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Abstract. This paper continues the investigation of the first author begun in part one. The
hereditary properties of n-homomorphism amenability for Banach algebras are investigated
and the relations between n-homomorphism amenability of a Banach algebra and its ide-
als are found. Analogous to the character amenability, it is shown that the tensor product
of two unital Banach algebras is n-homomorphism amenable if and only if each one is n-
homomorphism amenable.
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1. Introduction

In [6], Kaniuth, Lau and Pym introduced and investigated a large class of Banach algebras
which they called ϕ-amenable Banach algebras (see also [7]) . Let ∆(A) be the set
of all nonzero homomorphisms (characters) from a Banach algebra A onto C. Given
ϕ ∈ ∆(A), a Banach algebra A is said to be ϕ-amenable if there exists m ∈ A∗∗ such
that ⟨m,ϕ⟩ = 1 and ⟨m, f ·a⟩ = ϕ(a)⟨m, f⟩ for all f ∈ A∗ and a ∈ A. Moreover, the notion
of (right) character amenability was introduced and studied by Monfared [8]. Character
amenability of A is equivalent to A being ϕ-amenable for all ϕ ∈ ∆(A) and A having

∗Corresponding author.
E-mail address: abasalt.bodaghi@gmail.com (A. Bodaghi).

Print ISSN: 2252-0201 c⃝ 2013 IAUCTB. All rights reserved.
Online ISSN: 2345-5934 http://jlta.iauctb.ac.ir



192 A. Bodaghi et al. / J. Linear. Topological. Algebra. 02(04) (2013) 191-200.

a bounded right approximate identity. One of the fundamental results of Monfared was
that the group algebra L1(G) is a (right) character amenable Banach algebra if and only
if G is an amenable locally compact group. For ϕ ∈ ∆(A), Hu et al. [5] introduced and
studied the notion of ϕ-contractibility of A. In fact, A is called ϕ-contractible if there
exists a (right) ϕ-diagonal for A; that is, an element m in the projective tensor product
A⊗̂A such that ϕ(π(m)) = 1 and a · m = ϕ(a)m for all a ∈ A, where π denotes the
product morphism from A⊗̂A into A given by π(a⊗ b) = ab for all a, b ∈ A.

Let n ∈ N and let A be a Banach algebra. A linear map φ : A −→ C is called
n-homomorphism if φ(a1a2 · · · an) = φ(a1)φ(a2) · · ·φ(an) for all a1, a2, ..., an ∈ A. We
denote the set of all nonzero n-homomorphisms from A to C by ∆(n)(A). It is clear
that every character on A belongs to ∆(n)(A), but the converse is not true, in general.
However, each element of ∆(n)(A) can induces a character on A [1, Theorem 2.3]. Let
m ∈ A∗∗. Consider ϕ ∈ ∆(n)(A) such that ϕ(u) = 1 for some u ∈ A. Then m is said to be
n-ϕ-mean on A∗ (at u) if m(ϕ) = 1 and m(f ·a) = ϕ(una)m(f) for all f ∈ A∗ and a ∈ A.
A is called n-ϕ-amenable if there exists a n-ϕ-mean m on A∗. We say A is n-0-amenable
if H1(A, X∗) = {0}, for any Banach A-bimodule X for which the left action of A on X is
zero, where H1(A, X∗) is the first cohomology group of A with coefficients in X∗. Also A
is called n-homomorphism amenable if A is called n-ϕ-amenable for all ϕ ∈ ∆(n)(A)∪{0}.
The first author [1] showed that L1(G) is a n-homomorphism amenable if and only if G
is an amenable locally compact group.

In this paper we study the hereditary properties of n-homomorphism amenability for a
Banach algebra. We also introduce the concept of n-φ-contractibility for Banach algebras
and charactrize such Banach algebras.

2. Main Results

Let A be a Banach algebra, and X be a Banach A-bimodule. A bounded linear map
D : A −→ X is called a derivation if D(ab) = D(a) · b + a · D(b), for all a, b ∈ A. For
each x ∈ X, we define a map Dx : A −→ X by

Dx(a) = a · x− x · a (a ∈ A).

It is easy to see that Dx is a derivation. Derivations of this form are called inner deriva-
tions [4].

Let X be a Banach A-bimodule. Then the dual space X∗ of X is also a Banach
A-bimodule by the following module actions:

⟨a · f, x⟩ = ⟨f, x · a⟩ , ⟨f · a, x⟩ = ⟨f, a · x⟩, (a ∈ A, x ∈ X, f ∈ X∗).

A Banach algebra A is said to be amenable if every continuous derivation from A into
X∗ is inner, for every Banach A-bimodule X.

Let φ ∈ ∆(n)(A) and take u ∈ A such that φ(u) = 1. If X is a Banach space, then X
is a left Banach A-module by the following action:

a · x = φ(una)x (a ∈ A, x ∈ X). (1)

Note that in this case, the right action of A on the dual A-bimodule X∗ is defined by
f · a = φ(una)f for all a ∈ A and f ∈ X∗.

From now on, we assume that A∗∗, the second dual of the Banach algebra A, is
equipped with the first Arens product [2]. The canonical images of a ∈ A and A in

A∗∗ will be denoted by â and Â, respectively. It is proved in [3, Theorem 4.1] that if
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φ ∈ ∆(n)(A), then φ∗∗ ∈ ∆(n)(A∗∗). Therefore each φ ∈ ∆(n)(A) extends uniquely to
element φ̃ = φ∗∗ ∈ ∆(n)(A∗∗). It is well-known that kerφ is weak∗-dense in kerφ∗∗ and
kerφ∗∗ = (kerφ)∗∗ (for further details refer to [2]).

One should remember that if φ is a nonzero multiplicative linear functional on A,
then the left module structure (1) and the definition of n-φ-mean (n-homomorphism
amenability) and φ-amenability (Character amenability) of A coincide (see [6] and [8]).

Theorem 2.1 Let A be a Banach algebra and φ ∈ ∆(n)(A) such that φ(u) = 1. Then
the following are equivalent:

(i) A is n-φ-amenable ( at u);
(ii) If X is a Banach A-bimodule in which the left action is given by a ·x = φ(un a)x,

for all a ∈ A and x ∈ X, then H1(A, X∗) = {0};
(iii) If A acts on (kerφ)∗ from left as a ·f = φ(una)f for all f ∈ (kerφ)∗ and naturally

from right, then every continuous derivation from A into kerφ∗∗ is inner.

Proof. The equivalence of (i) and (ii) has been shown in [1, Theorem 2.1]. The impli-
cation (ii)=⇒(iii) is trivial. For (iii)=⇒(i), define an A-bimodule structure on X = A
by a · x = ax and x · a = φ(una)x for every a ∈ A and x ∈ X. Therefore A∗ is an
A-bimodule such that a · f = φ(una)f and f · a is as usual for every f ∈ A∗ and a ∈ A.
Also the A-bimodule structure on A∗∗ is defined by m · a = φ(una)m and a · m is as
usual for every m ∈ A∗∗ and a ∈ A. It is easy to check that kerφ is an A-submodule of
X and (kerφ)⊥ is an A-submodule of A∗ and (kerφ)∗ ∼= A∗

(kerφ)⊥ . So for any g ∈ (kerφ)∗,

a · g = φ(una)g and the right action is the natural one. Define D : A −→ A∗∗ through

D(a) = a · ûn − ûn · a = âun − φ(una)ûn = (aun − φ(una)un)̂ .

Therefore D is a derivation. We have

φ(aun − φ(una)un) = φ(aun)− φ(una)φ(un) = φ(aun)− φ(una) = 0.

So aun − φ(una)un ∈ kerφ and thus D(a) ∈ kerφ∗∗. This shows that D is a derivation
from A into kerφ∗∗. By hypothesis there is p ∈ kerφ∗∗ such that D(a) = a · p − p · a =
a ·p−φ(una)p for all a ∈ A. Let m = ûn−p ∈ A∗∗. Then a ·m = m ·a = φ(una)m where
a ∈ A. So for each f ∈ A∗ and a ∈ A, we have m(f ·a) = (a ·m)(f) = φ(una)m(f). Also,

m(φ) = ûn(φ)− p(φ) = φ(un)− p(φ) = φ(u)n = 1.

Therefore m is a n-φ-mean on A (at u). This completes the proof. ■

It is shown in [1] that the definition of n-ϕ-amenability is independent from the choice
of u and it is enough that the above Theorem holds for some u ∈ A with ϕ(u) = 1.

Proposition 2.2 Let A be a Banach algebra and φ ∈ ∆(n)(A) such that φ(u) = 1.
Then A is n-φ-amenable if and only if there exists a bounded net (uα)α in A such that
∥auα − φ(una)uα∥ → 0 for all a ∈ A and φ(uα) = 1 for all α.

Proof. It is similar to the proof of [6, Theorem 1.4] with some modifications. ■

For any Banach algebra A and Banach A-bimodule X, consider the following set

Z(A, X∗) = {f ∈ X∗ : a · f = f · a for all a ∈ A}.
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The proof of the next result is similar to the proof of implication (i)⇒ (ii) from [6,
Theorem 1.5], so it is omitted.

Proposition 2.3 Let A be a Banach algebra and φ ∈ ∆(n)(A) such that φ(u) = 1. If
A is n-φ-amenable then for any Banach A-bimodule X such that a · x = φ(una)x for
all x ∈ X and a ∈ A and any Banach submodule Y of X, every element of Z(A, Y ∗)
extends to some element of Z(A, X∗).

Let A be a unital Banach algebra with identity e and φ ∈ ∆(n)(A). Then φ(e)n−1 = 1,

and thus φ(e) = ωk for some k where 0 ⩽ k < n− 1 in which ωk = e
2kπ

n−1
i is the (n− 1)-th

root of 1.
Let A and B be Banach algebras and A⊗̂B be the projective tensor product of A and

B. For φ ∈ ∆(n)(A) and ψ ∈ ∆(n)(B), consider φ ⊗ ψ by (φ ⊗ ψ)(a ⊗ b) = φ(a)ψ(b) for
all a ∈ A and b ∈ B. It is clear that φ⊗ψ ∈ ∆(n)(A⊗̂B). Now, suppose that A and B are
unital with identities eA and eB, respectively. Let f ∈ ∆(n)(A⊗̂B). Define φ,ψ : A −→ C
by φ(a) := f(a⊗ eB) and ψ(b) := [f(eA ⊗ eB)]

n−2f(eA ⊗ b) for all a ∈ A and b ∈ B. One
can easily check that φ ∈ ∆(n)(A) and ψ ∈ ∆(n)(B). Since f is a n-homomorphism, for
each a1, . . . , an ∈ A, we can write

φ(a1 · · · an) = f(a1 · · · an ⊗ eB) = f(a1 ⊗ eB) · · · f(an ⊗ eB) = φ(a1) · · ·φ(an)

and

ψ(b1 · · · bn) = [f(eA ⊗ eB)]
n−2f(eA ⊗ b1 · · · bn)

= [f(eA ⊗ eB)]
(n−1)(n−2)[f(eA ⊗ eB)]

n−2f(eA ⊗ b1 · · · bn)

= [f(eA ⊗ eB)]
(n)(n−2)f(eA ⊗ b1) · · · f(eA ⊗ bn)

= ψ(b1) · · ·ψ(bn)

for all b1, . . . , bn ∈ B. On the other hand, we have

(φ⊗ ψ)(a⊗ b) = φ(a)ψ(b) = f(a⊗ eB)[f(eA ⊗ eB)]
n−2f(eA ⊗ b) = f(a⊗ b).

Summing up:

∆(n)(A⊗̂B) = {φ⊗ ψ : φ ∈ ∆(n)(A), ψ ∈ ∆(n)(B)}.

The following theorem shows that n-φ⊗ ψ-amenability of A⊗̂B (at u⊗ v) is equivalent
to n-φ-amenability of A (at u) and n-ψ-amenability of B (at v). The idea of the proof is
taken from [6, Theorem 3.3].

Theorem 2.4 Let A and B be unital Banach algebras, let φ ∈ ∆(n)(A) and ψ ∈ ∆(n)(B)
such that φ(u) = 1 and ψ(v) = 1 for some u ∈ A and v ∈ B. Then A⊗̂B is n-φ ⊗ ψ-
amenable ( at u⊗ v) if and only if A is n-φ-amenable ( at u) and B is n-ψ-amenable ( at
v).

Proof. First, assume that m is an n-φ⊗ψ-mean on (A⊗̂B)∗ (at u⊗ v). Define m̄ ∈ A∗∗

by m̄(f) = m(f ⊗ ψ), where f ∈ A∗. Then m̄(φ) = m(φ ⊗ ψ) = 1. We know that
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ψ · vn−1 = ψ. Therefore

m̄(f · a) = m(f · a⊗ ψ) = m(f · a⊗ ψ · vn−1)

= m((f ⊗ ψ) · (a⊗ vn−1))

= φ(una)ψ(vnvn−1)m(f ⊗ ψ)

= φ(una)m̄(f)

for every f ∈ A∗ and a ∈ A. Note that we have used the equality ψ(vnvn−1) = ψ(vn) = 1
in the above statements. Hence A is n-φ-amenable. Similarly, one can show that B is
n-ψ-amenable.

Conversely, let A be n-φ- amenable and let B be n-ψ-amenable. To prove the n-φ⊗ψ-
amenability of A⊗̂B, we can assume that A and B are unital algebras with identities
eA and eB, respectively. By Theorem 2.1, (ii)=⇒(i) it suffices to show that if X is a
Banach A⊗̂B-bimodule such that (a ⊗ b) · x = φ(una)ψ(vnb)x for all x ∈ X, a ∈ A
and b ∈ B, then H1(A⊗̂B, X∗) = {0}. Let D : A⊗̂B −→ X∗ be a continuous derivation
from A⊗̂B into X∗. Then it is obvious that the mapping DA : A −→ X∗ defined by
DA(a) = D(a ⊗ eB) is a continuous derivation of A into X∗. Since A is n-φ-amenable,
by Theorem 2.1, (i)=⇒(ii) there exists f ∈ X∗ such that

DA(a) = Df (a⊗ eB) = (a⊗ eB) · f − f · (a⊗ eB)

for every a ∈ A. Then D̃ = D − Df vanishes on A ⊗ eB. Since A ⊗ eB and eA ⊗ B
commute,

(a⊗ eB) · D̃(eA ⊗ b) = D̃(a⊗ b) = D̃(eA ⊗ b) · (a⊗ eB)

for all a ∈ A and b ∈ B. Therefore Dg(A⊗ eB) = {0} for every g ∈ D̃(eA ⊗ B), the w∗-

clousre of D̃(eA⊗B) in X∗. Now, let Y be the annihilator of D̃(eA⊗B) in X. Considering
X as a Banach B-bimodule (as we did with A above), Y is a B-submodule. Indeed, for
y ∈ Y and b1, b2 ∈ B we can write

⟨D̃(eA ⊗ b1), (eA ⊗ b2) · y⟩ = ⟨ψ(vnb2)D̃(eA ⊗ b1), y⟩ = 0

and

⟨D̃(eA ⊗ b1), y · (eA ⊗ b2)⟩ = ⟨(eA ⊗ b2) · D̃(eA ⊗ b1), y⟩

= ⟨D̃(eA ⊗ b2b1), y⟩ − ⟨D̃(eA ⊗ b2) · (eA ⊗ b1), y⟩

= −⟨D̃(eA ⊗ b2), (eA ⊗ b1) · y⟩ = 0.

Hence, X/Y is a Banach B-bimodule satisfying b · (x + Y ) = ψ(vnb)(x + Y ), x ∈ X,

b ∈ B and (X/Y )∗ = D̃(eA ⊗ B). Since the restriction of D̃ to eA ⊗ B, that is D̃|eA⊗B

defines a continuous derivation from B into D̃(eA ⊗ B) and B is n-ψ-amenable, there is

g ∈ D̃(eA ⊗ B) ⊆ X∗ such that

D̃(eA ⊗ b) = Dg(eA ⊗ b) = (eA ⊗ b) · g − g · (eA ⊗ b)

for all b ∈ B. Also g ∈ D̃(eA ⊗ B) implies that Dg|A⊗eB = 0. Thus, D̃−Dg is a continuous
derivation of A⊗̂B that vanishes on A ⊗ eB and on eA ⊗ B. Since (A ⊗ eB) ∪ (eA ⊗ B)
generates A⊗̂B, it follows that D̃ − Dg vanishes on all of A⊗̂B. This shows that D =
Df +Dg = Df+g, as required. Thus, A⊗̂B is n-φ⊗ ψ-amenable (at u⊗ v). ■
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Note that in the first part of the above proof, algebras being unital are not necessary.
In analogy with φ-amenability, we have the following theorem for n-φ-amenability of the
homomorphic image.

Theorem 2.5 Let A and B be Banach algebras and h : A −→ B be a continuous
homomorphism with dense range. If φ ∈ ∆(n)(B) and A is n-φ◦h-amenable ( at u), then
B is n-φ-amenable (at h(u)).

Proof. Let m ∈ A∗∗ satisfying m(φ◦h) = 1 and m(f ·a) = (φ◦h)(una)m(f) for all f ∈
A∗ and a ∈ A. Define m′ ∈ B∗∗ by m′(g) = m(g◦h), g ∈ B∗. Then m′(φ) = m(φ◦h) = 1.
Since h(A) is dense in B, we have m′(g · b) = φ((h(u))nb)m′(g) for all b ∈ B and g ∈ B∗.
It suffices to verify this equation for b of the form b = h(a), a ∈ A. Now we have

⟨(g · h(a)) ◦ h, a′⟩ = ⟨g, h(a)h(a′)⟩ = ⟨g ◦ h, aa′⟩ = ⟨(g ◦ h) · a, a′⟩

for all a, a′ ∈ A and thus

m′(g · b) = m′(g · h(a)) = m((g · h(a)) ◦ h)

= m((g ◦ h) · a) = (φ ◦ h)(una)m(g ◦ h)

= φ(h(una))m(g ◦ h) = φ((h(u))nh(a))m(g ◦ h)

= φ((h(u))nb)m′(g)

for all g ∈ B∗ and a ∈ A, as required. ■

Corollary 2.6 Let A be a Banach algebra and I be an ideal in A. If A is a n-
homomorphism amenable, then so is A/I.

The following proposition shows the relationship between n-φ-amenability of a Banach
algebra and its second dual. As we saw already, φ ∈ ∆(n)(A) extends uniquely to φ̃ ∈
∆(n)(A∗∗).

Proposition 2.7 Let A be a Banach algebra and φ ∈ ∆(n)(A). Then A is n-φ-amenable
if and only if A∗∗ is n-φ̃-amenable.

Proof. Let m be an n-φ-mean on A∗ (at u). For each p ∈ A∗∗ and λ ∈ A∗∗∗, take

bounded nets (aj) ∈ A and (fk) ∈ A∗ with âj
w∗

−−→ p and f̂k
w∗

−−→ λ. We identify m as an
element m̂ ∈ A∗∗∗∗. Thus m̂(φ̃) = 1 and

⟨m̂, λ · p⟩ = ⟨λ, p ·m⟩ = lim
k
⟨p ·m, fk⟩ = lim

k
⟨p,m · fk⟩

= lim
k

lim
j
⟨m · fk, aj⟩ = lim

k
lim
j
⟨m, fk · aj⟩

= lim
k

lim
j
φ(unaj)⟨m, fk⟩ = lim

j
φ(unaj) lim

k
⟨m, fk⟩

= φ̃(unp)⟨m̂, λ⟩.

Consequently, A∗∗ is n-φ̃-amenable.
Conversely, suppose that Φ ∈ A∗∗∗∗ satisfies Φ(φ̃) = 1 and Φ(λ · p) = φ̃(unp)Φ(λ) for

all p ∈ A∗∗ and λ ∈ A∗∗∗. Then, the restriction of Φ to A∗ is an n-φ-mean on A∗. ■

To prove the next theorem, we need the following lemma.
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Lemma 2.8 Let A be a Banach algebra and I be a closed ideal of A. If φ ∈ ∆(n)(A)
such that φ̄ = φ|I ̸= 0, then n-φ-amenability of A implies n-φ̄-amenability of I.

Proof. Since φ|I ̸= 0, there is x ∈ I such that φ(x) = 1. By the paragraph after Theorem
2.1 in [1], we can suppose that u ∈ I. Assume that m ∈ A∗∗ is n-φ-mean on A∗ (at u).
Then m(f · a) = 0 for all a ∈ I and f ∈ I⊥ (since f · a = 0), that is, φ(una)m(f) = 0.

It follows from φ(u2) ̸= 0 and φ|I ̸= 0 that m(f) = 0 for all f ∈ I
⊥
. Thus m gives rise

to a bounded linear functional m̃ on I∗ defined by m̃(g) = m(f), for g ∈ I∗, where f is
an arbitrary element of A∗ extending g. We have m̃(φ̄) = m(φ) = 1. For any g ∈ I∗ and
a ∈ I

m̃(g · a) = m(f · a) = φ(una)m(f) = φ(una)m̃(g).

Note that in the above equalities, (f · a)|I = g · a. Therefore I is n-φ̄-amenable. ■

Theorem 2.9 Suppose that A is a n-homomorphism amenable Banach algebra and I is
a closed ideal of A. Then, I is n-homomorphism amenable if and only if I has a bounded
right approximate identity.

Proof. It is well-known that the existence of a bounded right approximate identity for
A is equivalent to H1(A, X∗) = {0} for every Banach A-bimodule X for which the left
module action of A is a.x = 0. For the converse, let I have a bounded right approximate
identity (aj). In view of Lemma 2.8 it is sufficient to show that every ψ ∈ ∆(n)(I) extends

to some ψ̃ ∈ ∆(n)(A). The kernel of ψ, say J , is a closed right ideal in A. If x ∈ J and
a ∈ A, then xa = limxaan−1

j . We also have ψ(xaan−1
j ) = ψ(x)ψ(aaj)ψ(aj)

n−2 = 0. Thus

xaan−1
j ∈ J and so xa ∈ J .

Let u ∈ I such that ψ(u) = 1. Then un−1 is an identity of I modulo J , that is, for any
x ∈ I, x − xun−1 ∈ J and x − un−1x ∈ J . Define ψ̃ : A → C by ψ̃(x) = ψ(un−1x) for
every x ∈ A. We wish to show that ψ̃ ∈ ∆(n)(A) and ψ̃|I = ψ. First note that for each
x, y ∈ A we have

un−1xun−1y − un−1xy = (un−1xun−1 − un−1x)y ∈ J.

Now, for each x1, x2, · · · , xn ∈ A we get

ψ̃(x1)ψ̃(x2) · · · ψ̃(xn−1)ψ̃(xn) = ψ(un−1x1)ψ(u
n−1x2) · · ·ψ(un−1xn−1)ψ(u

n−1xn)

= ψ(un−1x1u
n−1x2 · · ·un−1xn−1u

n−1xn)

= ψ(un−1x1u
n−1x2 · · ·un−1xn−1xn)

= · · · = ψ(un−1x1x2 · · ·xn−1xn)

= ψ̃(x1x2 · · ·xn−1xn).

The above statements show that I is n-homomorphism amenable. ■

Definition 2.10 Let A be a Banach algebra and φ ∈ ∆(n)(A). A is said to be n-
φ-contractible, if every continuous derivation D : A −→ X is inner, whenever X is
a Banach A-bimodule with left action of A over X is given by a · x = φ(una)x with
φ(u) = 1.

Theorem 2.11 Let A be a Banach algebra and φ ∈ ∆(n)(A) such that φ(u) = 1 for
some u ∈ A. Then the following are equivalent:
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(i) A is n-φ-contractible ( at u);
(ii) There exists m ∈ A such that φ(m) = 1 and m · a = φ(una)m for all a ∈ A.

Proof. (i)=⇒ (ii): Define an A-bimodule structure on X = A by a ·x = φ(una)x, x ·a =
xa for all a ∈ A and x ∈ X. Since φ(D(a)) = φ(una)φ(un)− φ(una) = 0 and kerφ is an
A-submodule of X,

D(a) = a · un − un · a = φ(una)un − un · a, (a ∈ A)

defines a continuous derivation from A into kerφ. Due to n-φ-contractibility of A, there
exists p ∈ kerφ such that D(a) = a · p − p · a for all a ∈ A. Hence, the element
m = un − p ∈ A has the required properties because φ(m) = φ(un − p) = 1 and

φ(una)un − un · a = D(a) = a · p− p · a = φ(una)p− p · a.

Therefore

φ(una)m = φ(una)(un − p) = (un − p) · a = m · a

for all a ∈ A.
(ii)=⇒ (i): Suppose that m ∈ A with φ(m) = 1 and m · a = φ(una)m for all a ∈ A.

Let X be an A-bimodule with the left action a · x = φ(una)x for all a ∈ A and x ∈ X.
Put x0 = D(m). Then

x0 · a = D(m) · a = D(m · a)−m ·D(a)

= D(m · a)− φ(unm)D(a)

= φ(una)D(m)− φ(u2)

(n−2)−times︷ ︸︸ ︷
φ(u) . . . φ(u)φ(m)D(a)

= φ(una)D(m)− φ(u2)D(a).

Thus

φ(u2)D(a) = φ(una)x0 − x0 · a = a · x0 − x0 · a (a ∈ A).

Hence D(a) = a · x− x · a, where x = 1
φ(u2)x0. Therefore, A is n-φ-contractible. ■

Proposition 2.12 Let A be a Banach algebra and φ ∈ ∆(n)(A) such that φ(u) = 1 for
some u ∈ A. If ker(φ) has a left identity, then A is n-φ-contractible ( at u).

Proof. Choose b ∈ ker(φ) such that ba = a for every a ∈ ker(φ). Let m = un − bun. We
have

φ(m) = φ(un)− φ(bun) = φ(un)− φ(b)φ(u)n−2φ(u2) = 1.

If a ∈ ker(φ), then ma = una − buna = una − una = 0 (since una ∈ ker(φ)). But
φ(una) = 0 implies that φ(una)m = 0 and so ma = φ(una)m, for every a ∈ ker(φ). On



A. Bodaghi et al. / J. Linear. Topological. Algebra. 02(04) (2013) 191-200. 199

the other hand

mu− φ(unu)m = unu− bunu− φ(un+1)(un − bun)

= un+1 − φ(un+1)un − b(un+1 − φ(un+1)un)

= t− bt = 0,

where t = un+1 − φ(un+1)un ∈ ker(φ). Note that φ(t) = φ(un+1) − φ(un+1)φ(un) =
φ(un+1)− φ(un+1) = 0. As A = Cu⊕ kerφ, for every a ∈ A, ma = φ(una)m. Therefore
by Theorem 2.11 that A is n-φ contractible. ■

Proposition 2.13 Let A be a Banach algebra and φ ∈ ∆(n)(A) such that φ(u) = 1
for some u ∈ A. If A is n-φ-contractible and has a left identity, then ker(φ) has a left
identity.

Proof. It follows from Theorem 2.11 that there exist m1 ∈ A such that m1 · a =
φ(una)m1 for all a ∈ A and φ(m1) = 1. Since A = Cu⊕ kerφ and φ(m1) = 1, we have
m1 = u+a1 for some a1 ∈ kerφ. Suppose thatm2 = λu+a2 is a left identity for A, where
a2 ∈ kerφ and λ ∈ C. Put e = a2−λa1. We have m1 · a = φ(u2)φ(u)n−2φ(a)m1 = 0 and
m2 · a = a for all a ∈ kerφ. Therefore e is a left identity for kerφ. ■

Theorem 2.14 Let A and B be Banach algebras and h : A −→ B be a continuous
homomorphism with dense range. If φ ∈ ∆(n)(B) and A is n-φ ◦ h-contractible ( at u),
then B is n-φ-contractible ( at h(u)).

Proof. Let m ∈ A satisfying (φ ◦ h)(m) = 1 and m · a = (φ ◦ h)(una)m for all a ∈ A.
Let m′ = h(m) ∈ B. So φ(m′) = φ(h(m)) = 1. For each b ∈ B, where b = h(a), a ∈ A we
have

m′ · b = m′ · h(a) = h(m) · h(a)

= h(m · a) = h((φ ◦ h)(una)m)

= (φ ◦ h)(una)h(m)

= φ((h(u))n)h(a))m′

= φ((h(u))nb)m′.

Now, density of the range and continuity of h implies that B is n-φ-contractible (at h(u)).
■

Acknowledgement

The authors sincerely thank the anonymous reviewer for his careful reading, constructive
comments and fruitful suggestions to improve the quality of the manuscript.

References

[1] A. Bodaghi, n-homomorphism amenability, Proc. Rom. Aca., Series A, 14, No.2 (2013), 101-105.
[2] J. Duncan and S. A. Hosseiniun, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh Soc., 84A

(1979), 309–325.



200 A. Bodaghi et al. / J. Linear. Topological. Algebra. 02(04) (2013) 191-200.

[3] S. Hejazian, M. Mirzavaziri and M. S. Moslehian, n-homomorphisms, Bull. Iran. Math. Soc., 31, No. 1 (2005),
13–23.

[4] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127(Providence, 1972).
[5] Z. Hu, M. S. Monfared and T. Traynor, On character amenable Banach algebras, Studia Math., 193 (2009),

53–78.
[6] E. Kaniuth, A. T. Lau, and J. Pym, On φ-amenability of Banach algebras, Math. Proc. Cambridge Philos.

Soc., 144 (2008), 85–96.
[7] E. Kaniuth, A. T. Lau and J. Pym, On character amenability of Banach algebras, J. Math. Anal. Appl., 344

(2008), 942–955.
[8] M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Camb. Phil. Soc., 144 (2008),

697–706.


