Journal of Linear and Topological Algebra Vol. 02, No. 03, 2013, 155- 160

OD-characterization of $S_4(4)$ and its group of automorphisms

P. Nosratpour*

Department of mathematics, Ilam Branch, Islamic Azad university, Ilam, Iran.

Abstract. Let G be a finite group and $\pi(G)$ be the set of all prime divisors of |G|. The prime graph of G is a simple graph $\Gamma(G)$ with vertex set $\pi(G)$ and two distinct vertices p and q in $\pi(G)$ are adjacent by an edge if an only if G has an element of order pq. In this case, we write $p \sim q$. Let $|G| = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where $p_1 < p_2 < \ldots < p_k$ are primes. For $p \in \pi(G)$, let $deg(p) = |\{q \in \pi(G)|p \sim q\}|$ be the degree of p in the graph $\Gamma(G)$, we define $D(G) = (deg(p_1), deg(p_2), \ldots, deg(p_k))$ and call it the degree pattern of G. A group G is called k-fold OD-characterizable if there exist exactly k non-isomorphic groups S such that |G| = |S| and D(G) = D(S). Moreover, a 1-fold OD-characterizable group is simply called an OD-characterizable group. Let $E = S_4(4)$ be the projective symplectic group in dimension 4 over a field with 4 elements. In this article, we classify groups with the same order and degree pattern as an almost simple group related to E. Since E and E is an almost simple group related to E in fact, we prove that E is an E are OD-characterizable.

© 2013 IAUCTB. All rights reserved.

Keywords: Finite simple group, OD-characterization, group of lie type

2010 AMS Subject Classification: 20D05, 20D60, 20D06.

1. Introduction

Let G be a finite group. Denote by $\pi(G)$ the set of all prime divisors of the order of G. The prime graph $\Gamma(G)$ of a finite group G is a simple graph with vertex set $\pi(G)$ in which two distinct vertices p and q are joined by an edge if and only if G has an element of order pq.

Definition 1.1 Let G be a finite group and $|G| = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where $p_1 < p_2 < \ldots < p_k$. For $p \in \pi(G)$, let $deg(p) = |\{q \in \pi(G) | p \sim q\}|$ be the degree of p in the graph $\Gamma(G)$,

E-mail address: P.Nosratpour@ilam-iau.ac.ir (P. Nosratpour).

Print ISSN: 2252-0201 Online ISSN: 2345-5934

^{*}Corresponding author.

we define $D(G) = (deg(p_1), deg(p_2), \dots, deg(p_k))$, which is called the degree pattern of G.

Given a finite group G, denote by $h_{OD}(G)$ the number of isomorphism classes of finite groups S such that |G| = |S| and D(G) = D(S). In terms of the function h_{OD} , groups G are classified as follows:

Definition 1.2 A group G is called k-fold OD-characterizable if $h_{OD}(G) = k$. Moreover, a 1-fold OD-characterizable group is simply called an OD-characterizable.

Definition 1.3 A group G is said to be an almost simple group if and only if $S \subseteq G \subseteq Aut(S)$ for some non-abelian simple group S.

2. Preliminaries

For any group G, let $\omega(G)$ be the set of orders of elements in G, where each possible order element occurs once in $\omega(G)$ regardless of how many elements of that order G has. This set is closed and partially ordered by divisibility, hence it is uniquely determined by its maximal elements. The set of maximal elements of $\omega(G)$ is denoted by $\mu(G)$. The number of connected components of $\Gamma(G)$ is denoted by $\mu(G)$. Let $\pi_i = \pi_i(G)$, $1 \le i \le t(G)$, be the ith connected component of $\Gamma(G)$. For a group of even order we let $1 \le \pi_1(G)$. We denote by $\pi(G)$ the set of all primes divisors of $1 \le \pi_1(G)$, where $1 \le \pi_1(G)$ is a natural number. Then $1 \le \pi_1(G)$ can be expressed as a product of $1 \le \pi_1(G)$, where $1 \le \pi_1(G)$ is an arrow integer with $1 \le \pi_1(G)$. The numbers $1 \le \pi_1(G)$ are called the order components of $1 \le \pi_1(G)$. We write $1 \le \pi_1(G)$ and call it the set of order components of $1 \le \pi_1(G)$ and call it the set of order components of $1 \le \pi_1(G)$. The set of prime graph components of $1 \le \pi_1(G)$ is denoted by $1 \le \pi_1(G)$ is $1 \le \pi_1(G)$.

Definition 2.1 Let n be a natural number. We say that a finite simple group G is a K_n -group if $|\pi(G)| = n$.

3. Elementary Results

Definition 3.1 A group G is called a 2-Frobenius group, if there exists a normal series $1 \triangleleft H \triangleleft K \triangleleft G$, such that K and G/H are Frobenius groups with kernels H and K/H, respectively.

Lemma 3.2 [3]Let G be a 2-Frobenius group of even order which has a normal series $1 \triangleleft H \triangleleft K \triangleleft G$, such that K and G/H are Frobenius groups with kernels H and K/H, respectively. Then

- (a) t(G) = 2 and $T(G) = {\pi_1(G) = \pi(H) \cup \pi(G/K), \pi_2(G) = \pi(K/H)}.$
- (b) G/K and K/H are cyclic groups, $|G/K| \mid |Aut(K/H)|$, and (|G/K|, |K/H|) = 1.
- (c) H is a nilpotent group and G is a solvable group.

The following lemmas are useful when dealing with a Frobenius group.

Lemma 3.3 [5], [7]Let G be a Frobenius group with complement H and kernel K. Then the following assertions hold:

- (a) K is a nilpotent group;
- (b) $|K| \equiv 1 \pmod{|H|}$;
- (c) Every subgroup of H of order pq, with p, q (not necessarily distinct)primes, is cyclic. In particular, every Sylow Subgroup of H of odd order is cyclic and a

2-Sylow subgroup of H is either cyclic or a generalized quaternion group. If H is a non-solvable group, then H has a subgroup of index at most 2 isomorphic to $Z \times SL(2,5)$, where Z has cyclic Sylow p-subgroups and $\pi(Z) \cap \{2,3,5\} = \emptyset$. In particular, $15,20 \notin \omega(H)$. If H is solvable and O(H)=1, then either H is a 2-group or H has a subgroup of index at most 2 isomorphic to SL(2,3).

Lemma 3.4 [3]Let G be a Frobenius group of even order where H and K are Frobenius complement and Frobenius kernel of G, respectively. Then t(G) = 2 and $T(G) = \{\pi(H), \pi(K)\}.$

Let G be a finite group with disconnected prime graph. The structure of G is given in [8] which is stated as a lemma here.

Lemma 3.5 Let G be a finite group with disconnected prime graph. Then G satisfies one of the following conditions:

- a) s(G) = 2, G = KC is a Frobenius group with kernel K and complement C, and the two connected components of G are $\Gamma(K)$ and $\Gamma(C)$. Moreover K is nilpotent, and here $\Gamma(K)$ is a complete graph.
- b) s(G) = 2 and G is a 2-Frobenius group, i.e., G = ABC where $A, AB \subseteq G$, $B \subseteq BC$, and AB, BC are Frobenius groups.
- c) There exists a non-abelian simple group P such that $P \leqslant \overline{G} = \frac{G}{N} \leqslant Aut(P)$ for some nilpotent normal $\pi_1(G)$ -subgroup N of G and \overline{G} is a $\pi_1(G)$ -group. Moreover, $\Gamma(P)$ is disconnected and $s(P) \geqslant s(G)$.

If a group G satisfies condition(c) of the above lemma we may write P = B/N, $B \leq G$, and $\frac{\overline{G}}{P} = G/B = A$, hence in terms of group extensions $G = N \cdot P \cdot A$, where N is a nilpotent normal $\pi_1(G)$ -subgroup of G and A is a $\pi_1(G)$ -group.

Theorem 3.6 [6] The following assertions are equivalent:

- (a) G is a Frobenius group with kernel K and complement H.
- (b) G = HK such that $K \triangleleft G$ and $H \triangleleft G$ and H act on K without fixed point.

By [2] the outer automorphism group of $S_4(4)$ is isomorphic to Z_4 , hence we have the following lemma:

Lemma 3.7 If G is an almost simple group related to $L = S_4(4)$, then G is isomorphic to one of the following groups: L, L: 2 or L: 4.

4. Main Results

Theorem 4.1 If G is a finite group such that D(G) = D(M) and |G| = |M|, where M is an almost simple group related to $L = S_4(4)$, then the following assertions hold:

- (a) If M = L, then L is OD-characterizable.
- (b) If M = L : 2, then L : 2 is OD-characterizable.
- (c) If M = L : 4, then L : 4 is OD-characterizable.

Proof. We break the proof into a number of separate cases:

Case 1: If M = L, then $G \cong L$. This follows from [1].

Case 2: If M = L : 2, then $G \cong L : 2$.

If M = L : 2, by [2], we have $\mu(L : 2) = \{8, 10, 12, 15, 17\}$ from which we deduce that D(L : 2) = (2, 2, 2, 0). The prime graph of L : 2 has the following form:

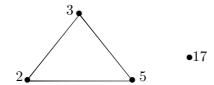


Figure 1: The prime graph of $S_4(4):2$

As $|G| = |L:2| = 2^9 \cdot 3^2 \cdot 5^2 \cdot 17$ and D(G) = D(L:2) = (2,2,2,0), then $\Gamma(G) = \Gamma(M) = \{2 \sim 3, 2 \sim 5, 3 \sim 5; 17\}$. Thus G has a disconnected prime graph with s(G) = 2. Now, We show that G is neither a Frobenius group nor 2-Frobenius group. If G be a Frobenius group, then by Lemma 3.4(a), G = KC, with Frobenius kernel K and Frobenius complement C with connected components $\Gamma(K)$ and $\Gamma(C)$. $\Gamma(K)$ is a graph with vertex $\{17\}$ and $\Gamma(C)$ with vertices $\{2,3,5\}$. By Lemma 3.2(b), $|K| \mid (|C|-1)$. Since |K| = 17 and $|C| = 2^9 \cdot 3^2 \cdot 5^2$ then $17 \nmid (2^9 \cdot 3^2 \cdot 5^2 - 1)$ a contradiction. If G be a 2-Frobenius group, then, there is a normal series $1 \triangleleft H \triangleleft K \triangleleft G$ such that K and G/H are Frobenius groups with kernels H and K/H, respectively. By Lemma 3.1(a), we have $T(G) = \{\pi_1(G) = \pi(H) \cup \pi(G/K), \pi_2(G) = \pi(K/H)\}$. Therefore, |K/H| = 17. Also, by Lemma 3.1(b), we have $G/K \triangleleft Aut(K/H) \cong Z_{16}$, hence $|G/K| \mid 2^4$, which implies that $\{3,5,17\} \subseteq \pi(K)$ from which we deduce that $5 \in \pi(H)$. Let $H_5 \in Syl_5(H)$ and $G_{17} \in Syl_{17}(G)$. Then $H_5charH \unlhd G$. By nilpotency of H, we have $H_5 \triangleleft G$ and H_5 act on G_{17} without fixed point, since $5 \nsim 17$ in $\Gamma(G)$. Therefore, by Theorem 3.1, $H_5.G_{17}$ is a Frobenius group. So, $|G_{17}| \mid (|H_5|-1)$, i.e., $|G_{17}| \mid (5^i-1)$, $|G_{17}| \mid (1,1)$

Now by Lemma 3.4(c), there exists a non-abelian simple group P such that $P \leq \overline{G} = G/N \leq Aut(P)$ for some nilpotent normal $\{2,3,5\}$ -subgroup N of G and \overline{G}/P is a $\{2,3,5\}$ -group.

 $17 \in \pi(P)$. Since \overline{G}/P is a $\{2,3,5\}$ -group and $17 \mid |G|$, therefore, we have $17 \mid |P|$, i.e., $P \in \mathfrak{S}_{17}$, which implies that $\pi(P) \subseteq \{2,3,5,17\}$. Using [9], we list the possibilities for P in the following table.

Table 1: Simple groups in \mathfrak{S}_p , $p \leq 17$, $p \neq 7$, 11, 13.

P	P	out(P)
$L_2(17)$	$2^4.3^2.17$	2
$L_2(16)$	$2^4.3.5.17$	4
$S_4(4)$	$2^8.3^2.5^2.17$	4

If $P \cong L_2(17)$ we get $L_2(17) \leqslant G/N \leqslant Aut(L_2(17))$. It follows that $|N| = 2^5 \cdot 5^2$ or $|N| = 2^4 \cdot 5^2$. Let $N_5 \in Syl_5(N)$ and $G_{17} \in Syl_{17}(G)$. Then $N_5charN \subseteq G$. By the nilpotency of N, which implies that $N_5 \subseteq G$ and N_5 act on G_{17} without fixed point, since $5 \nsim 17$ in $\Gamma(G)$. Therefore, by Theorem 3.1, $N_5.G_{17}$ is a Frobenius group. So, $|G_{17}| \mid (|N_5| - 1)$, i.e., $|G_{17}| \mid (5^i - 1)$, $|G_{17}| \mid (10^i - 1)$, i.e., $|G_{17}| \mid (10^i - 1)$, i.e.,

If $P \cong L_2(16)$ we get $L_2(16) \leqslant G/N \leqslant Aut(L_2(16))$. It follows that $|N| = 2^5 \cdot 3 \cdot 5$ or $|N| = 2^3 \cdot 3 \cdot 5$. Let $N_5 \in Syl_5(N)$ and $G_{17} \in Syl_{17}(G)$. Then $N_5charN \subseteq G$. By the nilpotency of N, which implies that $N_5 \subseteq G$ and N_5 act on G_{17} without fixed point, since $5 \nsim 17$ in $\Gamma(G)$. Therefore, by Theorem 3.1, $N_5.G_{17}$ is a Frobenius group. So, $|G_{17}| \mid (|N_5| - 1)$, i.e., $|G_{17}| \mid (5 - 1)$ a contradiction.

Therefore, $P \cong S_4(4)$. We have $S_4(4) \leqslant G/N \leqslant Aut(S_4(4))$. It follows that |N| = 2 or |N| = 1.

If |N| = 1, then $G \cong S_4(4) : 2$.

If |N|=2, then $G/C_G(N) \leq Aut(N)=1$, therefore $|G/C_G(N)|=1$, hence $G=C_G(N)$ and $N \leq Z(G)$. Let $G_{17} \in Syl_{17}(G)$. Then $N.G_{17}$ is a subgroup of G, therefore, $N.G_{17}$ has an element of order 2.17, which implies that $2 \sim 17$ in $\Gamma(G)$, a contradiction. Case 3: If M=L:4, then $G\cong L:4$.

If M = L : 4, by [2], we have $\mu(M) = \{12, 15, 16, 17, 20\}$ from which we deduce that D(L : 4) = (2, 2, 2, 0). The prime graph of L : 4 has the following form:

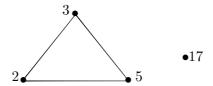


Figure 2: The prime graph of $S_4(4):4$

As $|G| = |L:4| = 2^{10} \cdot 3^2 \cdot 5^2 \cdot 17$ and D(G) = D(L:4) = (2,2,2,0), then $\Gamma(G) = \Gamma(M) = \{2 \sim 3, 2 \sim 5, 3 \sim 5; 17\}$. Thus G has a disconnected prime graph with s(G) = 2. Now, we show that G is neither a Frobenius group nor 2-Frobenius group. If G be a Frobenius group, then by Lemma 3.4(a), G = KC, with Frobenius kernel K and Frobenius complement C with connected components $\Gamma(K)$ and $\Gamma(C)$. $\Gamma(K)$ is a graph with vertex $\{17\}$ and $\Gamma(C)$ with vertices $\{2,3,5\}$. By Lemma 3.2(b), $|K| \mid (|C|-1)$. Since |K| = 17 and $|C| = 2^{10} \cdot 3^2 \cdot 5^2$ then $17 \nmid (2^{10} \cdot 3^2 \cdot 5^2 - 1)$ a contradiction. If G be a 2-Frobenius group, then, there is a normal series $1 \triangleleft H \triangleleft K \triangleleft G$ such that K and G/H are Frobenius groups with kernels H and K/H, respectively. By Lemma 3.1(a), we have $T(G) = \{\pi_1(G) = \pi(H) \cup \pi(G/K), \pi_2(G) = \pi(K/H)\}$. Therefore, |K/H| = 17. Also, by Lemma 3.1(b), we have $G/K \leqslant Aut(K/H) \cong Z_{16}$, hence $|G/K| \mid 2^4$, which implies that $\{3,5,17\} \subseteq \pi(K)$ from which we deduce that $5 \in \pi(H)$. Let $H_5 \in Syl_5(H)$ and $G_{17} \in Syl_{17}(G)$. Then $H_5charH \unlhd G$. By nilpotency of H, we have $H_5 \triangleleft G$ and H_5 act on G_{17} without fixed point, since $5 \nsim 17$ in $\Gamma(G)$. Therefore, by Theorem 3.1, $H_5.G_{17}$ is a Frobenius group. So, $|G_{17}| \mid (|H_5|-1)$, i.e., $|G_{17}| \mid (5^5-1)$, $|G_{17}| \mid (1,1) \mid (1,1)$

Now by Lemma 3.4(c), there exists a non-abelian simple group P such that $P \leqslant G = G/N \leqslant Aut(P)$ for some nilpotent normal $\{2,3,5\}$ -subgroup N of G and \overline{G}/P is a $\{2,3,5\}$ -group.

Similarly to case 2, we deduce that $P \cong S_4(4)$. We have $S_4(4) \leqslant G/N \leqslant Aut(S_4(4))$. It follows that |N| = 4, 2 or 1.

If |N| = 1, then $G \cong S_4(4) : 4$.

If |N|=2, then $G/C_G(N)\leqslant Aut(N)=1$, therefore $|G/C_G(N)|=1$, hence $G=C_G(N)$ and $N\leqslant Z(G)$. Let $G_{17}\in Syl_{17}(G)$. Then $N.G_{17}$ is a subgroup of G, therefore, $N.G_{17}$ has an element of order 2.17, which implies that $2\sim 17$ in $\Gamma(G)$, a contradiction. If |N|=4, then $G/C_G(N)\leqslant Aut(N)\cong Z_2$. Thus, $|G/C_G(N)|=1$ or 2. If $|G/C_G(N)|=1$, then, we have $N\leqslant Z(G)$. Let $G_{17}\in Syl_{17}(G)$. Then $N.G_{17}$ is a subgroup of G, therefore, $N.G_{17}$ has an element of order 2.17, which implies that $2\sim 17$ in $\Gamma(G)$, a contradiction. If $|G/C_G(N)|=2$, then $N< C_G(N)$ and $1\neq C_G(N)/N \leq G/N\cong L$. Therefore, from simplicity L we deduce that $G=C_G(K)$, a contradiction.

References

- M. Akbari and A. R. Moghaddamfar, Simple groups which are 2-fold OD-characterizable, Bulletin of the Malaysian Mathematical Sciences Society, 35(1), 65-77(2012).
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford 1985.

- [3] G. Y. Chen, On structure of Frobenius and 2-Frobenius group, Jornal of Southwest China Normal University, 20(5), 485-487(1995).(in Chinese)
- [4] M. R. Darafsheh, A. R. Moghaddamfar, and A. R. Zokayi, A characterization of finite simple groups by degrees of vertices of their prime graphs, Algebra Colloquium, 12(3), 431-442(2005).
 [5] D. Gorenstein, Finite Groups, New York, Harpar and Row, (1980).
- B. Huppert, Endlichen Gruppen I, Springer-Verlag, (1988).
- D. S. Passman, Permutation Groups, New York, Benjamin Inc., (1968).
- J. S. Williams, Prime graph components of finite groups, J. Alg. 69, No.2,487-513(1981).
- A. V. Zavarnitsine, Finite simple groups with narrow prime spectrum, Siberian Electronic Math. Reports. 6, 1-12(2009).