Journal of Linear and Topological Algebra Vol. 02*, No.* 04*,* 2013*,* 201*-* 218

Operator-valued bases on Hilbert spaces

M. S. Asgari*[∗]*

Department of Mathematics, Islamic Azad University, Central Tehran Branch, PO. Code 13185-768, Tehran, Iran.

Received 11 July 2013; revised 12 December 2013; accepted 25 December 2013.

Abstract. In this paper we develop a natural generalization of Schauder basis theory, we term operator-valued basis or simply *ov*-basis theory, using operator-algebraic methods. We prove several results for *ov*-basis concerning duality, orthogonality, biorthogonality and minimality. We prove that the operators of a dual *ov*-basis are continuous. We also define the concepts of Bessel, Hilbert *ov*-basis and obtain some characterizations of them. We study orthonormal and Riesz *ov*-bases for Hilbert spaces. Finally we consider the stability of *ov*-bases under small perturbations. We generalize a result of Paley-Wiener [4] to the situation of *ov*-basis.

 $©$ 2013 IAUCTB. All rights reserved.

Keywords: *ov*-bases; dual *ov*-bases; Bessel *ov*-bases; Hilbert *ov*-bases; *ov*-biorthogonal sequence.

2010 AMS Subject Classification: Primary 41A58; Secondary 42C15.

1. Introduction

Throughout this paper, H ^{*, K*} are separable Hilbert spaces and I *, J_i* denote the countable (or finite) index sets and $\{W_j\}_j$ is a sequence of closed subspaces of K and $B(\mathcal{H}, W_j)$ denote the collection of all bounded linear operators from \mathcal{H} into W_j and $\Lambda_j \in B(H, W_j)$ for all $j \in J$. Also \mathcal{R}_T and \mathcal{N}_T denote the range and null spaces of an operator $T \in B(H,\mathcal{K})$ respectively. Recently, W. Sun [3] introduced a generalized frame and a generalized Riesz basis for a Hilbert space and discussed some properties of them. In this paper we introduce the concept of the operator-valued basis and then we redefined the concepts of the orthonormal operator-valued basis and operator-valued Riesz basis

*[∗]*Corresponding author.

E-mail address: moh.asgari@iauctb.ac.ir (M. S. Asgari).

for a Hilbert space. we develop the basis theory to the situation of operator-valued basis theory in Hilbert spaces.

Definition 1.1 Let $\Lambda_j \in B(H, W_j)$ be an onto operator for all $j \in J$. Then the family $\Lambda = {\Lambda_j}_{j \in J}$ is called an operator-valued basis or simply *ov*-basis for *H* with respect to $\{W_j\}_{j\in J}$, if for any $f\in \mathcal{H}$ there exists an unique sequence $\{g_j: g_j\in W_j\}_{j\in J}$ such that

$$
f = \sum_{j \in J} \Lambda_j^* g_j,\tag{1}
$$

with the convergence being in norm. If series (1) is unconditionally convergent, Λ is called an unconditional *ov*-basis. We call this family an *ov*-basis for H with respect to K if $W_j = \mathcal{K}$ for all $j \in J$.

Theorem 1.2 Let $\{\Lambda_j\}_{j\in J}$ be anov-basis for *H* with respect to $\{W_j\}_{j\in J}$. Then

$$
\dim \mathcal{H} = \sum_{j \in J} \dim W_j
$$

Proof. Let $\{e_{ij}\}_{i \in J_j}$ be an orthonormal basis for W_j for all $j \in J$. We show that $\{\Lambda_j^* e_{ij}\}_{j\in J, i\in J_j}$ is a basis for H. Since $\{e_{ij}\}_{i\in J_j}$ is an orthonormal basis for W_j , hence every $g_j \in W_j$ has a unique expansion of the form $g_j = \sum_{i \in J_j} \langle g_j, e_{ij} \rangle e_{ij}$. This implies that also every $f \in \mathcal{H}$ has a unique expansion of the form

$$
f = \sum_{j \in J} \sum_{i \in J_j} \langle g_j, e_{ij} \rangle \Lambda_j^* e_{ij}.
$$

This shows that dim $\mathcal{H} = \sum_{j \in J} \dim W_j$.

Corollary 1.3 Let $\{\Lambda_j\}_{j\in J}, \{\Gamma_i\}_{i\in I}$ be *ov*-bases for H with respect to $\{W_j\}_{j\in J}, \{V_i\}_{i\in I}$ respectively. Then $\sum_{j\in J}$ dim $W_j = \sum_{i\in I}$ dim V_i .

2. Characterizations of *ov***-bases**

Let $\Lambda = {\Lambda_j}_{j \in J}$ be a *ov*-basis for *H* with respect to ${W_j}_{j \in J}$, then every $f \in H$ has a unique expansion of the form $f = \sum_{j \in J} \Lambda_j^* g_j$. It is clear that each $g_j \in W_j$ is a linear operator of *f*. If we denote this linear operator by $\Gamma_j : \mathcal{H} \to W_j$, then $g_j = \Gamma_j f$, and we have $f = \sum_{j \in J} \Lambda_j^* \Gamma_j f$. The sequence $\{\Gamma_j\}_{j \in J}$ is called the dual *ov*-basis of Λ . In the next theorem we show that the operators of a dual *ov*-basis are continuous.

Theorem 2.1 Let $\Lambda = {\Lambda_j}_{j \in J}$ be a *ov*-basis for *H* with respect to ${W_j}_{j \in J}$, and let ${\{\Gamma_j\}}_{j \in J}$ be the dual *ov*-basis of Λ , then $\Gamma_j \in B(H, W_j)$, for all $j \in J$. Moreover, if $\Gamma_j \neq 0$ for some $j \in J$, then $||\Gamma_j|| ||\Lambda_j|| \geq 1$.

Proof. Define the space

$$
\mathcal{A} = \Big\{ \{g_j\}_{j \in J} | g_j \in W_j, \sum_{j \in J} \Lambda_j^* g_j \text{ is convergent} \Big\},\
$$

.

with the norm defined by

$$
\left\| \{g_j\}_{j\in J} \right\| = \sup_{0<|F|<\infty \atop F\subseteq J} \Big\| \sum_{i\in F} \Lambda_i^* g_i \Big\| < \infty.
$$

It is clear that *A* endowed with this norm, is a normed space with respect to the pointwise operations. We will show that the space *A* is a complete. Let $\{u_n\}_{n\in\mathbb{N}}$ be a Cauchy sequence in *A*. If $u_n = \{g_{nj}\}_{j \in J}$, then given any $\varepsilon > 0$, there exists a number *N* such that

$$
\sup_{\substack{0<|F|<\infty\\F\subseteq J}}\Big\|\sum_{i\in F}(\Lambda_i^*g_{ni}-\Lambda_i^*g_{mi})\Big\|<\varepsilon\tag{2}
$$

for all $m, n \geq N$. Now for all $j \in J$ and $m, n \geq N$ we have

$$
\|\Lambda_j^* g_{nj} - \Lambda_j^* g_{mj}\| \leq \sup_{0 \leq |F| < \infty \atop F \subseteq J} \left\| \sum_{i \in F} (\Lambda_i^* g_{ni} - \Lambda_i^* g_{mi}) \right\| < \varepsilon.
$$

This shows that $\{\Lambda_j^* g_{nj}\}_{n \in \mathbb{N}}$ is a Cauchy sequence in *H*. Since Λ_j is onto hence by Theorem 4.13 of [2] the sequence $\{g_{nj}\}_{n\in\mathbb{N}}$ is a Cauchy sequence in \tilde{W}_j and thus convergent. Let $g_j \in W_j$ such that $g_j = \lim_{n \to \infty} g_{nj}$ and $u = \{g_j\}_{j \in J}$. From (2), by letting $m \to \infty$, we obtain

$$
\sup_{\substack{0<|F|<\infty\\F\subseteq J}}\left\|\sum_{i\in F}(\Lambda_i^*g_{ni}-\Lambda_i^*g_i)\right\|\leq\varepsilon\tag{3}
$$

for all $n \geq N$. Since for all finite non-empty subset $F \subset J$ we have

$$
\Big\|\sum_{i\in J-F} \Lambda_i^* g_i\Big\| \leqslant \Big\|\sum_{i\in J-F} (\Lambda_i^* g_{Ni} - \Lambda_i^* g_i)\Big\| + \Big\|\sum_{i\in J-F} \Lambda_i^* g_{Ni}\Big\|
$$

$$
\leqslant \sup_{0 \leqslant |F| < \infty \atop F \subseteq J} \Big\|\sum_{i\in F} (\Lambda_i^* g_{Ni} - \Lambda_i^* g_i)\Big\| + \sup_{0 \leqslant |F| < \infty \atop F \subseteq J} \Big\|\sum_{i\in F} \Lambda_i^* g_{Ni}\Big\|
$$

thus $u \in A$. Moreover (3) implies that the sequence $\{u_n\}_{n\in\mathbb{N}}$ is convergent to *u* in A. Therefore A is a Banach space. Define the mapping

$$
T: \mathcal{A} \to \mathcal{H}
$$
 with $T(\{g_j\}_{j \in J}) = \sum_{j \in J} \Lambda_j^* g_j$.

Since Λ is a *g*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ hence *T* is linear, one-to-one and onto. On the other hand, since

$$
||T(\{g_j\}_{j\in J})|| = \Big\|\sum_{j\in J} \Lambda_j^* g_j\Big\| \leq \sup_{0 < |F| < \infty \\ F \subseteq J} \Big\|\sum_{i\in F} \Lambda_i^* g_i\Big\| = \|\{g_j\}_{j\in J}\|.
$$

Thus *T* is continuous and the open mapping theorem then guarantees that T^{-1} is also continuous. This shows that A and H are Banach spaces isomorphic. Now suppose that $f = \sum_{j \in J} \Lambda_j^* g_j$ is a fixed, arbitrary element of *H* and let $j \in J$. Since Λ_j is onto thus by

Theorem 4.13 of [2] there is a $m_j > 0$ such that $m_j ||g|| \le ||\Lambda_j^* g||$ for all $g \in W_j$. Moreover, we have

$$
\|\Gamma_j f\| = \|g_j\| \leqslant \frac{\|\Lambda_j^* g_j\|}{m_j} \leqslant \frac{\sup_{\boldsymbol{\circ} < |\boldsymbol{F}| < \infty} \|\sum_{i \in F} \Lambda_i^* g_i\|}{m_j} = \frac{2\|T^{-1}f\|}{m_j} \leqslant \frac{2\|T^{-1}\|\|f\|}{m_j}.
$$

This shows that each Γ_j is continuous and $\|\Gamma_j\| \leq \frac{2||T^{-1}||}{m_j}$. For the remaining inequality assume that $0 \neq g_j = \Gamma_j f$ for some $f \in \mathcal{H}$, then we have

$$
||g_j|| = ||\Gamma_j \Lambda_j^* g_j|| \le ||\Gamma_j|| ||\Lambda_j|| ||g_j||,
$$

which implies that $\|\Gamma_j\|\|\Lambda_j\| \geq 1$.

Let $\{\Lambda_i\}_{i\in J}$ be a *ov*-basis for H with respect to $\{W_i\}_{i\in J}$ and let $\{\Gamma_i\}_{i\in J}$ be the dual *ov*-basis of $\{\Lambda_j\}_{j\in J}$. Then *F*-partial sum operator of $\{\Lambda_j\}_{j\in J}$ defined by

$$
S_F: \mathcal{H} \to \mathcal{H} \quad \text{with} \quad S_F f = \sum_{j \in F} \Lambda_j^* \Gamma_j f,
$$

for all finite subset $F \subset J$. By Theorem 2.1, S_F is a bounded operator and

$$
1 \leqslant \sup_{0 < |F| < \infty, \atop F \subseteq J} \|S_F\| < \infty. \tag{4}
$$

A family of operators $\{\Lambda_j \in B(\mathcal{H}, W_j) : j \in J\}$ is called a complete sequence for \mathcal{H} with respect to $\{W_j\}_{j\in J}$, if $\mathcal{H} = \overline{\text{span}}\{\Lambda_j^*(W_j)\}_{j\in J}$. It is easy to check that $\{\Lambda_j\}_{j\in J}$ is a complete sequence for \mathcal{H} with respect to $\{W_j\}_{j\in J}$, if and only if $\{f : \Lambda_j f = 0, j \in J\}$ *{*0*}*.

Theorem 2.2 Let $\{\Lambda_j\}_{j\in J}$ be a complete sequence for *H* with respect to $\{W_j\}_{j\in J}$. Then ${A_j}_{j \in J}$ is a *ov*-basis for *H* with respect to ${W_j}_{j \in J}$ if and only if there exists a constant *M* such that

$$
\left\| \sum_{i \in F} \Lambda_i^* g_i \right\| \leqslant M \left\| \sum_{i \in G} \Lambda_i^* g_i \right\| \tag{5}
$$

for all finite subsets $F \subset G \subset J$ and arbitrary vectors $g_j \in W_j, j \in G$.

Proof. First suppose that $\{\Lambda_j\}_{j\in J}$ is a *ov*-basis for *H* with respect to $\{W_j\}_{j\in J}$ and let $M = \sup_{F \subseteq J} \sum_{F \subseteq J} \|S_F\|$, then for all finite subsets $F \subset G \subset J$ and arbitrary vectors $g_i \in W_i$ we have

$$
\left\| \sum_{j \in F} \Lambda_j^* g_j \right\| = \left\| S_F \left(\sum_{j \in G} \Lambda_j^* g_j \right) \right\| \leq M \left\| \sum_{j \in G} \Lambda_j^* g_j \right\|.
$$

To prove the opposite implication take $f \in \mathcal{H}$. By hypothesis, there exist finite subsets $F_n \subset F_{n+1} \subset J$ and vectors $g_{nj} \in W_j$ for all $n \in \mathbb{N}, j \in F_n$ such that $f = \lim_{n \to \infty} \sum_{j \in F_n} \Lambda_j^* g_{nj}$. For notational convenience, put $g_{nj} = 0$ for $j \notin F_n$, then for every $m > n$ and $j \in F_n$ we have

$$
\|\Lambda_j^*(g_{nj} - g_{mj})\| \leq M \|\sum_{i \in F_n} \Lambda_i^*(g_{ni} - g_{mi})\|
$$

\n
$$
\leq M^2 \|\sum_{i \in F_m} \Lambda_i^*(g_{ni} - g_{mi})\|
$$

\n
$$
= M^2 \|\sum_{i \in F_n} \Lambda_i^* g_{ni} - \sum_{i \in F_m} \Lambda_i^* g_{mi}\| \to 0 \quad (n \to \infty).
$$

This shows that $\{\Lambda_j^* g_{nj}\}_{n \in \mathbb{N}}$ is a Cauchy sequence in *H*. Since Λ_j is onto hence by Theorem 4.13 [2] the sequence ${g_{nj}}_{n\in\mathbb{N}}$ is a Cauchy sequence in W_j and thus convergent. Let $g_j \in W_j$ such that $g_j = \lim_{n \to \infty} g_{nj}$, then $f = \sum_{j \in J} \Lambda_j^* g_j$. Now we show that this representation is unique. If $\sum_{j\in J} \Lambda_j^* g_j = 0$, then for any finite subset $F \subset J$ and $j \in F$ we have

$$
\|\Lambda_j^*g_j\|\leqslant M\bigl\|\sum_{i\in F}\Lambda_i^*g_i\bigr\|\to 0.
$$

This shows that $||\Lambda_j^* g_j|| = 0$. Since Λ_j^* is one-to-one on W_j , hence $g_j = 0$ which this completes the proof.

Corollary 2.3 Let $\{\Lambda_j\}_{j\in J}$ be a *ov*-basis for *H* with respect to $\{W_j\}_{j\in J}$, with dual *ov*-basis $\{\Gamma_j\}_{j\in J}$. Then $\{\Gamma_j\}_{j\in J}$ is a *ov*-basis for H with respect to $\{W_j\}_{j\in J}$ and

$$
f = \sum_{j \in J} \Gamma_j^* \Lambda_j f \qquad \forall f \in \mathcal{H}.
$$

Proof. First we prove that $\mathcal{H} = \overline{\text{span}}\{\Gamma_j^*(W_j)\}_{j\in J}$. To see this, let $f \perp$ $\overline{\text{span}}\{\Gamma_j^*(W_j)\}_{j\in J}$. Then

$$
\|\Gamma_j f\|^2 = \langle f, \Gamma_j^* \Gamma_j f \rangle = 0,
$$

which implies that $\Gamma_j f = 0$ for all $j \in J$. We also have

$$
f = \sum_{j \in J} \Lambda_j^* \Gamma_j f = 0.
$$

Thus $\mathcal{H} = \overline{\text{span}} \{ \Gamma_j^*(W_j) \}_{j \in J}$. We now prove that $\{ \Gamma_j \}_{j \in J}$ is a *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$. For this, we show that $S_F^* f \to f$ for all $f \in \mathcal{H}$. First assume that f is a finite linear combination of $\{\Gamma_j^*g_j: g_j \in W_j, j \in J\}$, say $f = \sum_{j \in G} \Gamma_j^*g_j$ and let $F \supseteq G$ be a finite arbitrary set. Then by hypothesis for any $i, j \in J$ we have $\Gamma_j \Lambda_i^* \Gamma_i = \delta_{ij} \Gamma_i$ hence $\Gamma_i^* \Lambda_i \Gamma_j^* = \delta_{ij} \Gamma_i^*$. It follows that

$$
S_F^* f = \sum_{j \in G} S_F^* \Gamma_j^* g_j = \sum_{j \in G} \sum_{i \in F} \Gamma_i^* \Lambda_i \Gamma_j^* g_j = \sum_{j \in G} \Gamma_j^* g_j = f.
$$

Now if $f \in H$, then given $\varepsilon > 0$ we can find $g = \sum_{j \in G} \Gamma_j^* g_j$ such that $||f - g|| < \frac{\varepsilon}{M+1}$,

where $M = \sup_{P \subseteq J} o_{\leq |F| < \infty} ||S_F||$. We also have

$$
\|S^*_F f-f\|\leqslant \|S^*_F f-S^*_F g\|+\|g-f\|\leqslant (\|S_F\|+1)\|f-g\|<\varepsilon
$$

for every finite set $F \supseteq G$. Thus every $f \in H$ has at least one representation of the form $f = \sum_{j \in J} \Gamma_j^* \Lambda_j f$. We show that this representation is unique. Assume that $\sum_{j \in J} \Gamma_j^* g_j =$ 0 then by hypothesis for any $i, j \in J$ we have $\Gamma_j \Lambda_i^* \Lambda_i = \delta_{ij} \Lambda_i$ thus $\Lambda_i^* \Lambda_i \Gamma_j^* = \delta_{ij} \Lambda_i^*$. It follows that

$$
\Lambda_i^* g_i = \Lambda_i^* \Lambda_i \left(\sum_{j \in J} \Gamma_j^* g_j \right) = 0.
$$

Since Λ_i^* is one-to-one on W_i , therefore $g_i = 0$ for all $i \in J$. This completes the proof. ■ **Definition 2.4** Let $\{\Lambda_j\}_{j\in J}$ and $\{\Gamma_j\}_{j\in J}$ be sequences of operators for *H* with respect to $\{W_i\}_{i \in J}$.

- (*i*) Let Λ_j be onto for all $j \in J$, then ${\{\Gamma_j\}}_{j \in J}$ is called a *ov*-biorthogonal sequence of $\{\Lambda_j\}_{j\in J}$, if $\Gamma_i \Lambda_j^* g_j = \delta_{ij} g_j$ for all $i, j \in J$, $g_j \in W_j$.
- (iii) $\{\Lambda_j\}_{j\in J}$ is called minimal, if for each $j \in J$

$$
\Lambda_j^*(W_j)\cap \overline{\operatorname{span}}\{\Lambda_k^*(W_k)\}_{k\in J,\atop k\neq j}=\{0\}.
$$

(*iii*) We say that $\{\Lambda_j\}_{j\in J}$ is ω -independent if whenever $\sum_{j\in J} \Lambda_j^* g_j = 0$ for some sequence ${g_i : g_i \in W_i}_{i \in J}$, then necessarily $g_k = 0$ for all $k \in J$.

Since $\Lambda_j^*\Lambda_j\Gamma_i^* = \delta_{ij}\Lambda_j^*$ for all $i, j \in J$ and Λ_j^* is one-to-one on W_j hence if $\{\Gamma_j\}_{j \in J}$ is a *ov*-biorthogonal sequence of $\{\Lambda_j\}_{j\in J}$, then $\{\Lambda_j\}_{j\in J}$ is also a *ov*-biorthogonal sequence of $\{\Gamma_j\}_{j\in J}$.

Proposition 2.5 Let $\{\Lambda_j\}_{j\in J}$ be a sequence of operators for *H* with respect to $\{W_j\}_{j\in J}$ and let Λ_j be onto for all $j \in J$, then $\{\Lambda_j\}_{j \in J}$ is minimal if and only if it is *ω*-independent.

Proof. First assume that $\{\Lambda_j\}_{j\in J}$ is not *ω*-independent, then there is a sequence $\{g_j:$ $g_j \in W_j\}_{j \in J}$ with $g_k \neq 0$ for some $k \in J$, such that $\sum_{j \in J} \Lambda_j^* g_j = 0$. It follows $\Lambda_k^* g_k =$ $\sum_{\substack{j\in J,\ j\neq k}}\Lambda_j^*(-g_j)$ which implies that $\Lambda_k^*g_k\in \overline{\text{span}}\{\Lambda_j^*(W_j)\}_{j\in J,\ j\neq k}$. That is, $\{\Lambda_j\}_{j\in J}$ is not minimal. The other implication is obvious.

Proposition 2.6 Every *ov*-basis for a Hilbert space possesses a unique *ov*-biorthogonal sequence.

Proof. By definition, the dual *ov*-basis of a *ov*-basis is a *ov*-biorthogonal sequence of it. Moreover, if $\{\Gamma_j\}_{j\in J}$ and $\{\Psi_j\}_{j\in J}$ be *ov*-biorthogonal sequences of *ov*-basis $\{\Lambda_j\}_{j\in J}$, then for all $f \in \mathcal{H}$ and $i, j \in J$ we have $\Psi_i \Lambda_j^* \Gamma_j f = \delta_{ij} \Gamma_j f$, which implies that

$$
\Lambda_i^* \Psi_i f = \sum_{j \in J} \Lambda_i^* \Psi_i \Lambda_j^* \Gamma_j f = \sum_{j \in J} \delta_{ij} \Lambda_i^* \Gamma_j f = \Lambda_i^* \Gamma_i f.
$$

Since Λ_i^* is one-to-one on W_i , hence $\Gamma_i = \Psi_i$ *.* ■

Proposition 2.7 Let $\{\Lambda_j\}_{j\in J}$ be a sequence of operators for *H* with respect to $\{W_j\}_{j\in J}$, and let Λ_j be onto for all $j \in J$. Then

- (*i*) $\{\Lambda_j\}_{j\in J}$ has a *ov*-biorthogonal sequence, if and only if $\{\Lambda_j\}_{j\in J}$ is minimal.
- (*ii*) The *ov*-biorthogonal sequence of $\{\Lambda_j\}_{j\in J}$ is unique if and only if $\{\Lambda_j\}_{j\in J}$ is complete.

Proof. For the proof of (*i*) suppose that $\{\Gamma_j\}_{j\in J}$ is a *ov*-biorthogonal sequence of $\{\Lambda_j\}_{j\in J}$, and let $f \in \Lambda_k^*(W_k) \cap \overline{\text{span}}\{\Lambda_j^*(W_j)\}_{j\in J, \atop j\neq k}$ for any given $k \in J$. Then there exists a sequence $\{g_j: g_j \in W_j\}_{j\in J}$ such that $f = \Lambda_k^* g_k = \sum_{j \neq k} A_j^* g_j$. We also have

$$
g_k = \Gamma_k \Lambda_k^* g_k = \sum_{\substack{j \in J, \\ j \neq k}} \Gamma_k \Lambda_j^* g_j = \sum_{\substack{j \in J, \\ j \neq k}} \delta_{kj} g_j = 0,
$$

which implies that $f = 0$. That is, $\{\Lambda_j\}_{j \in J}$ is minimal. For the opposite implication in (i) , suppose that $\{\Lambda_j\}_{j\in J}$ is minimal, and let $\mathcal{H}_0 = \overline{\text{span}}\{\Lambda_j^*(W_j)\}_{j\in J}$. From Proposition 2.5 it follows that $\{\Lambda_j\}_{j\in J}$ is a *ov*-basis for \mathcal{H}_0 with respect to $\{W_j\}_{j\in J}$. Let $\{\Gamma'_j\}_{j\in J}$ be dual *ov*-basis of $\{\Lambda_j\}_{j\in J}$. If we define $\Gamma_j = \Gamma'_j P$ for all $j \in J$, where P is the orthogonal projection from *H* onto \mathcal{H}_0 . Then $\{\Gamma_j\}_{j\in J}$ is a *ov*-biorthogonal sequence for $\{\Lambda_j\}_{j\in J}$.

(ii) Let $\{\Gamma_j\}_{j\in J}$ be a *ov*-biorthogonal sequence of $\{\Lambda_j\}_{j\in J}$. If $\{\Lambda_j\}_{j\in J}$ is not complete, then the sequence ${\Psi_j}_{j \in J}$ defined by $\Psi_j = \Gamma_j + \Lambda_j (Id_{\mathcal{H}} - P)$ for all $j \in J$ is a *ov*biorthogonal sequence for $\{\Lambda_j\}_{j\in J}$. For the other implication in (ii) , assume that $\{\Lambda_j\}_{j\in J}$ is complete. If $\sum_{j\in J}\Lambda_j^*g_j=0$ for any given sequence $\{g_j: g_j\in W_j\}_{j\in J}$, then for every $k \in J$ we have

$$
g_k = \sum_{j \in J} \delta_{kj} g_j = \sum_{j \in J} \Gamma_k \Lambda_j^* g_j = \Gamma_k(\sum_{j \in J} \Lambda_j^* g_j) = 0.
$$

This shows that $\{\Lambda_j\}_{j\in J}$ is a *ov*-basis for *H* with respect to $\{W_j\}_{j\in J}$. Now the conclusion follows from Proposition 2.6.

Theorem 2.8 Let $\{\Lambda_j\}_{j\in J}$ be a *ov*-basis for *H* with respect to $\{W_j\}_{j\in J}$ and let *T* : $H \to U$ be a bounded linear operator such that $\Gamma_j = \Lambda_j T^*$ for all $j \in J$. Then $\{\Gamma_j\}_{j \in J}$ is a *ov*-basis for *U* with respect to $\{W_j\}_{j\in J}$ if and only if *T* is invertible.

Proof. Let *T* be invertible and let $g \in \mathcal{U}$, then we can write $g = Tf$ for some $f \in \mathcal{H}$. Since $\{\Lambda_i\}_{i \in J}$ is a *ov*-basis for *H* with respect to $\{W_i\}_{i \in J}$ hence $f \in H$ has an unique expansion of the form $f = \sum_{j \in J} \Lambda_j^* g_j$ where $g_j \in W_j$ for all $j \in J$. It follows that

$$
g = Tf = \sum_{j \in J} T\Lambda_j^* g_j = \sum_{j \in J} \Gamma_j^* g_j
$$

which implies that ${\{\Gamma_j\}}_{j\in J}$ is a *ov*-basis for *U* with respect to ${W_j\}_{j\in J}$. Now we assume $\{\Lambda_j\}_{j\in J}$ and $\{\Gamma_j\}_{j\in J}$ are *ov*-bases for H and U with respect to $\{W_j\}_{j\in J}$ respectively. Since for every sequence $\{g_j : g_j \in W_j\}_{j\in J}$ we have $T(\sum_{j\in J} \Lambda_j^* g_j) = \sum_{j\in J} \Gamma_j^* g_j$. Therefore T is invertible.

Definition 2.9 Let $\{\Lambda_j\}_{j\in J}$ and $\{\Gamma_j\}_{j\in J}$ be *ov*-bases for *H* and *U* with respect to ${W_j}_{j \in J}$ respectively. Then ${\{\Lambda_j\}_{j \in J}}$ and ${\{\Gamma_j\}_{j \in J}}$ are said to be equivalent if for any given sequence $\{g_j : g_j \in W_j\}_{j \in J}$ the series $\sum_{j \in J} \Lambda_j^* g_j$ is convergent if and only if the series $\sum_{j\in J} \Gamma_j^* g_j$ is convergent.

Theorem 2.10 Two ov-bases $\{\Lambda_j\}_{j\in J}$ and $\{\Gamma_j\}_{j\in J}$ for H and U with respect to $\{W_j\}_{j\in J}$ are equivalent if and only if there exists a bounded linear invertible operator $T : \mathcal{H} \to \mathcal{U}$ such that $\Gamma_j = \Lambda_j T^*$.

Proof. Assume that $T : \mathcal{H} \to \mathcal{U}$ be the bounded linear invertible operator such that $\Gamma_j = \Lambda_j T^*$ for all $j \in J$. Then the sufficiency follows from the fact that for every sequence ${g_j : g_j \in W_j}$ _{*j*} \in *j* we have

$$
\sum_{j\in J}\Gamma_j^*g_j=T\Big(\sum_{j\in J}\Lambda_j^*g_j\Big)\quad\text{and}\quad\sum_{j\in J}\Lambda_j^*g_j=T^{-1}\Big(\sum_{j\in J}\Gamma_j^*g_j\Big).
$$

Now suppose that $\{\Lambda_j\}_{j\in J}$ and $\{\Gamma_j\}_{j\in J}$ are equivalent *ov*-bases for *H* and *U* with respect to $\{W_j\}_{j\in J}$. If $f \in \mathcal{H}$ with unique expansion $f = \sum_{j\in J} \Lambda_j^* g_j$, then the series $\sum_{j\in J} \Gamma_j^* g_j$ converges to an element $Tf \in \mathcal{U}$. Therefore, Tf is well defined. Since Λ_j^* is one-to-one on W_j for all $j \in J$, hence it is easy to check that *T* is linear, bijective and $\Gamma_j = \Lambda_j T^*$. To show that T is a bounded invertible operator, we define operators T_F by $T_F f =$ $\sum_{f \in F} \Gamma_f^* g_j$ for every non-empty finite subset $F \subset J$. Then $T f = \lim_{f \in F} T_f f$ for every $f \in \mathcal{H}$. Since by Theorem 2.8 each T_F is bounded thus the Banach-Steinhaus Theorem implies that T is bounded. Moreover the open mapping Theorem guarantees that T is invertible.

Theorem 2.11 The *ov*-biorthogonal sequences associated with equivalent *ov*-bases are equivalent.

Proof. Let $\{\Lambda_j\}_{j\in J}$ and $\{\Gamma_j\}_{j\in J}$ be equivalent *ov*-bases for *H* and *U* with respect to ${W_i}_{i \in J}$ and let, ${\Psi_i}_{i \in J}$ and ${\Phi_i}_{i \in J}$ be *ov*-biorthogonal sequences for them respectively. By assumption there exists a bounded invertible operator $T : \mathcal{H} \to \mathcal{U}$ such that $\Gamma_j = \Lambda_j T^*$. For any $f \in \mathcal{H}$ we have

$$
f = T^{-1}Tf = T^{-1}\Big(\sum_{j\in J} \Gamma_j^* \Phi_j Tf\Big) = T^{-1}\Big(\sum_{j\in J} T\Lambda_j^* \Phi_j Tf\Big) = \sum_{j\in J} \Lambda_j^* \Phi_j Tf.
$$

By Proposition 2.6 it follows that $\Psi_j = \Phi_j T$ for all $j \in J$. that is ${\Psi_j}_{j \in J}$ and ${\Phi_j}_{j \in J}$ are equivalent.

For each sequence $\{W_i\}_{i\in J}$ of closed subspaces of K, we define the Hilbert space associated with ${W_i}_{i \in J}$ by

$$
\left(\sum_{j\in J}\oplus W_j\right)_{\ell^2} = \left\{\{g_j\}_{j\in J} | g_j \in W_j \text{ and } \sum_{j\in J} \|g_j\|^2 < \infty\right\}.\tag{6}
$$

with inner product given by

$$
\langle \{f_k\}_{k \in J}, \{g_k\}_{k \in J} \rangle = \sum_{j \in J} \langle f_j, g_j \rangle. \tag{7}
$$

Definition 2.12 Let $\{\Lambda_j\}_{j\in J}$ be a *ov*-basis for *H* with respect to $\{W_j\}_{j\in J}$. We say that $\{\Lambda_j\}_{j\in J}$ is a Bessel ov-basis if whenever $\sum_{j\in J}\Lambda_j^*g_j$ converges, then $\{g_j\}_{j\in J}\in$ $\left(\sum_{j\in J}\oplus W_j\right)_{\ell^2}$. It is called a Hilbert *ov*-basis, if the series $\sum_{j\in J}\Lambda_j^*g_j$ is convergent for all $\{g_j\}_{j\in J} \in \left(\sum_{j\in J} \oplus W_j\right)_{\ell^2}$.

Theorem 2.13 Let $\{\Lambda_i\}_{i\in J}$ be a *ov*-basis for H with respect to $\{W_i\}_{i\in J}$. Then $\{\Lambda_i\}_{i\in J}$ is a Bessel *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ if and only if there exists a constant $A > 0$ such that

$$
A\sum_{j\in F}||g_j||^2 \leq ||\sum_{j\in F} \Lambda_j^* g_j||^2
$$

for any finite subset $F \subset J$ and arbitrary vectors $g_j \in W_j$.

Proof. The sufficiency is trivial. Assume that $\{\Lambda_j\}_{j\in J}$ is a Bessel *ov*-basis and consider the space

$$
\mathcal{A} = \Big\{ \{g_j\}_{j \in J} | g_j \in W_j, \sum_{j \in J} \Lambda_j^* g_j \text{ is convergent} \Big\}.
$$

Clearly *A* is a subspace of $\left(\sum_{j\in J}\oplus W_j\right)_{\ell^2}$. We show that *A* is closed. To see this, let ${g_{nj}}_{j\in J}$ be a sequence in A such that converges to some ${g_j}_{j\in J} \in (\sum_{j\in J}\oplus W_j)_{\ell^2}$, then $g_{nj} \rightarrow g_j$ for all $j \in J$. Let *F* be an arbitrary finite subset of *J* and $n \in \mathbb{N}$, then we have

$$
\left\|\sum_{j\in F} \Lambda_j^* g_j\right\| \leqslant \left\|\sum_{j\in F} \Lambda_j^* (g_{nj}-g_j)\right\| + \left\|\sum_{j\in F} \Lambda_j^* g_{nj}\right\|.
$$

It follows that $\sum_{j \in J} \Lambda_j^* g_j$ is Cauchy and hence convergent in *H*, which implies that *A* is closed. Now define the operator $T : A \rightarrow \mathcal{H}$ by

$$
T(\{g_j\}_{j\in J})=\sum_{j\in J}\Lambda_j^*g_j.
$$

Then, it is obvious that *T* is linear, one-to-one. To show that *T* is a bounded operator, we define the bounded operators $T_F: \mathcal{A} \to \mathcal{H}$ by $T_F(\{g_j\}_{j \in J}) = \sum_{j \in F} \Lambda_j^* g_j$. Then $T_F \to T$ pointwise. Since each *T^F* is bounded the Banach-Steinhaus Theorem follows that *T* is bounded. Now by Theorems 4.13 and 4.15 of $[2]$ there exists a constant $A > 0$ such that

$$
A\sum_{j\in F}||g_j||^2 \leq ||\sum_{j\in F} \Lambda_j^* g_j||^2
$$

for any finite subset $F \subset J$ and arbitrary vectors $g_j \in W_j$.

Theorem 2.14 Let $\{\Lambda_j\}_{j\in J}$ be a *ov*-basis for H with respect to $\{W_j\}_{j\in J}$. Then $\{\Lambda_j\}_{j\in J}$ is a Hilbert *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$ if and only if there exists a constant $B > 0$ such that

$$
\left\| \sum_{j \in F} \Lambda_j^* g_j \right\|^2 \leq B \sum_{j \in F} \|g_j\|^2
$$

for any finite subset $F \subset J$ and arbitrary vectors $g_j \in W_j$.

Proof. Suppose that $\{\Lambda_i\}_{i \in J}$ is a Hilbert *ov*-basis then the Banach-Steinhaus Theorem guarantees that the operator $T : (\sum_{j\in J}\oplus W_j)_{\ell^2} \to \mathcal{H}$ defined by $T(\{g_j\}_{j\in J}) =$ $\sum_{j\in J} \Lambda_j^* g_j$ is bounded. Therefore there exists a constant $B > 0$ such that

$$
\left\| \sum_{j \in F} \Lambda_j^* g_j \right\|^2 \leq B \sum_{j \in F} \|g_j\|^2
$$

for any finite subset $F \subset J$ and arbitrary vectors $g_j \in W_j$. The opposite conclusion is trivial.

Theorem 2.15 Let $\{\Lambda_j\}_{j\in J}$ be a *ov*-basis for *H* with respect to $\{W_j\}_{j\in J}$, with dual ov-basis $\{\Gamma_j\}_{j\in J}$. Then $\{\Lambda_j\}_{j\in J}$ is a Bessel ov-basis if and only if $\{\Gamma_j\}_{j\in J}$ is a Hilbert *ov*-basis.

Proof. First suppose that $\{\Lambda_j\}_{j\in J}$ is a Bessel ov-basis, then $\{\Gamma_j f\}_{j\in J} \in (\sum_{j\in J} \oplus W_j)_{\ell^2}$ for all $f \in \mathcal{H}$. Fix $F \subset J$ with $|F| < \infty$ and let $f = \sum_{j\in F} \Gamma_j^* g_j$. Then we have

$$
\|\sum_{j\in F} \Gamma_j^* g_j\|^4 = |\langle f, \sum_{j\in F} \Gamma_j^* g_j \rangle|^2 \leq (\sum_{j\in F} \|\Gamma_j f\| \|g_j\|)^2
$$

$$
\leq (\sum_{j\in J} \|\Gamma_j f\|^2) (\sum_{j\in F} \|g_j\|^2).
$$

This shows that $\{\Gamma_j\}_{j\in J}$ is a Hilbert *ov*-basis. For the other implication, assume that $\{\Gamma_j\}_{j\in J}$ is a Hilbert *ov*-basis. Fix $F \subset J$ with $|F| < \infty$ and let $f = \sum_{j\in F} \Lambda_j^* g_j$, then $g_j = \Gamma_j f$ for all $j \in F$. By Theorem 2.14 there exists a constant $B > 0$ such that

$$
\left\| \sum_{j \in F} \Gamma_j^* \Gamma_j f \right\|^2 \leq B \sum_{j \in F} \|\Gamma_j f\|^2 = B < f, \sum_{j \in F} \Gamma_j^* \Gamma_j f > \\
\leq B \|f\| \|\sum_{j \in F} \Gamma_j^* \Gamma_j f\|.
$$

Hence,

$$
\big\|\sum_{j\in F}\Gamma_j^*\Gamma_jf\big\|\leqslant B\big\|\sum_{j\in F}\Lambda_j^*g_j\big\|.
$$

We also have

$$
\sum_{j \in F} ||g_j||^2 = \sum_{j \in F} ||\Gamma_j f||^2 = \langle f, \sum_{j \in F} \Gamma_j^* \Gamma_j f \rangle
$$

\$\leqslant \|\sum_{j \in F} \Lambda_j^* g_j\| \|\sum_{j \in F} \Gamma_j^* \Gamma_j f\| \leqslant B \|\sum_{j \in F} \Lambda_j^* g_j\|^2\$.

Now applying Theorem 2.13 the result follows at once. ■

3. Orthonormal *ov***-bases and Riesz** *ov***-bases**

In this section we give some characterizations of orthonormal *ov*-bases and Riesz *ov*bases in Hilbert spaces. For more details about the theory and applications of orthonormal *ov*-bases we refer the readers to [1].

Definition 3.1 Let ${\{\Xi_j\}}_{j \in J}$ be a sequence of operators for *H* with respect to ${W_j\}_{j \in J}$. Then

(*i*) $\{\Xi_j\}_{j\in J}$ is called an orthonormal *ov*-system for *H* with respect to $\{W_j\}_{j\in J}$, if:

$$
\Xi_i \Xi_j^* g_j = \delta_{ij} g_j \quad \forall i, j \in J, g_j \in W_j.
$$

(*ii*) ${\{\Xi_j\}}_{j\in J}$ is called an orthonormal *ov*-basis for *H* with respect to ${W_j\}_{j\in J}$ if it is a complete orthonormal *ov*-system for *H* with respect to $\{W_j\}_{j\in J}$.

Corollary 3.2 Let ${\{\Xi_j\}_{j\in J}}$ be an orthonormal *ov*-system for *H* with respect to ${W_j\}_{j\in J}$, then Ξ_j is onto and $\|\Xi_j\| = 1$ for all $j \in J$.

Proof. For any $j \in J$ and $g \in W_j$, we have $\Xi_j \Xi_j^* g = g$ which implies that Ξ_j is onto. We further have $\Xi_j \Xi_j^* \Xi_j = \Xi_j$. This shows that $\Xi_j^* \Xi_j$ is an orthogonal projection from *H* onto $\mathcal{R}_{\Xi_j^*}$ and hence $\|\Xi_j^*\Xi_j\| = 1$. This yields

$$
\|\Xi_j\|^2=\sup_{\|f\|=1}\|\Xi_j f\|^2=\sup_{\|f\|=1}<\Xi_j f,\Xi_j f>=\sup_{\|f\|=1}\|\Xi_j^*\Xi_j f\|^2=1
$$

Example 3.3 Let $\mathcal{H} = \mathcal{K} = \mathbb{C}^{N+1}$ and let $\{e_k\}_{k=1}^{N+1}$ be the standard basis of \mathbb{C}^{N+1} . For each $1 \leq j \leq N+1$ define the subspace $W_j \subset \mathcal{K}$ and the operator $\Xi_j : \mathcal{H} \to W_j$ by

$$
W_j = \text{span}\{\sum_{\substack{k=1\\k\neq j}}^{N+1} e_k\}, \quad \Xi_j(\{z_i\}_{i=1}^{N+1}) = \frac{z_j}{\sqrt{N}} \sum_{\substack{k=1\\k\neq j}}^{N+1} e_k.
$$

Then ${\{\Xi_j\}}_{j=1}^{N+1}$ is an orthonormal *ov*-basis for *H* with respect to ${W_j\}}_{j=1}^{N+1}$.

Corollary 3.4 Orthonormal *ov*-systems are *ω*-independent.

Proof. This follows immediately from the definition. ■

Theorem 3.5 Let ${\{\Xi_j\}}_{j \in J}$ be an orthonormal *ov*-system for *H* with respect to ${W_j\}_{j \in J}$, then the series $\sum_{j\in J}\Xi_{j}^{*}g_{j}$ converges if and only if $\{g_{j}\}_{j\in J}\in\left(\sum_{j\in J}\oplus W_{j}\right)_{\ell^{2}}$ and in that case

$$
\|\sum_{j\in J} \Xi_j^* g_j\|^2 = \sum_{j\in J} \|g_j\|^2.
$$

Proof. For any finite subset $F \subset J$ we have $\left\| \sum_{j \in F} \Xi_j^* g_j \right\|^2 = \sum_{j \in F} \|g_j\|^2$. From this the result follows.
 $\,$

Theorem 3.6 (Bessel's inequality) Let ${\{\Xi_j\}_{j\in J}}$ be an orthonormal *ov*-system for *H* with respect to ${W_j}_{j \in J}$. Then

$$
\sum_{j\in J}\|\Xi_j f\|^2\leqslant\|f\|^2
$$

for all $f \in \mathcal{H}$.

■

Proof. Let $f \in \mathcal{H}$. Fix $F \subset J$ with $|F| < \infty$. Then By Theorem 3.5 we have

$$
\left\|f - \sum_{j \in F} \Xi_j^* g_j\right\|^2 = \|f\|^2 - \sum_{j \in F} \langle \Xi_j f, g_j \rangle - \sum_{j \in F} \langle g_j, \Xi_j f \rangle + \sum_{j \in F} \|g_j\|^2
$$

$$
= \|f\|^2 - \sum_{j \in F} \|\Xi_j f\|^2 + \sum_{j \in F} \|\Xi_j f - g_j\|^2
$$

for arbitrary vectors $\{g_j : g_j \in W_j\}_{j \in F}$. In particular, if $g_j = \Xi_j f$, then

$$
||f - \sum_{j \in F} \Xi_j^* \Xi_j f||^2 = ||f||^2 - \sum_{j \in F} ||\Xi_j f||^2.
$$

From this we have $\sum_{j\in F} ||\Xi_j f||^2 \le ||f||^2$, which implies that $\sum_{j\in J} ||\Xi_j f||^2 \le ||f||^2$.

Corollary 3.7 Let ${\{\Xi_j\}_{j\in J}}$ be an orthonormal *ov*-system for *H* with respect to ${W_j\}_{j\in J}$, then for all $f \in \mathcal{H}$ the series $\sum_{j \in J} \Xi_j^* \Xi_j f$ convergent and

$$
||f - \sum_{j \in J} \Xi_j^* \Xi_j f||^2 \le ||f - \sum_{j \in J} \Xi_j^* g_j||^2
$$

for every $\{g_j\}_{j\in J} \in \left(\sum_{j\in J} \oplus W_j\right)_{\ell^2}$.

Theorem 3.8 Let $\Xi = {\{\Xi_i\}}_{i \in J}$ be an orthonormal *ov*-system for *H* with respect to ${W_i}_{i \in J}$. Then the following conditions are equivalent:

- (*i*) Ξ is an orthonormal *ov*-basis for \mathcal{H} with respect to $\{W_i\}_{i\in J}$.
- (iii) $f = \sum_{j \in J} \Xi_j^* \Xi_j f$ $\forall f \in \mathcal{H}$.
- (iii) $||f||^2 = \sum_{j \in J} ||\Xi_j^* \Xi_j f||^2 \quad \forall f \in \mathcal{H}$.
- (iv) $||f||^2 = \sum_{j\in J} ||\Xi_j f||^2$ $\forall f \in \mathcal{H}$.
- $(v) < f, g \geq \sum_{j \in J} \sum_{j \in J}$
- (*vi*) If $\Xi_i f = 0$ for all $j \in J$, then $f = 0$.

Proof. The implication $(i) \Rightarrow (ii)$ follows immediately from Corollary 3.7. To prove $(ii) \Rightarrow (iii)$ assume that $f \in \mathcal{H}$. Since Ξ is an orthonormal *ov*-system, hence $(\Xi_j^* \Xi_j)^2 f =$ $\Xi_j^* \Xi_j f$ for all $j \in J$. This yields

$$
||f||^2 = <\sum_{j\in J} \Xi_j^* \Xi_j f, f> = \sum_{j\in J} ||\Xi_j^* \Xi_j f||^2,
$$

which implies (*iii*). The implications (*iii*) \Rightarrow (*iv*) \Rightarrow (*v*) are clear. To prove (*v*) \Rightarrow (*vi*) assume that $\Xi_j f = 0$ for all $j \in J$, then we have $||f||^2 = \sum_{j \in J} ||\Xi_j f||^2 = 0$. It follows that $f = 0$. To prove $(vi) \Rightarrow (i)$ suppose that $f \perp \overline{\text{span}}{\{\Xi_j^*(W_j)\}_{j \in J}}$, then for every $j \in J$ we have $\|\Xi_j f\|^2 = \langle f, \Xi_j^* \Xi_j f \rangle = 0$ which implies that $f = 0$. Therefore $\mathcal{H} =$ $\overline{\operatorname{span}}\{\Xi_j^*$ (W_j) _{$j \in J$}.

Theorem 3.9 Let ${\{\Xi_j\}_{j\in J}}$ be an orthonormal *ov*-basis for *H* with respect to ${W_j\}_{j\in J}$ and let $T: \mathcal{H} \to \mathcal{U}$ be a bounded linear operator such that $\Xi'_j = \Xi_j T^*$ for all $j \in J$. Then ${\{\Xi'_j\}}_{j\in J}$ is an orthonormal *ov*-basis for *U* with respect to ${W_j\}_{j\in J}$ if and only if *T* is unitary.

Proof. First suppose that $\{\Xi'_j\}_{j\in J}$ is an orthonormal *ov*-basis for *H* with respect to *{W_j*}*j*∈*J*. Then by Theorem 3.8 for every *g* ∈ *U* we have

$$
||T^*g||^2 = \sum_{j \in J} ||\Xi_j T^*g||^2 = \sum_{j \in J} ||\Xi_j' g||^2 = ||g||^2.
$$

Hence *T* is co-isometry. We also see from Theorem 2.10 that *T* is unitary. Now if *T* is unitary then we have

$$
||g||^2 = ||T^*g||^2 = \sum_{j\in J} ||\Xi_j T^*g||^2 = \sum_{j\in J} ||\Xi_j' g||^2
$$

for all $g \in \mathcal{U}$. From this follows that $\{\Xi'_j\}_{j\in J}$ is an orthonormal *ov*-basis for \mathcal{U} with respect to ${W_i}_{i \in J}$.

Corollary 3.10 Let ${\{\Xi_j\}}_{j \in J}$ be an orthonormal *ov*-basis for *H* with respect to ${W_j}_{j \in J}$. Then the orthonormal *ov*-bases for *H* with respect to ${W_i}_{i \in J}$ are precisely the sets ${\{\Xi_j T\}}_{j \in J}$, where $T : \mathcal{H} \to \mathcal{H}$ is an unitary operator.

Corollary 3.11 Let $\{W_j\}_{j \in J}$ be a family of closed subspaces of H such that

$$
\sum_{j\in J} \|\pi_{W_j} f\|^2 = \|f\|^2 \quad \forall f \in \mathcal{H},
$$

where π_{W_j} is the orthogonal projections from *H* onto W_j . Then $\{\pi_{W_j}\}_{j\in J}$ is an orthonormal *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j\in J}$.

Proof. For each $j \in J$ and $g_j \in W_j$ we have

$$
||g_j||^2 = \sum_{i \in J} ||\pi_{W_i} g_j||^2 = ||g_j||^2 + \sum_{\substack{i \in J \\ i \neq j}} ||\pi_{W_i} g_j||^2
$$

which shows that $\pi_{W_i} g_j = \delta_{ij} g_j$. It follows that $\{\pi_{W_j}\}_{j \in J}$ is an orthonormal *ov*-system for *H* with respect to $\{W_j\}_{j\in J}$. Now the result follows from the Theorem 3.8.

In the following, we give some characterizations of Riesz *ov*-bases in Hilbert spaces.

Definition 3.12 A sequence of operators $\{\Lambda_j \in B(\mathcal{H}, W_j) : j \in J\}$ is called a Riesz *ov*-basis for *H* with respect to $\{W_j\}_{j\in J}$ if there is an orthonormal *ov*-basis $\{\Xi_j\}_{j\in J}$ for *H* with respect to ${W_i}_{i \in J}$ and a bounded invertible linear operator *T* on *H* such that $\Lambda_j = \Xi_j T^*$ for all $j \in J$.

Corollary 3.13 If $\{\Lambda_j\}_{j\in J}$ is a Riesz *ov*-basis for *H* with respect to $\{W_j\}_{j\in J}$. Then

$$
0 < \inf_{j \in J} \|\Lambda_j\| \leqslant \sup_{j \in J} \|\Lambda_j\| < \infty.
$$

Proof. According to the definition we can write $\{\Lambda_j\}_{j\in J} = \{\Xi_j T^*\}_{j\in J}$, where *T* is a bounded bijective operator and ${\{\Xi_j\}_{j\in J}}$ is an orthonormal *ov*-basis. By Corollary 3.2 for every $j \in J$ we have

$$
||T^{-1}||^{-1} \le ||\Lambda_j|| \le ||T||.
$$

From this the result follows.

Theorem 3.14 If $\{\Lambda_j\}_{j\in J} = \{\Xi_j T^*\}_{j\in J}$ is a Riesz *ov*-basis for *H* with respect to $\{W_j\}_{j\in J}$. Then $\{\frac{\Lambda_j}{\|\Lambda_j\|}$ $\frac{N_j}{\|\Lambda_j\|}\}_{j\in J}$ is also a Riesz *ov*-basis for *H* with respect to $\{W_j\}_{j\in J}$.

Proof. Define a mapping $S : \mathcal{H} \to \mathcal{H}$ by $Sf = \sum_{j \in J}$ $\Xi^{*}_j \Xi_j f$ *<u>¹_j* $\frac{1}{||\Lambda_j||}$ </u>. By Theorem 3.8 and Corollary 3.13 we have

$$
||T||^{-1}||f|| \le ||Sf|| \le ||T^{-1}|| ||f||,
$$

which implies that *S* is bounded and injective. Since *S* is self-adjoint hence *S* is invertible. Moreover, the operator $\Theta = TS$ is also bounded, invertible and we have

$$
\Xi_j \Theta^* = \Xi_j S T^* = \Big(\sum_{i \in J} \frac{\Xi_j \Xi_i^* \Xi_i}{\|\Lambda_j\|} \Big) T^*
$$

$$
= \Big(\sum_{i \in J} \frac{\delta_{ji} \Xi_i}{\|\Lambda_j\|} \Big) T^* = \frac{\Xi_j T^*}{\|\Lambda_j\|} = \frac{\Lambda_j}{\|\Lambda_j\|},
$$

for any $j \in J$. Consequently $\{\frac{\Lambda_j}{\|\Lambda_j\|}$ $\frac{N_j}{\| \Lambda_j \|}$ *}j*∈*J* is a Riesz *ov*-basis for *H* with respect to $\{W_j\}_{j \in J}$. ■

Corollary 3.15 Let $\{\Lambda_i\}_{i\in J}$ be a *ov*-basis for *H* with respect to $\{W_i\}_{i\in J}$, with dual *ov*-basis $\{\Gamma_j\}_{j\in J}$. Then $\{\Lambda_j\}_{j\in J}$ is a Riesz *ov*-basis for H with respect to $\{W_j\}_{j\in J}$ if and only if ${\{\Gamma_j\}}_{j \in J}$ is a Riesz *ov*-basis for *H* with respect to ${W_j\}_{j \in J}$.

Proof. This follows immediately from the definition and Theorem 2.11. ■

To check Riesz *ov*-baseness of a family of operators $\{\Lambda_j\}_{j\in J}$ for H with respect to ${W_i}_{i \in J}$, we derive the following useful characterization.

Theorem 3.16 Let $\{\Lambda_j\}_{j\in J}$ be a *ov*-basis for *H* with respect to $\{W_j\}_{j\in J}$, with dual *ov*-basis $\{\Gamma_i\}_{i \in J}$. Then the following conditions are equivalent:

- (*i*) The sequence $\{\Lambda_j\}_{j\in J}$ is a Riesz *ov*-basis for *H* with respect to $\{W_j\}_{j\in J}$.
- (*ii*) There is an equivalent inner product on H *,* with respect to which the sequence ${ \Gamma_i \}_{i \in J}$ becomes an orthonormal *ov*-basis for *H* with respect to ${ \{W_i\}_{i \in J} \}$.

Proof. (*i*) \Rightarrow (*ii*) Assume that $\{\Lambda_j\}_{j\in J}$ is a Riesz *ov*-basis for *H*, and write it in the form ${\{\Xi_j T^*\}}_{j \in J}$ as in the definition. Define a new inner product $\langle , , \rangle_T$ on $\mathcal H$ by

$$
\langle f, g \rangle_T = \langle T^* f, T^* g \rangle \quad \forall f, g \in \mathcal{H}.
$$

If $\|\cdot\|_T$ is the norm generated by this inner product, then for all $f \in \mathcal{H}$ we have

$$
||T^{-1}||^{-1}||f|| \le ||f||_T \le ||T|| ||f||,
$$

which implies that the new inner product is equivalent to the original one. By Theorem 2.11 for any $g \in \mathcal{K}$ and arbitrary vector $g_j \in W_j, i, j \in J$ we have

$$
\langle \Gamma_i \Gamma_j^* g_j, g \rangle = \langle \Gamma_j^* g_j, \Gamma_i^* g \rangle_{T} = \langle T^* \Gamma_j^* g_j, T^* \Gamma_i^* g \rangle
$$

=
$$
\langle \Xi_j^* g_j, \Xi_i^* g \rangle = \langle \Xi_i \Xi_j^* g_j, g \rangle = \langle \delta_{ij} g_j, g \rangle.
$$

Now the Corollary 3.15 follows that $\{\Gamma_j\}_{j\in J}$ is an orthonormal *ov*-basis for *H* with inner product $\langle \cdot, \cdot \rangle_T$ with respect to $\{W_j\}_{j \in J}$.

 $(iii) \Rightarrow (i)$ Suppose that $\langle , . \rangle_1$ is an equivalent inner product on $\mathcal H$ with respect to which ${\{\Gamma_j\}}_{j\in J}$ is an orthonormal *ov*-basis for *H* with respect to ${W_j\}_{j\in J}$. Therefore there exist positive constants *m, M* such that

$$
m||f|| \leq ||f||_1 \leq M||f|| \quad \forall f \in \mathcal{H}.
$$

By Theorem 3.5 we obtain

$$
\frac{1}{M^2} \sum_{j \in F} \|g_j\|^2 = \frac{1}{M^2} \left\| \sum_{j \in F} \Gamma_j^* g_j \right\|_1^2 \le \left\| \sum_{j \in F} \Gamma_j^* g_j \right\|^2
$$

$$
\le \frac{1}{m^2} \left\| \sum_{j \in F} \Gamma_j^* g_j \right\|_1^2 = \frac{1}{m^2} \sum_{j \in F} \|g_j\|^2,
$$

for any finite subset $F \subset J$ and arbitrary vectors $g_j \in W_j$. Now let ${\{\Xi_j\}}_{j\in J}$ be an arbitrary orthonormal *ov*-basis for *H* with respect to $\{W_j\}_{j\in J}$ and define the mapping

$$
T: \mathcal{H} \to \mathcal{H}
$$
, with $T\Xi_j^*g_j = \Gamma_j^*g_j$ $\forall g_j \in W_j$, $j \in J$.

Let $f \in \mathcal{H}$ with $f = \sum_{j \in J} \Xi_j^* g_j$, then we have

$$
\frac{1}{M^2}||f||^2 = \frac{1}{M^2}\sum_{j\in J}||g_j||^2 \le ||T(f)||^2 \le \frac{1}{m^2}\sum_{j\in J}||g_j||^2 = \frac{1}{m^2}||f||^2.
$$

It follows that *T* is invertible and $T\Xi_j^*\Xi_j = \Gamma_j^*\Xi_j$, which from this $\Xi_jT^* = \Gamma_j$ holds for all $j \in J$. Thus $\{\Gamma_j\}_{j \in J}$ is a Riesz *ov*-basis for \mathcal{H} with respect to $\{W_j\}_{j \in J}$. From this the result follows at once.

The next theorem was proved by Sun in [3] we prove this theorem with another way.

Theorem 3.17 Let $\{\Lambda_j\}_{j\in J}$ be a sequence of operators for *H* with respect to $\{W_j\}_{j\in J}$, then the following conditions are equivalent:

- (*i*) The sequence $\{\Lambda_j\}_{j\in J}$ is a Riesz *ov*-basis for *H* with respect to $\{W_j\}_{j\in J}$.
- (*ii*) The family $\{\Lambda_i\}_{i\in J}$ is a complete sequence for *H* with respect to $\{W_i\}_{i\in J}$ and there exist positive constants *A, B* such that for any finite subset $F \subset J$ and arbitrary vectors $g_j \in W_j$, we have

$$
A \sum_{j \in F} \|g_j\|^2 \leq \| \sum_{j \in F} \Lambda_j^* g_j \|^2 \leq B \sum_{j \in F} \|g_j\|^2.
$$

Proof. (*i*) \Rightarrow (*ii*) Assume that $\{\Lambda_i\}_{i\in J}$ is a Riesz *ov*-basis for *H*, and write it in the form ${\{\Xi_j T^*\}}_{j \in J}$ as in the definition. Then for any finite subset $F \subset J$ and arbitrary vectors $g_j \in W_j$ we have

$$
\frac{1}{\|T^{-1}\|^2} \sum_{j \in F} \|g_j\|^2 = \frac{1}{\|T^{-1}\|^2} \|\sum_{j \in F} \Xi_j^* g_j\|^2 \leqslant \|\sum_{j \in F} \Lambda_j^* g_j\|^2 \leqslant \|T\|^2 \sum_{j \in F} \|g_j\|^2.
$$

 $(iii) \Rightarrow (i)$ Let ${\{\Xi_j\}}_{j\in J}$ be an arbitrary orthonormal *ov*-basis for *H* with respect to ${W_i}_{i \in J}$ and define the mapping

$$
T: \mathcal{H} \to \mathcal{H}
$$
, with $T\Xi_j^*g_j = \Lambda_j^*g_j$ $\forall g_j \in W_j$, $j \in J$.

Suppose that $f \in \mathcal{H}$ with $f = \sum_{j \in J} \Xi_j^* g_j$, then we have

$$
A||f||^2 = A \sum_{j \in J} ||g_j||^2 \le ||T(f)||^2 \le B \sum_{j \in J} ||g_j||^2 = B||f||^2.
$$

From this and completeness of $\{\Lambda_j\}_{j\in J}$ follows that *T* is invertible and $T\Xi_j^*\Xi_j = \Lambda^*\Xi_j$, which implies that $\Xi_j T^* = \Lambda_j$ for all $j \in J$.

Let $\Lambda = {\Lambda_j}_{j \in J}$ be a *ov*-basis for $\mathcal H$ with respect to ${W_j}_{j \in J}$. If $f = \sum_{j \in J} {\Lambda_j^*} g_j$, then the coordinate representation of $f \in \mathcal{H}$ relative to the *ov*-basis Λ is $[f]_{\Lambda} = \{g_j\}_{j \in J}$.

Let $\Xi = {\{\Xi_j\}_{j \in J}, \Xi' = {\{\Xi'_i\}_{i \in I} \text{ be orthonormal } ov\text{-bases for }\mathcal{H} \text{ and }\mathcal{U} \text{ respectively.}}$ Then the matrix representation of the linear map $T : \mathcal{H} \to \mathcal{U}$ relative to the orthonormal ov-bases Ξ , Ξ' is the matrix $[T] = \{T_{ij}\}_{i \in I, j \in J}$ whose (i, j) entry is $T_{ij} = \Xi'_i T \Xi^*_j$ for all $i \in I, j \in J$. For any $f \in H$ we also have

$$
[Tf]_{\Xi'} = [T][f]_{\Xi}.
$$

Moreover, if *S*, *T* are linear maps on $\mathcal H$ represented by matrices [*S*], [*T*] respectively, then $S + T$ and *ST* is represented by the matrices $[S] + [T]$ and $[S][T]$ respectively. Further *T* is a invertible operator if and only if [*T*] is invertible.

Let $\Lambda = {\Lambda_j}_{j \in J} = {\Xi_j T^*}_{j \in J}$ be a Riesz *ov*-basis for \mathcal{H} with respect to ${W_j}_{j \in J}$. Then the analysis operator Θ_{Λ} of Λ is defined by

$$
\Theta_{\Lambda}: \mathcal{H} \to \left(\sum_{j\in J} \oplus W_j\right)_{\ell^2} \quad \text{with} \quad \Theta_{\Lambda}f = \{\Lambda_j f\}_{j\in J} \quad \forall f \in \mathcal{H}.
$$

It can easily be shown that Θ_{Λ} is linear, bounded and $\|\Theta_{\Lambda}\| \leq \|T\|$. The synthesis operator Θ_{Λ}^* which is the adjoint operator of Θ_{Λ} is given by

$$
\Theta^*_{\Lambda}: \left(\sum_{j\in J}\oplus W_j\right)_{\ell^2}\to \mathcal{H}\quad\text{with}\quad \Theta^*_{\Lambda}g=\sum_{j\in J}\Lambda^*_{j}g_{j}\quad\forall g=\{g_j\}_{j\in J}\in \left(\sum_{j\in J}\oplus W_j\right)_{\ell^2}.
$$

Example **3.18** For every sequence of closed subspaces $\{W_i\}_{i\in J}$ of K the sequence ${\{\Xi_j\}}_{j\in J}$ defined by

$$
\Xi_j g = g_j \quad \forall j \in J, \quad g = \{g_j\}_{j \in J} \in \left(\sum_{j \in J} \oplus W_j\right)_{\ell^2}
$$

is an orthonormal *ov*-basis for $\left(\sum_{j\in J}\oplus W_j\right)_{\ell^2}$ with respect to $\{W_j\}_{j\in J}$ which is called the standard orthonormal *ov*-basis of it.

Let $\Lambda = {\Lambda_i}_{i \in J}$ be a Riesz *ov*-basis for *H* with respect to ${W_i}_{i \in J}$. Then the matrix representing of the linear operator $\Theta_{\Lambda}\Theta_{\Lambda}^*$ relative to the standard orthonormal *ov*-basis of $\left(\sum_{j\in J}\bigoplus W_j\right)_{\ell^2}$ is the matrix $[\Theta_\Lambda\Theta_\Lambda^*] = {\Lambda_i\Lambda_j^*}_{i\in I,j\in J}$ which is called the Gram matrix associated with Λ.

Theorem 3.19 Let $\{\Lambda_j\}_{j\in J}$ be a sequence of operators for *H* with respect to $\{W_j\}_{j\in J}$, then the following conditions are equivalent:

- (*i*) The sequence $\{\Lambda_j\}_{j\in J}$ is a Riesz *ov*-basis for *H* with respect to $\{W_j\}_{j\in J}$.
- (*ii*) The family $\{\Lambda_j\}_{j\in J}$ is complete sequence for *H* with respect to $\{W_j\}_{j\in J}$ and its Gram matrix $\{\Lambda_i \Lambda_j^*\}_{i \in I, j \in J}$ defines a bounded, invertible operator on $\left(\sum_{j\in J}\oplus W_j\right)_{\ell^2}.$

Proof. (*i*) \Rightarrow (*ii*) Assume that $\{\Lambda_j\}_{j\in J} = \{\Xi_j T^*\}_{j\in J}$ is a Riesz *ov*-basis for *H* with respect to $\{W_j\}_{j\in J}$. If $G = \{G_{ij}\}_{i,j\in J}$ denotes the matrix of the invertible operator T^*T relative to ${\{\Xi_i\}}_{i \in J}$, then

$$
G_{ij} = \Xi_i T^* T \Xi_j^* = \Lambda_i \Lambda_j^*.
$$

Therefore the Gram matrix of $\{\Lambda_j\}_{j\in J}$ is *G*.

 $(iii) \Rightarrow (i)$ Suppose that Gram matrix of $\{\Lambda_j\}_{j\in J}$ defines a bounded, invertible operator on $(\sum_{j\in J}\oplus W_j)_{\ell^2}$. Let ${\{\Xi_j\}_{j\in J}}$ be an arbitrary orthonormal *ov*-basis for *H* with respect to ${W_i}_{i \in J}$ and define the mapping

$$
T: \mathcal{H} \to \mathcal{H}
$$
, with $T\Xi_j^*g_j = \sum_{i \in J} \Xi_i^* \Lambda_i \Lambda_j^* g_j \quad \forall g_j \in W_j, \ j \in J$.

It is straightforward that *T* is linear, bounded and invertible. Suppose that $f \in \mathcal{H}$ with $f = \sum_{j \in J} \Xi_j^* g_j$, then we have

$$
\langle Tf, f \rangle = \sum_{j \in J} \sum_{i \in J} \langle T\Xi_j^* g_j, \Xi_i^* g_i \rangle = \sum_{j \in J} \sum_{i \in J} \sum_{k \in J} \langle \Xi_i \Xi_k^* \Lambda_k \Lambda_j^* g_j, g_i \rangle
$$

$$
= \sum_{j \in J} \sum_{i \in J} \langle \Lambda_i \Lambda_j^* g_j, g_i \rangle = \Big\| \sum_{j \in J} \Lambda_j^* g_j \Big\|^2.
$$

Thus *T* is positive and self-adjoint. Since *T* is positive, it has a unique positive squareroot. Let *P* denote the square-root of *T*, then the above calculation follows that

$$
\frac{1}{\|T^{-1}\|} \sum_{j \in J} \|g_j\|^2 \leqslant \big\| \sum_{j \in J} \Lambda_j^* g_j \big\|^2 = \big\| P \big(\sum_{j \in J} \Xi_j^* g_j \big) \big\|^2 \leqslant \|T\|^2 \sum_{j \in J} \|g_j\|^2.
$$

Now the result follows from Theorem 3.17.

4. Stability of *ov***-bases under perturbations**

Stability of bases is important in practice and is therefore studied widely by many authors, e.g., see [4]. In this section we study the stability of *ov*-bases for a Hilbert space *H*. First we generalized a result of Paley-Wiener [4] to the situation of *ov*-basis.

Theorem 4.1 Let $\{\Lambda_j\}_{j\in J}$ be a *ov*-basis for H with respect to $\{W_j\}_{j\in J}$ and let $\{\Gamma_j\}_{j\in J}$ be a sequence of operators for *H* with respect to $\{W_j\}_{j\in J}$ such that

$$
\big\|\sum_{j\in F}(\Lambda_j^*g_j-\Gamma_j^*g_j)\big\|\leqslant\lambda\big\|\sum_{j\in F}\Lambda_j^*g_j\big\|
$$

for some constant $0 \leq \lambda < 1$ and each finite subset $F \subset J$ and arbitrary vectors $g_j \in W_j$. Then ${\{\Gamma_i\}}_{i\in J}$ is a *ov*-basis for *H* with respect to ${W_i\}_{i\in J}$.

Proof. By assumption the series $\sum_{j\in J} (\Lambda_j^* g_j - \Gamma_j^* g_j)$ is convergent whenever the series $\sum_{j\in J} \Lambda_j^* g_j$ is convergent for all arbitrary vectors $g_j \in W_j$. If we define the mapping

$$
T: \mathcal{H} \to \mathcal{H}
$$
, with $T\Lambda_j^*g_j = \Lambda_j^*g_j - \Gamma_j^*g_j$ $\forall g_j \in W_j$, $j \in J$.

Then *T* is a bounded operator and $||T|| \leq \lambda < 1$. Thus the operator $Id_{\mathcal{H}} - T$ is invertible and we have $(Id_{\mathcal{H}} - T)\Lambda_j^*\Lambda_j = \Gamma_j^*\Lambda_j$, consequently $\Lambda_j^*\Lambda_j(Id_{\mathcal{H}} - T^*) = \Lambda_j^*\Gamma_j$. Since Λ_j^* is one-to-one on W_j , thus $\Lambda_j(Id_{\mathcal{H}} - T^*) = \Gamma_j$. Now the conclusion follows from Theorem $2.8.$

Corollary 4.2 Let $\{\Lambda_j\}_{j\in J}$ be a *ov*-basis for *H* with respect to $\{W_j\}_{j\in J}$, with dual *ov*basis $\{\Psi_j\}_{j\in J}$ and let $\{\Gamma_j\}_{j\in J}$ be a sequence of operators for H with respect to $\{W_j\}_{j\in J}$ such that

$$
\sum_{j\in J} \|\Lambda_j - \Gamma_j\| \|\Psi_j\| < 1.
$$

Then ${\{\Gamma_j\}}_{j\in J}$ is a *ov*-basis for *H* with respect to ${W_j\}_{j\in J}$.

Proof. If $\lambda = \sum_{j \in J} ||\Lambda_j - \Gamma_j|| ||\Psi_j||$, then $0 \le \lambda < 1$. Fix $F \subset J$ with $|F| < \infty$ and let $f = \sum_{j \in F} \Lambda_j^* g_j$ for arbitrary vectors $g_j \in W_j$. Then we compute

$$
\begin{aligned}\n\left\|\sum_{j\in F} (\Lambda_j^* g_j - \Gamma_j^* g_j)\right\| &= \left\|\sum_{j\in F} (\Lambda_j^* - \Gamma_j^*) \Psi_j f\right\| \\
&\leqslant \sum_{j\in F} \|(\Lambda_j^* - \Gamma_j^*) \Psi_j f\| \\
&\leqslant \sum_{j\in J} \|\Lambda_j - \Gamma_j\| \|\Psi_j\| \|f\| = \lambda \|\sum_{j\in F} \Lambda_j^* g_j\|. \n\end{aligned}
$$

From this the result follows by Theorem 4.1.

In the following we generalized a result of Krein-Milman-Rutman [4] to the situation of *ov*-basis.

Theorem 4.3 Let $\{\Lambda_i\}_{i\in J}$ be a *ov*-basis for H with respect to $\{W_i\}_{i\in J}$ and let $\{\Gamma_i\}_{i\in J}$ be a sequence of operators for *H* with respect to ${W_i}_{i \in J}$. If there exists a sequence $\{\varepsilon_j\}_{j\in J}$ of positive numbers, such that $\|\Lambda_j - \Gamma_j\| < \varepsilon_j$ for all $j \in J$. Then $\{\Gamma_j\}_{j\in J}$ is a *ov*-basis for *H* with respect to $\{W_i\}_{i \in J}$.

Proof. If ${\{\Psi_j\}_{j \in J}}$ is the dual *ov*-basis of ${\{\Lambda_j\}_{j \in J}}$. Then the result follows from Corollary 4.2, to choose ε_j small enough such that $\sum_{j \in J} \varepsilon_j \|\Psi_j\| < 1$.

References

- [1] M. S. Asgari, H. Rahimi, Generalized frames for operators in Hilbert spaces, Inf. Dim. Anal. Quant. Probab. Rel. Topics, Vol. 17, No. 2, (2014), 1450013-1 - 1450013-20.
- [2] W. Rudin, Functional Analysis,*McGrawHill. Inc, New York*, (1991).
- [3] W. Sun, G-frames and G-Riesz bases, *J. Math. Anal. Appl.* (2006), **322**, 437-452.
- [4] R. Young, An Introduction to Nonharmonic Fourier Series, *Academic Press, New York*, (2001).