Gamma_j$ holds for all $j \in J$. Thus $\{\Gamma_j\}_{j \in J}$ is a Riesz *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j \in J}$. From this the result follows at once.

The next theorem was proved by Sun in [3] we prove this theorem with another way.

Theorem 3.17 Let $\{\Lambda_j\}_{j\in J}$ be a sequence of operators for \mathcal{H} with respect to $\{W_j\}_{j\in J}$, then the following conditions are equivalent:

- (i) The sequence $\{\Lambda_j\}_{j\in J}$ is a Riesz *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$.
- (ii) The family $\{\Lambda_j\}_{j\in J}$ is a complete sequence for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ and there exist positive constants A, B such that for any finite subset $F \subset J$ and arbitrary vectors $g_j \in W_j$, we have

$$A\sum_{j\in F} \|g_j\|^2 \leqslant \left\|\sum_{j\in F} \Lambda_j^* g_j\right\|^2 \leqslant B\sum_{j\in F} \|g_j\|^2.$$

Proof. $(i) \Rightarrow (ii)$ Assume that $\{\Lambda_j\}_{j \in J}$ is a Riesz *ov*-basis for \mathcal{H} , and write it in the form $\{\Xi_j T^*\}_{j \in J}$ as in the definition. Then for any finite subset $F \subset J$ and arbitrary vectors $g_j \in W_j$ we have

$$\frac{1}{\|T^{-1}\|^2} \sum_{j \in F} \|g_j\|^2 = \frac{1}{\|T^{-1}\|^2} \Big\| \sum_{j \in F} \Xi_j^* g_j \Big\|^2 \leqslant \Big\| \sum_{j \in F} \Lambda_j^* g_j \Big\|^2 \leqslant \|T\|^2 \sum_{j \in F} \|g_j\|^2.$$

 $(ii) \Rightarrow (i)$ Let $\{\Xi_j\}_{j \in J}$ be an arbitrary orthonormal *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j \in J}$ and define the mapping

$$T: \mathcal{H} \to \mathcal{H}, \quad \text{with} \quad T\Xi_j^* g_j = \Lambda_j^* g_j \quad \forall g_j \in W_j, \ j \in J.$$

Suppose that $f \in \mathcal{H}$ with $f = \sum_{j \in J} \Xi_j^* g_j$, then we have

$$A||f||^{2} = A \sum_{j \in J} ||g_{j}||^{2} \leq ||T(f)||^{2} \leq B \sum_{j \in J} ||g_{j}||^{2} = B ||f||^{2}.$$

From this and completeness of $\{\Lambda_j\}_{j\in J}$ follows that T is invertible and $T\Xi_j^*\Xi_j = \Lambda^*\Xi_j$, which implies that $\Xi_j T^* = \Lambda_j$ for all $j \in J$.

Let $\Lambda = {\Lambda_j}_{j \in J}$ be a *ov*-basis for \mathcal{H} with respect to ${W_j}_{j \in J}$. If $f = \sum_{j \in J} \Lambda_j^* g_j$, then the coordinate representation of $f \in \mathcal{H}$ relative to the *ov*-basis Λ is $[f]_{\Lambda} = {g_j}_{j \in J}$.

Let $\Xi = \{\Xi_j\}_{j \in J}, \Xi' = \{\Xi'_i\}_{i \in I}$ be orthonormal *ov*-bases for \mathcal{H} and \mathcal{U} respectively. Then the matrix representation of the linear map $T : \mathcal{H} \to \mathcal{U}$ relative to the orthonormal *ov*-bases Ξ, Ξ' is the matrix $[T] = \{T_{ij}\}_{i \in I, j \in J}$ whose (i, j) entry is $T_{ij} = \Xi'_i T \Xi^*_j$ for all $i \in I, j \in J$. For any $f \in \mathcal{H}$ we also have

$$[Tf]_{\Xi'} = [T][f]_{\Xi}.$$

Moreover, if S, T are linear maps on \mathcal{H} represented by matrices [S], [T] respectively, then S + T and ST is represented by the matrices [S] + [T] and [S][T] respectively. Further T is a invertible operator if and only if [T] is invertible.

Let $\Lambda = {\Lambda_j}_{j \in J} = {\Xi_j T^*}_{j \in J}$ be a Riesz *ov*-basis for \mathcal{H} with respect to ${W_j}_{j \in J}$. Then the analysis operator Θ_{Λ} of Λ is defined by

$$\Theta_{\Lambda} : \mathcal{H} \to \left(\sum_{j \in J} \oplus W_j\right)_{\ell^2} \quad \text{with} \quad \Theta_{\Lambda} f = \{\Lambda_j f\}_{j \in J} \quad \forall f \in \mathcal{H}.$$

It can easily be shown that Θ_{Λ} is linear, bounded and $\|\Theta_{\Lambda}\| \leq \|T\|$. The synthesis operator Θ^*_{Λ} which is the adjoint operator of Θ_{Λ} is given by

$$\Theta^*_{\Lambda} : \left(\sum_{j \in J} \oplus W_j\right)_{\ell^2} \to \mathcal{H} \quad \text{with} \quad \Theta^*_{\Lambda}g = \sum_{j \in J} \Lambda^*_j g_j \quad \forall g = \{g_j\}_{j \in J} \in \left(\sum_{j \in J} \oplus W_j\right)_{\ell^2}.$$

Example 3.18 For every sequence of closed subspaces $\{W_j\}_{j\in J}$ of \mathcal{K} the sequence $\{\Xi_j\}_{j\in J}$ defined by

$$\Xi_j g = g_j \quad \forall j \in J, \ g = \{g_j\}_{j \in J} \in \big(\sum_{j \in J} \oplus W_j\big)_{\ell^2}$$

is an orthonormal *ov*-basis for $\left(\sum_{j\in J} \oplus W_j\right)_{\ell^2}$ with respect to $\{W_j\}_{j\in J}$ which is called the standard orthonormal *ov*-basis of it.

Let $\Lambda = {\{\Lambda_j\}_{j \in J}}$ be a Riesz *ov*-basis for \mathcal{H} with respect to ${\{W_j\}_{j \in J}}$. Then the matrix representing of the linear operator $\Theta_{\Lambda}\Theta^*_{\Lambda}$ relative to the standard orthonormal *ov*-basis of $\left(\sum_{j \in J} \oplus W_j\right)_{\ell^2}$ is the matrix $[\Theta_{\Lambda}\Theta^*_{\Lambda}] = {\{\Lambda_i\Lambda^*_j\}_{i \in I, j \in J}}$ which is called the Gram matrix associated with Λ .

216

Theorem 3.19 Let $\{\Lambda_j\}_{j\in J}$ be a sequence of operators for \mathcal{H} with respect to $\{W_j\}_{j\in J}$, then the following conditions are equivalent:

- (i) The sequence $\{\Lambda_j\}_{j\in J}$ is a Riesz *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$.
- (*ii*) The family $\{\Lambda_j\}_{j\in J}$ is complete sequence for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ and its Gram matrix $\{\Lambda_i\Lambda_j^*\}_{i\in I, j\in J}$ defines a bounded, invertible operator on $(\sum_{j\in J}\oplus W_j)_{\ell^2}$.

Proof. $(i) \Rightarrow (ii)$ Assume that $\{\Lambda_j\}_{j \in J} = \{\Xi_j T^*\}_{j \in J}$ is a Riesz *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j \in J}$. If $G = \{G_{ij}\}_{i,j \in J}$ denotes the matrix of the invertible operator T^*T relative to $\{\Xi_j\}_{j \in J}$, then

$$G_{ij} = \Xi_i T^* T \Xi_j^* = \Lambda_i \Lambda_j^*.$$

Therefore the Gram matrix of $\{\Lambda_j\}_{j\in J}$ is G.

 $(ii) \Rightarrow (i)$ Suppose that Gram matrix of $\{\Lambda_j\}_{j \in J}$ defines a bounded, invertible operator on $(\sum_{j \in J} \oplus W_j)_{\ell^2}$. Let $\{\Xi_j\}_{j \in J}$ be an arbitrary orthonormal *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j \in J}$ and define the mapping

$$T: \mathcal{H} \to \mathcal{H}, \quad \text{with} \quad T\Xi_j^* g_j = \sum_{i \in J} \Xi_i^* \Lambda_i \Lambda_j^* g_j \quad \forall g_j \in W_j, \ j \in J.$$

It is straightforward that T is linear, bounded and invertible. Suppose that $f \in \mathcal{H}$ with $f = \sum_{j \in J} \Xi_j^* g_j$, then we have

$$< Tf, f > = \sum_{j \in J} \sum_{i \in J} < T\Xi_j^* g_j, \Xi_i^* g_i > = \sum_{j \in J} \sum_{i \in J} \sum_{k \in J} < \Xi_i \Xi_k^* \Lambda_k \Lambda_j^* g_j, g_i >$$
$$= \sum_{j \in J} \sum_{i \in J} < \Lambda_i \Lambda_j^* g_j, g_i > = \left\| \sum_{j \in J} \Lambda_j^* g_j \right\|^2.$$

Thus T is positive and self-adjoint. Since T is positive, it has a unique positive squareroot. Let P denote the square-root of T, then the above calculation follows that

$$\frac{1}{\|T^{-1}\|} \sum_{j \in J} \|g_j\|^2 \leqslant \left\| \sum_{j \in J} \Lambda_j^* g_j \right\|^2 = \left\| P\left(\sum_{j \in J} \Xi_j^* g_j\right) \right\|^2 \leqslant \|T\|^2 \sum_{j \in J} \|g_j\|^2.$$

Now the result follows from Theorem 3.17.

4. Stability of *ov*-bases under perturbations

Stability of bases is important in practice and is therefore studied widely by many authors, e.g., see [4]. In this section we study the stability of ov-bases for a Hilbert space \mathcal{H} . First we generalized a result of Paley-Wiener [4] to the situation of ov-basis.

Theorem 4.1 Let $\{\Lambda_j\}_{j\in J}$ be a *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ and let $\{\Gamma_j\}_{j\in J}$ be a sequence of operators for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ such that

$$\left\|\sum_{j\in F} (\Lambda_j^* g_j - \Gamma_j^* g_j)\right\| \leqslant \lambda \left\|\sum_{j\in F} \Lambda_j^* g_j\right\|$$

for some constant $0 \leq \lambda < 1$ and each finite subset $F \subset J$ and arbitrary vectors $g_i \in W_i$. Then $\{\Gamma_i\}_{i \in J}$ is a *ov*-basis for \mathcal{H} with respect to $\{W_i\}_{i \in J}$.

Proof. By assumption the series $\sum_{j \in J} (\Lambda_j^* g_j - \Gamma_j^* g_j)$ is convergent whenever the series $\sum_{i \in J} \Lambda_i^* g_j$ is convergent for all arbitrary vectors $g_j \in W_j$. If we define the mapping

$$T: \mathcal{H} \to \mathcal{H}, \quad \text{with} \quad T\Lambda_j^* g_j = \Lambda_j^* g_j - \Gamma_j^* g_j \quad \forall g_j \in W_j, \ j \in J.$$

Then T is a bounded operator and $||T|| \leq \lambda < 1$. Thus the operator $Id_{\mathcal{H}} - T$ is invertible and we have $(Id_{\mathcal{H}} - T)\Lambda_j^*\Lambda_j = \Gamma_j^*\Lambda_j$, consequently $\Lambda_j^*\Lambda_j(Id_{\mathcal{H}} - T^*) = \Lambda_j^*\Gamma_j$. Since Λ_j^* is one-to-one on W_j , thus $\Lambda_j(Id_{\mathcal{H}} - T^*) = \Gamma_j$. Now the conclusion follows from Theorem 2.8.

Corollary 4.2 Let $\{\Lambda_j\}_{j\in J}$ be a *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$, with dual *ov*basis $\{\Psi_j\}_{j\in J}$ and let $\{\Gamma_j\}_{j\in J}$ be a sequence of operators for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ such that

$$\sum_{j\in J} \|\Lambda_j - \Gamma_j\| \|\Psi_j\| < 1.$$

Then $\{\Gamma_j\}_{j\in J}$ is a *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$.

Proof. If $\lambda = \sum_{j \in J} \|\Lambda_j - \Gamma_j\| \|\Psi_j\|$, then $0 \leq \lambda < 1$. Fix $F \subset J$ with $|F| < \infty$ and let $f = \sum_{j \in F} \Lambda_j^* g_j$ for arbitrary vectors $g_j \in W_j$. Then we compute

$$\begin{split} \left\| \sum_{j \in F} (\Lambda_j^* g_j - \Gamma_j^* g_j) \right\| &= \left\| \sum_{j \in F} (\Lambda_j^* - \Gamma_j^*) \Psi_j f \right\| \\ &\leqslant \sum_{j \in F} \left\| (\Lambda_j^* - \Gamma_j^*) \Psi_j f \right\| \\ &\leqslant \sum_{j \in J} \left\| \Lambda_j - \Gamma_j \right\| \left\| \Psi_j \right\| \left\| f \right\| = \lambda \left\| \sum_{j \in F} \Lambda_j^* g_j \right\| \end{split}$$

From this the result follows by Theorem 4.1.

In the following we generalized a result of Krein-Milman-Rutman [4] to the situation of ov-basis.

Theorem 4.3 Let $\{\Lambda_i\}_{i \in J}$ be a *ov*-basis for \mathcal{H} with respect to $\{W_i\}_{i \in J}$ and let $\{\Gamma_i\}_{i \in J}$ be a sequence of operators for \mathcal{H} with respect to $\{W_j\}_{j\in J}$. If there exists a sequence $\{\varepsilon_j\}_{j\in J}$ of positive numbers, such that $\|\Lambda_j - \Gamma_j\| < \varepsilon_j$ for all $j \in J$. Then $\{\Gamma_j\}_{j\in J}$ is a ov-basis for \mathcal{H} with respect to $\{W_i\}_{i \in J}$.

Proof. If $\{\Psi_j\}_{j\in J}$ is the dual *ov*-basis of $\{\Lambda_j\}_{j\in J}$. Then the result follows from Corollary 4.2, to choose ε_j small enough such that $\sum_{j \in J} \varepsilon_j \|\Psi_j\| < 1$.

References

- [1] M. S. Asgari, H. Rahimi, Generalized frames for operators in Hilbert spaces, Inf. Dim. Anal. Quant. Probab. Rel. Topics, Vol. 17, No. 2, (2014), 1450013-1 - 1450013-20.
- W. Rulin, Functional Analysis, McGrawHill. Inc, New York, (1991).
 W. Sun, G-frames and G-Riesz bases, J. Math. Anal. Appl. (2006), 322, 437-452.
- [4] R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, (2001).