Journal of Linear and Topological Algebra Vol. 03, No. 02, 2014, 87-105

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

D. Alimohammadi^{a*}, S. Sefidgar^a

^aDepartment of Mathematics, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran.

Received 28 July 2014; Revised 13 September 2014; Accepted 29 September 2014.

Abstract. We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

© 2014 IAUCTB. All rights reserved.

Keywords: Compact operator, composition operator, Lipschitz function, Lipschitz involution, spectrum of an operator.

2010 AMS Subject Classification: Primary 46J10, 47B48; Secondary 46J15.

1. Introduction and Preliminaries

The symbol \mathbb{K} denotes a field that can be either \mathbb{R} or \mathbb{C} . Let \mathfrak{X} and \mathcal{Y} be Banach spaces over \mathbb{K} . We denote by $BL_{\mathbb{K}}(\mathfrak{X}, \mathcal{Y})$ the Banach space of all bounded linear operators from \mathfrak{X} into \mathcal{Y} over \mathbb{K} with the operator norm. Let us recall that $T \in BL_{\mathbb{K}}(\mathfrak{X}, \mathcal{Y})$ is compact if the closure of T(E) is compact in \mathcal{Y} whenever E is a bounded set in \mathfrak{X} .

It is known that if $\mathfrak{X}, \mathfrak{Y}$ and \mathcal{Z} are Banach spaces over \mathbb{K} and $S \in BL_{\mathbb{K}}(\mathfrak{X}, \mathcal{Y})$ and $T \in BL_{\mathbb{K}}(\mathfrak{Y}, \mathcal{Z})$, then $T \circ S$ is compact if S or T is compact.

Let \mathfrak{X} be a Banach space over \mathbb{K} . Then $BL_{\mathbb{K}}(\mathfrak{X},\mathfrak{X})$ is a unital Banach algebra over \mathbb{K} when $ST = S \circ T$ for all $S, T \in BL_{\mathbb{K}}(\mathfrak{X},\mathfrak{X})$. For $T \in BL_{\mathbb{K}}(\mathfrak{X},\mathfrak{X})$, the spectrum of T is

Print ISSN: 2252-0201 Online ISSN: 2345-5934 © 2014 IAUCTB. All rights reserved. http://jlta.iauctb.ac.ir

 $^{^{*}}$ Corresponding author.

E-mail address: d-alimohammadi@araku.ac.ir (D. Alimohammadi).

denoted by $\sigma(T)$ and defined by

$$\sigma(T) = \{\lambda \in \mathbb{K} : \lambda I_{\mathfrak{X}} - T \text{ is not invertible in } BL_{\mathbb{K}}(\mathfrak{X}, \mathfrak{X})\},\$$

where $I_{\mathfrak{X}} : \mathfrak{X} \longrightarrow \mathfrak{X}$ is the identity operator on \mathfrak{X} .

Let X be a nonempty set, $V_{\mathbb{K}}(X)$ be a vector space over \mathbb{K} of \mathbb{K} -valued functions on X and $\phi : X \longrightarrow X$ be a map such that $f \circ \phi \in V_{\mathbb{K}}(X)$ for all $f \in V_{\mathbb{K}}(X)$. Then $C_{\phi,V_{\mathbb{K}}(X)} : V_{\mathbb{K}}(X) \longrightarrow V_{\mathbb{K}}(X)$ defined by $C_{\phi,V_{\mathbb{K}}(X)}(f) = f \circ \phi$ is a linear operator on $V_{\mathbb{K}}(X)$ which is called the composition operator induced by ϕ on $V_{\mathbb{K}}(X)$.

Let X be a topological space. We denote by $C^b_{\mathbb{K}}(X)$ the set of all \mathbb{K} -valued bounded continuous functions on X. Then $C^b_{\mathbb{K}}(X)$ is a unital commutative Banach algebra over \mathbb{K} under the pointwise operations and with the uniform norm

$$|| f ||_X = \sup\{|f(x)| : x \in X\} \quad (f \in C^b_{\mathbb{K}}(X)).$$

We denote by $C_{\mathbb{K}}(X)$ the algebra of all K-valued continuous functions on X. Clearly, $C^b_{\mathbb{K}}(X) = C_{\mathbb{K}}(X)$ whenever X is compact. We write $C^b(X)$ and C(X) instead of $C^b_{\mathbb{C}}(X)$ and $C_{\mathbb{C}}(X)$, respectively.

Let (X, d) and (Y, ρ) be metric spaces. A map $\phi : X \longrightarrow Y$ is called a Lipschitz mapping from (X, d) into (Y, ρ) if there exists a constant $M \ge 0$ such that $\rho(\phi(x), \phi(y)) \le Md(x, y)$ for all $x, y \in X$. A map $\phi : X \longrightarrow Y$ is called supercontractive from (X, d) into (Y, ρ) if

$$\lim_{d(x,y)\to 0} \frac{\rho(\phi(x),\phi(y))}{d(x,y)} = 0,$$

that is, for each $\varepsilon > 0$, there exists $\delta > 0$ such that $\frac{\rho(\phi(x), \phi(y))}{d(x, y)} < \varepsilon$ whenever $x, y \in X$ and $0 < d(x, y) < \delta$.

Let (X, d) be a metric space. A function $f : X \longrightarrow \mathbb{K}$ is called a \mathbb{K} -valued Lipschitz function on (X, d) if f is a Lipschitz mapping from (X, d) into the Euclidean metric space \mathbb{K} . For a \mathbb{K} -valued Lipschitz function f on (X, d), the Lipschitz number of f on (X, d) is denoted by $L_{(X,d)}(f)$ and defined by

$$L_{(X,d)}(f) = \sup\{\frac{|f(x) - f(y)|}{d(x,y)} : x, y \in X, x \neq y\}.$$

We denote by $Lip_{\mathbb{K}}(X,d)$ the set of all \mathbb{K} -valued bounded Lipschitz functions on (X,d). Clearly, $Lip_{\mathbb{K}}(X,d)$ is a subalgebra of $C^b_{\mathbb{K}}(X)$ and $1_X \in Lip_{\mathbb{K}}(X,d)$, where 1_X is the constant function with value 1 on X. Moreover, $Lip_{\mathbb{K}}(X,d)$ with the norm

$$||f||_{X,L} = \max\{||f||_X, L_{(X,d)}(f)\}$$

is a Banach space and with the norm

$$||f||_{Lip(X,d)} = ||f||_X + L_{(X,d)}(f)$$

is a unital commutative Banach algebra over \mathbb{K} . Since

$$||f||_{X,L} \le ||f||_{Lip(X,d)} \le 2||f||_{X,L}$$

for all $f \in Lip_{\mathbb{K}}(X,d)$, we deduce that $\|\cdot\|_{X,L}$ and $\|\cdot\|_{Lip(X,d)}$ are equivalent norms on $Lip_{\mathbb{K}}(X,d)$. The set of all $f \in Lip_{\mathbb{K}}(X,d)$ for which f is supercontractive on (X,d), is denoted by $lip_{\mathbb{K}}(X,d)$. Clearly, $lip_{\mathbb{K}}(X,d)$ is a subalgebra of $Lip_{\mathbb{K}}(X,d)$ and $1_X \in$ $lip_{\mathbb{K}}(X,d)$. Moreover, $lip_{\mathbb{K}}(X,d)$ is a closed set in $(Lip_{\mathbb{K}}(X,d), \|\cdot\|_{X,L})$ and $(Lip_{\mathbb{K}}(X,d), \|\cdot\|_{Lip(X,d)})$. So $(lip_{\mathbb{K}}(X,d), \|\cdot\|_{X,L})$ is a Banach space and $(lip_{\mathbb{K}}(X,d), \|\cdot\|_{Lip(X,d)})$ is a unital commutative Banach algebra over \mathbb{K} . We write Lip(X,d) and lip(X,d) instead of $Lip_{\mathbb{C}}(X,d)$ and $lip_{\mathbb{C}}(X,d)$, respectively. These algebras were first introduced by Sherbert in [8, 9]. Note that, if $\phi : X \longrightarrow X$ is a Lipschitz mapping then $f \circ \phi \in Lip_{\mathbb{K}}(X,d)$ $(f \circ \phi \in lip_{\mathbb{K}}(X,d)$, respectively) for all f in $Lip_{\mathbb{K}}(X,d)$ $(lip_{\mathbb{K}}(X,d)$, respectively).

Let (X, d) be a pointed metric space with the base point $e \in X$. We denote by $Lip_{0,\mathbb{K}}(X,d)$ the set of all K-valued Lipschitz functions f on X such that f(e) = 0. Clearly, $Lip_{0,\mathbb{K}}(X,d)$ is a linear subspace of $C_{\mathbb{K}}(X)$. Moreover, $Lip_{0,\mathbb{K}}(X,d)$ with the norm $L_{(X,d)}(\cdot)$ is a Banach space over K. Note that if $\phi : X \longrightarrow X$ is a base point preserving Lipschitz mapping, then $f \circ \phi \in Lip_{0,\mathbb{K}}(X,d)$ for all $f \in Lip_{0,\mathbb{K}}(X,d)$. We write $Lip_0(X,d)$ instead of $Lip_{0,\mathbb{C}}(X,d)$. For further general facts about Lipschitz spaces $Lip_{\mathbb{K}}(X,d)$, $lip_{\mathbb{K}}(X,d)$ and $Lip_{0,\mathbb{K}}(X,d)$, we refer to [10].

Kamowitz and Scheinberg [5] characterized compact endomorphisms of complex Lipschitz algebras on compact metric spaces and determined their spectra.

Jiménez-Vargas and Villegas-Vallecillos [4] characterized compact composition operators on Banach spaces of Lipschitz functions $Lip_{\mathbb{K}}(X,d)$ with the norm $\|\cdot\|_{X,L}$, $lip_{\mathbb{K}}(X,d)$ with the norm $\|\cdot\|_{X,L}$ and $Lip_{0,\mathbb{K}}(X,d)$ with the norm $L_{(X,d)}(\cdot)$ and determined the spectrum of compact composition operators on $Lip_{\mathbb{K}}(X,d)$ and $lip_{\mathbb{K}}(X,d)$, where (X,d) is a metric space, not necessarily compact.

Let X be a topological space. A self-map $\tau : X \longrightarrow X$ is called a topological involution on X if τ is continuous and $\tau(\tau(x)) = x$ for all $x \in X$.

Let X be a topological space and τ be a topological involution on X. The map σ : $C^b(X) \longrightarrow C^b(X)$ defined by $\sigma(f) = \overline{f} \circ \tau$ is an algebra involution on the complex algebra $C^b(X)$, which is called the algebra involution induced by τ on $C^b(X)$. Note that $\|\sigma(f)\|_X = \|f\|_X$ for all $f \in C^b(X)$. We now define

$$C^{b}(X,\tau) = \{ f \in C^{b}(X) : \sigma(f) = f \}.$$

Then $C^b(X,\tau)$ is a unital self-adjoint uniformly closed real subalgebra of $C^b(X)$, $i_X \notin C^b(X,\tau)$ where i_X is the constant function with value i on X, $C^b(X) = C^b(X,\tau) \oplus i C^b(X,\tau)$ and

$$\max\{\|f\|_X, \|g\|_X\} \le \|f + ig\|_X \le 2\max\{\|f\|_X, \|g\|_X\},\$$

for all $f, g \in C^b(X, \tau)$. Moreover, $C^b(X, \tau) = C^b_{\mathbb{R}}(X)$ if τ is the identity map on X. Note that if X is compact, then $C^b(X, \tau) = C(X, \tau)$, where $C(X, \tau) = \{f \in C(X) : \overline{f} \circ \tau = f\}$. Real Banach algebra $C(X, \tau)$ was defined explicitly by Kulkarni and Limaye in [6]. For further general facts about $C(X, \tau)$ and its real subalgebras, we refer to [7].

In this part we introduce real Lipschitz spaces $Lip(X, d, \tau)$, $lip(X, d, \tau)$ and $Lip_0(X, d, \tau)$.

Definition 1.1 Let (X,d) be a metric space. A self-map $\tau : X \longrightarrow X$ is called a Lipschitz involution on (X,d) if $\tau(\tau(x)) = x$ and τ is a Lipschitz mapping from (X,d) into (X,d).

Note that if τ is a Lipschitz involution on (X, d), then τ is a topological involution on

(X, d) and $C \ge 1$ whenever $d(\tau(x), \tau(y)) \le Cd(x, y)$ for all $x, y \in X$.

Let (X, d) be a metric space, τ be a Lipschitz involution on (X, d) and σ be the algebra involution induced by τ on $C^b(X)$. We can easily show that $\sigma(Lip(X, d)) = Lip(X, d), \sigma(lip(X, d)) = lip(X, d), L_{(X,d)}(\sigma(f)) \leq CL_{(X,d)}(f)$ for all $f \in Lip(X, d)$ and $\|\sigma(f)\|_{X,L} \leq C \|f\|_{X,L}$ for all $f \in Lip(X, d)$, where $C \geq 1$ and $d(\tau(x), \tau(y)) \leq Cd(x, y)$ for all $x, y \in X$. We now define

$$Lip(X, d, \tau) := \{ f \in Lip(X, d) : \sigma(f) = f \},\$$

$$lip(X, d, \tau) := \{ f \in lip(X, d) : \sigma(f) = f \}.$$

In fact, $Lip(X, d, \tau) = Lip(X, d) \cap C^b(X, \tau)$ and $lip(X, d, \tau) = lip(X, d) \cap C^b(X, \tau)$. In the following result, we give some properties of $Lip(X, d, \tau)$ and $lip(X, d, \tau)$.

Theorem 1.2 Let (X, d) be a metric space and τ be a Lipschitz involution on (X, d). Suppose that $\mathcal{A} = Lip(X, d, \tau)$ and $\mathcal{B} = Lip(X, d)$ ($\mathcal{A} = lip(X, d, \tau)$ and $\mathcal{B} = lip(X, d)$, respectively). Then:

- (i) \mathcal{A} is a self-adjoint real subalgebra of $C^b(X, \tau)$ and $\mathcal{B}, 1_X \in \mathcal{A}$ and $i_X \notin \mathcal{A}$.
- (ii) $\mathcal{B} = \mathcal{A} \oplus i \mathcal{A}$.
- (iii) For all $f, g \in \mathcal{A}$ we have

 $\max\{\|f\|_{X,L}, \|g\|_{X,L}\} \leqslant C \|f + ig\|_{X,L} \leqslant 2C \max\{\|f\|_{X,L}, \|g\|_{X,L}\},\$

where $C \ge 1$ and $d(\tau(x), \tau(y)) \le Cd(x, y)$ for all $x, y \in X$.

- (iv) \mathcal{A} is closed in $(\mathcal{B}, \|\cdot\|_{X,L})$ and so $(\mathcal{A}, \|\cdot\|_{X,L})$ is a real Banach space.
- (v) $f \circ \phi \in \mathcal{A}$ for all $f \in \mathcal{A}$ whenever $\phi : X \longrightarrow X$ is a Lipschitz mapping from (X, d)into (X, d) with $\phi \circ \tau = \tau \circ \phi$.
- (vi) $\mathcal{A} = Lip_{\mathbb{R}}(X, d) (\mathcal{A} = lip_{\mathbb{R}}(X, d), \text{ respectively}), \text{ if } \tau \text{ is the identity map on } X.$

Note that $lip(X, d, \tau)$ is a real subalgebra of $Lip(X, d, \tau)$ and a closed set in $(Lip(X, d, \tau), \|\cdot\|_{X,L})$.

Real Lipschitz algebras $Lip(X, d, \tau)$ and $lip(X, d, \tau)$ were first introduced in [1], whenever (X, d) is a compact metric space. In this case, Ebadian and Ostadbashi [3] characterized compact endomorphisms of real Lipschitz algebras $Lip(X, d, \tau)$ with the norm $\|\cdot\|_{Lip(X,d)}$ and determined their spectra.

Let (X, d) be a pointed metric space with a base point $e \in X$, τ be a base pointpreserving Lipschitz involution on (X, d) and σ be the algebra involution induced by τ on $C^b(X)$. Then $L_{(X,d)}(\sigma(f)) \leq CL_{(X,d)}(f)$ for all $f \in Lip_0(X, d)$, where $C \geq 1$ and $d(\tau(x), \tau(y)) \leq Cd(x, y)$ for all $x, y \in X$. Therefore, $\sigma(Lip_0(X, d)) = Lip_0(X, d)$. We now define

$$Lip_0(X, d, \tau) = \{ f \in Lip_0(X, d) : \sigma(f) = f \}.$$

In fact, $Lip_0(X, d, \tau) = Lip_0(X, d) \cap C(X, \tau)$.

In the following result, we give some properties of $Lip_0(X, d, \tau)$.

Theorem 1.3 Let (X, d) be a pointed metric space and τ be a base point preserving Lipschitz involution on (X, d). Then:

- (i) $Lip_0(X, d, \tau)$ is a self-adjoint real subspace of $C^b(X, \tau)$ and $Lip_0(X, d)$, $1_X \notin Lip_0(X, d, \tau)$ and $i_X \notin Lip_0(X, d, \tau)$.
- (ii) $Lip_0(X, d) = Lip_0(X, d, \tau) \oplus i Lip_0(X, d, \tau).$
- (iii) For all $f, g \in Lip_0(X, d, \tau)$ we have

$$\max\{L_{(X,d)}(f), L_{(X,d)}(g)\} \leqslant CL_{(X,d)}(f+ig)$$
$$\leqslant 2C \max\{L_{(X,d)}(f), L_{(X,d)}(g)\},\$$

where $C \ge 1$ and $d(\tau(x), \tau(y)) \le Cd(x, y)$ for all $x, y \in X$.

- (iv) $Lip_0(X, d, \tau)$ is closed in $(Lip_0(X, d), L_{(X,d)}(\cdot))$ and so $Lip_0(X, d, \tau)$ with the norm $L_{(X,d)}(\cdot)$ is a real Banach space.
- (v) $f \circ \phi \in Lip_0(X, d, \tau)$ for all $f \in Lip_0(X, d, \tau)$, whenever $\phi : X \longrightarrow X$ is a base point preserving Lipschitz mapping from (X, d) into (X, d) with $\phi \circ \tau = \tau \circ \phi$.
- (vi) $Lip_0(X, d, \tau) = Lip_{0,\mathbb{R}}(X, d)$, if τ is the identity map on X.

In Section 2, we characterize compact composition operators on real Lipschitz spaces $(Lip(X, d, \tau), \|\cdot\|_{X,L})$, $(lip(X, d, \tau), \|\cdot\|_{X,L})$ and $(Lip_0(X, d, \tau), L_{(X,d)}(\cdot))$ and in Section 3 we determine the spectrum of compact composition operators on real Lipschitz spaces $(Lip(X, d, \tau), \|\cdot\|_{X,L})$ and $(lip(X, d, \tau), \|\cdot\|_{X,L})$, whenever (X, d) is a metric space, not necessarily compact and τ is a Lipschitz involution on (X, d). In fact, we extend basic results of [3] and [4].

2. Compact composition operators

Let \mathfrak{X} be a real linear space. The complexification of \mathfrak{X} is the complex linear space $\mathfrak{X}_{\mathbb{C}} := \mathfrak{X} \oplus i\mathfrak{X}$ with addition and scalar multiplication defined by

$$(x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)$$
 (x₁, y₁, x₂, y₂ $\in \mathfrak{X}$).
($\alpha + i\beta$)(x + iy) = ($\alpha x - \beta y$) + i($\beta x + \alpha y$) ($\alpha, \beta \in \mathbb{R}, x, y \in \mathfrak{X}$).

Let $(\mathfrak{X}, \|\cdot\|)$ be a real Banach space. By a modification of [2, Proposition I.13.3], there exists a norm $\||\cdot\|\|$ on $\mathfrak{X}_{\mathbb{C}}$ such that $\||x+i0|\| = \|x\|$ for all $x \in X$, and

$$\max\{\|x\|, \|y\|\} \le \||x + iy|\| \le 2\max\{\|x\|, \|y\|\},\$$

for all $x, y \in \mathfrak{X}$, and so $(\mathfrak{X}_{\mathbb{C}}, ||| \cdot |||)$ is a complex Banach space.

Theorem 2.1 Let $(\mathfrak{X}, \|\cdot\|)$ be a real Banach space, $\mathfrak{X}_{\mathbb{C}}$ be the complexification of \mathfrak{X} and $\||\cdot|\|$ be a norm on $\mathfrak{X}_{\mathbb{C}}$ with $\||f|\| = \|f\|$ for all $f \in \mathfrak{X}$ and C be a positive costant satisfying

$$\max\{\|f\|, \|g\|\} \leq C \||f + ig|\| \leq 2C \max\{\|f\|, \|g\|\},\$$

for all $f, g \in \mathfrak{X}$. Let $T \in BL_{\mathbb{R}}(\mathfrak{X}, \mathfrak{X})$ and $T' : \mathfrak{X}_{\mathbb{C}} \longrightarrow \mathfrak{X}_{\mathbb{C}}$ be the mapping defined by $T'(f + ig) = Tf + iTg \quad (f, g \in \mathfrak{X})$. Then:

- (i) $T' \in BL_{\mathbb{C}}(\mathfrak{X}_{\mathbb{C}},\mathfrak{X}_{\mathbb{C}})$ and $||T'|| \leq 2C||T||$.
- (ii) T' is compact if and only if T is compact.
- (iii) T' is invertible in $BL_{\mathbb{C}}(\mathfrak{X}_{\mathbb{C}},\mathfrak{X}_{\mathbb{C}})$ if and only if T is invertible in $BL_{\mathbb{R}}(\mathfrak{X},\mathfrak{X})$.
- (iv) $T' = I_{\mathfrak{X}_{\mathbb{C}}}$ if and only if $T = I_{\mathfrak{X}}$.
- (v) $\sigma(T') \cap \mathbb{R} = \sigma(T).$

Proof. Clearly T' is a complex linear map from $\mathfrak{X}_{\mathbb{C}}$ into $\mathfrak{X}_{\mathbb{C}}$. Since

$$\begin{split} |||T'(f+ig)||| &= |||Tf+iTg||| \leqslant |||Tf||| + |||Tg||| \\ &= ||Tf|| + ||Tg|| \leqslant ||T|| ||f|| + ||T|| ||g|| \\ &\leqslant 2||T|| \max\{||f||, ||g||\} \leqslant 2||T||C|||f+ig||| \end{split}$$

for all $f, g \in \mathfrak{X}$, we deduce that $T' \in BL_{\mathbb{C}}(\mathfrak{X}_{\mathbb{C}}, \mathfrak{X}_{\mathbb{C}})$ and $|||T'||| \leq 2C||T||$. Hence, (i) holds.

To prove (*ii*), we first assume that T' is compact. Let $\{f_n\}_{n=1}^{\infty}$ be a bounded sequence in $(\mathfrak{X}, \|\cdot\|)$. Since $\|f_n\| = |\|f_n\||$ for all $n \in \mathbb{N}$, we deduce that $\{f_n\}_{n=1}^{\infty}$ is a bounded sequence in $(\mathfrak{X}_{\mathbb{C}}, |\|\cdot\||)$. The compactness of T' implies that there exists a subsequence $\{f_{n_k}\}_{k=1}^{\infty}$ of $\{f_n\}_{n=1}^{\infty}$ such that $\{T'f_{n_k}\}_{k=1}^{\infty}$ is a Cauchy sequence in $(\mathfrak{X}_{\mathbb{C}}, |\|\cdot\||)$. Since

$$||Tf_{n_j} - Tf_{n_k}|| = |||T'f_{n_j} - T'f_{n_k}|||$$

for all $j, k \in \mathbb{N}$, we conclude that $\{Tf_{n_k}\}_{k=1}^{\infty}$ is a Cauchy sequence in $(\mathfrak{X}, \|\cdot\|)$. The completeness of $(\mathfrak{X}, \|\cdot\|)$ implies that $\{Tf_{n_k}\}_{k=1}^{\infty}$ is convergence in $(\mathfrak{X}, \|\cdot\|)$. Therefore, T is compact.

We now assume that T is compact. Let $\{h_n\}_{n=1}^{\infty}$ be a bounded sequence in $(\mathfrak{X}_{\mathbb{C}}, |\|\cdot\||)$. Since $\mathfrak{X}_{\mathbb{C}} = \mathfrak{X} \oplus i\mathfrak{X}$, there exists unique elements $f_n, g_n \in \mathfrak{X}$ such that $h_n = f_n + ig_n$ for all $n \in \mathbb{N}$. Since

$$\max\{\|f_n\|, \|g_n\|\} \le C\|f_n + ig_n\|$$

for all $n \in \mathbb{N}$, we deduce that $\{f_n\}_{n=1}^{\infty}$ and $\{g_n\}_{n=1}^{\infty}$ are bounded sequences in $(\mathfrak{X}, \|\cdot\|)$. The compactness of T implies that there exist strictly increasing functions $p : \mathbb{N} \longrightarrow \mathbb{N}$ and $q : \mathbb{N} \longrightarrow \mathbb{N}$ and elements f and g in \mathfrak{X} such that

$$\lim_{k \to \infty} \|f_{p(k)} - f\| = 0, \quad \lim_{k \to \infty} \|g_{q(k)} - g\| = 0.$$

For each $k \in \mathbb{N}$, set $n_k = q(p(k))$. Clearly, $\{f_{n_k}\}_{k=1}^{\infty}$ is a subsequence $\{f_n\}_{n=1}^{\infty}$, $\lim_{k \to \infty} ||Tf_{n_k} - f|| = 0$, $\{g_{n_k}\}_{k=1}^{\infty}$ is a subsequence $\{g_n\}_{n=1}^{\infty}$ and $\lim_{k \to \infty} ||Tg_{n_k} - g|| = 0$. Clearly $\{h_{n_k}\}_{k=1}^{\infty}$ is a subsequence of $\{h_n\}_{n=1}^{\infty}$, $f + ig \in \mathfrak{X}_{\mathbb{C}}$ and

$$|||T'h_{n_k} - (f + ig)||| \le 2 \max\{||Tf_{n_k} - f||, ||Tg_{n_k} - g||\}$$

for all $k \in \mathbb{N}$. Thus, $\lim_{k \to \infty} |||T'h_{n_k} - (f + ig)||| = 0$. Therefore, T' is compact. Hence (ii)

holds.

To prove (*iii*), we first assume that T' is invertible in $BL_{\mathbb{C}}(\mathfrak{X}_{\mathbb{C}},\mathfrak{X}_{\mathbb{C}})$. Then there exists $(T')^{-1} \in BL_{\mathbb{C}}(\mathfrak{X}_{\mathbb{C}},\mathfrak{X}_{\mathbb{C}})$ such that $T' \circ (T')^{-1} = (T')^{-1} \circ T' = I_{\mathfrak{X}_{\mathbb{C}}}$. We now define the maps $\Psi_1 : \mathfrak{X} \longrightarrow \mathfrak{X}_{\mathbb{C}}$ and $P_1 : \mathfrak{X}_{\mathbb{C}} \longrightarrow \mathfrak{X}$ by

$$\Psi_1(f) = f + i0 \quad (\forall f \in \mathfrak{X}) \text{ and } P_1(f + ig) = f \quad (\forall f, g \in \mathfrak{X}).$$

We can easily show that

$$\Psi_1 \in BL_{\mathbb{R}}(\mathfrak{X}, \mathfrak{X}_{\mathbb{C}}), \quad \|\Psi_1\| \leq 2C, \quad P_1 \in BL_{\mathbb{R}}(\mathfrak{X}_{\mathbb{C}}, \mathfrak{X}) \text{ and } \|P_1\| \leq C.$$

Moreover, $\Psi_1 \circ T = T' \circ \Psi_1$ and $T \circ P_1 = P_1 \circ T'$. Now, we have

$$(P_1 \circ (T')^{-1} \circ \Psi_1) \circ T = I_{\mathfrak{X}} = T \circ (P_1 \circ (T')^{-1} \circ \Psi_1).$$

Therefore, T is invertible in $BL_{\mathbb{R}}(\mathfrak{X},\mathfrak{X})$ and $T^{-1} = P_1 \circ (T')^{-1} \circ \Psi_1$.

We now assume that T is invertible in $BL_{\mathbb{R}}(\mathfrak{X},\mathfrak{X})$. Then there exists $T^{-1} \in BL_{\mathbb{R}}(\mathfrak{X},\mathfrak{X})$ such that $T \circ T^{-1} = T^{-1} \circ T = I_{\mathfrak{X}}$. We now define the map $(T^{-1})' : \mathfrak{X}_{\mathbb{C}} \longrightarrow \mathfrak{X}_{\mathbb{C}}$ by

$$(T^{-1})'(f+ig) = T^{-1}f + iT^{-1}g \quad (\forall f, g \in \mathfrak{X}).$$

Then $(T^{-1})' \in BL_{\mathbb{C}}(\mathfrak{X}_{\mathbb{C}},\mathfrak{X}_{\mathbb{C}})$ and $||(T^{-1})'|| \leq 2C||T^{-1}||$. Moreover,

$$(T^{-1})' \circ T' = T' \circ (T^{-1})' = I_{\mathfrak{X}_{\mathbb{C}}}$$

Therefore, T' is invertible in $BL_{\mathbb{C}}(\mathfrak{X}_{\mathbb{C}},\mathfrak{X}_{\mathbb{C}})$ and $(T')^{-1} = (T^{-1})'$. Hence, (*iii*) holds.

The proof of (iv) is obvious. From (iii) and (iv), we deduce that (v) holds.

Compact composition operators on Lipschitz spaces $(Lip_{\mathbb{K}}(X,d), \|\cdot\|_{X,L})$ characterized in [4] as the following.

Theorem 2.2 (see [4, Theorem 1.1]). Let (X, d) be a metric space and let $\phi : X \longrightarrow X$ be a Lipschitz mapping from (X, d) into (X, d). Then the composition operator $C_{\phi, Lip_{\mathbb{K}}(X,d)} : Lip_{\mathbb{K}}(X,d) \longrightarrow Lip_{\mathbb{K}}(X,d)$ is compact if and only if ϕ is supercontrative and $\phi(X)$ is totally bounded in (X, d).

In the following result, we characterize compact composition operators on real lipschitz spaces $(Lip(X, d, \tau), \|\cdot\|_{X,L})$.

Theorem 2.3 Let (X, d) be a metric space, τ be a Lipschitz involution on (X, d) and $\phi : X \longrightarrow X$ be a Lipschitz mapping from (X, d) into (X, d) such that $\phi \circ \tau = \tau \circ \phi$. Then the composition operator $C_{\phi, Lip(X, d, \tau)} : Lip(X, d, \tau) \longrightarrow Lip(X, d, \tau)$ is compact if and only if ϕ is supercontractive and $\phi(X)$ is totally bounded in (X, d).

Proof. Since τ is a Lipschitz involution on (X, d), by Theorem 1.2, we deduce that

 $Lip(X,d) = Lip(X,d,\tau) \oplus i Lip(X,d,\tau)$, there exists a constant $C \ge 1$ such that

$$\max\{\|f\|_{X,L}, \|g\|_{X,L}\} \leqslant C \|f + ig\|_{X,L} \leqslant 2C \max\{\|f\|_{X,L}, \|g\|_{X,L}\},\$$

for all $f, g \in Lip(X, d, \tau)$ and $Lip(X, d, \tau)$ is a real Banach space. Hence, by Theorem 2.1, the compactness of $C_{\phi,Lip(X,d,\tau)} : Lip(X, d, \tau) \longrightarrow Lip(X, d, \tau)$ is equivalent to the compactness of $(C_{\phi,Lip(X,d,\tau)})' : Lip(X, d) \longrightarrow Lip(X, d)$ which is defined by

$$(C_{\phi,Lip(X,d,\tau)})'(f+ig) = C_{\phi,Lip(X,d,\tau)}(f) + iC_{\phi,Lip(X,d,\tau)}(g)$$

for all $f, g \in Lip(X, d, \tau)$.

Since

$$\begin{split} (C_{\phi,Lip(X,d,\tau)})'(f+ig) &= (f \circ \phi) + i(g \circ \phi) \\ &= (f+ig) \circ \phi \\ &= C_{\phi,Lip(X,d)}(f+ig) \end{split}$$

for all $f, g \in Lip(X, d, \tau)$, we conclude that

$$\left(C_{\phi,Lip(X,d,\tau)}\right)' = C_{\phi,Lip(X,d)}$$

Thus, the compactness of $C_{\phi,Lip(X,d,\tau)}$: $Lip(X,d,\tau) \longrightarrow Lip(X,d,\tau)$ is equivalent to the compactness of $C_{\phi,Lip(X,d)}$: $Lip(X,d) \longrightarrow Lip(X,d)$, and this is equivalent to ϕ is supercontractive from (X,d) into (X,d) and $\phi(X)$ is totally bounded in (X,d) by Theorem 2.2. Hence, the proof is complete.

Note that Theorem 2.3 is a generalization of Theorem 2.2, whenever $\mathbb{K} = \mathbb{R}$.

We now show that the class of real Lipschitz spaces $(Lip(Y, \rho, \tau), \|\cdot\|_{Y,L})$ is larger than the class of complex Lipschitz spaces $(Lip(X, d), \|\cdot\|_{X,L})$ regarded as real Lipschitz spaces (Theorem 2.4, below), and the class of compact composition operators on real Lipschitz spaces $(Lip(Y, \rho, \tau), \|\cdot\|_{Y,L})$ is larger than the class of compact composition operators on complex Lipschitz spaces $(Lip(X, d), \|\cdot\|_{X,L})$ (Theorem 2.5, below).

Theorem 2.4 Let (X, d) be a metric space. Suppose that $Y = X \times \{0, 1\}$ and ρ is the metric on Y defined by

$$\rho((x_1, j_1), (x_2, j_2)) = \max\{d(x_1, x_2), |j_1 - j_2|\}.$$

Let $\tau: Y \longrightarrow Y$ be the self-map on Y defined by

$$\tau(x,0) = (x,1) \quad (x \in X), \qquad \tau(x,1) = (x,0) \quad (x \in X).$$

Then:

(i) τ is a Lipschitz involution on (Y, ρ) .

(ii) The map $\Lambda : Lip(X, d) \longrightarrow Lip(Y, \rho, \tau)$ defined by

$$\begin{split} (\Lambda f)(x,0) &= f(x) \quad (f \in Lip(X,d), x \in X), \\ (\Lambda f)(x,1) &= \overline{f(x)} \quad (f \in Lip(X,d), x \in X), \end{split}$$

is an injective bounded real-linear operator from $(Lip(X, d), \|\cdot\|_{X,L})$ regarded as a real Banach space onto $(Lip(Y, \rho, \tau), \|\cdot\|_{Y,L})$, satisfying

$$||f||_{X,L} \leq ||\Lambda f||_{Y,L} \leq 2||f||_{X,L}$$

for all $f \in Lip(X, d)$.

Proof. Clearly, $\tau(\tau(x, j)) = (x, j)$ for all $(x, j) \in Y$, and

$$\rho(\tau(x_1, j_1), \tau(x_2, j_2)) = \rho((x_1, j_1), (x_2, j_2))$$

for all $(x_1, j_1), (x_2, j_2) \in Y$. Hence, (i) holds.

It is easy to see that Λ is well-defined and a real-linear operator from Lip(X, d), regarded a real Banach space, into $Lip(Y, \rho, \tau)$. Let $g \in Lip(Y, \rho, \tau)$. We define the function f : $X \longrightarrow \mathbb{C}$ by f(x) = g(x, 0). Then $f \in C^b(X)$, $||f||_X \leq ||g||_Y$ and $L_{(X,d)}(f) \leq L_{(Y,\rho)}(g)$. Hence, $f \in Lip(X, d)$. Moreover,

$$(\Lambda f)(x,0) = f(x) = g(x,0),$$

$$(\Lambda f)(x,1) = \overline{f(x)} = \overline{g(x,0)} = (g \circ \tau)(x,0)$$

$$= g(\tau(x,0)) = g(x,1)$$

for all $x \in X$. Therefore, $\Lambda(f) = g$ and so Λ is onto.

Let $f \in Lip(X, d)$. Clearly, $||f||_X = ||\Lambda f||_Y$. Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Then

$$|f(x_1) - f(x_2)| = |(\Lambda f)(x_1, 0) - (\Lambda f)(x_2, 0)|$$

$$\leq L_{(Y,\rho)}(\Lambda f)\rho((x_1, 0), (x_2, 0))$$

$$= L_{(Y,\rho)}(\Lambda f)d(x_1, x_2).$$

Hence, $L_{(X,d)}(f) \leq L_{(Y,\rho)}(\Lambda f)$. Therefore,

$$\|f\|_{X,L} \leqslant \|\Lambda f\|_{Y,L}.$$

D. Alimohammadi et al. / J. Linear. Topological. Algebra. 03(02) (2014) 87-105.

Now, let $(x_1, j_1), (x_2, j_2) \in Y$ with $(x_1, j_1) \neq (x_2, j_2)$. If $j_1 = j_2$, then

$$\begin{aligned} |(\Lambda f)(x_1, j_1) - (\Lambda f)(x_2, j_2)| &= |f(x_1) - f(x_2)| \\ &\leq L_{(X,d)}(f)d(x_1, x_2) \\ &\leq 2||f||_{X,L}\rho((x_1, j_1), (x_2, j_2)). \end{aligned}$$

and if $j_1 \neq j_2$, then

$$\begin{aligned} |(\Lambda f)(x_1, j_1) - (\Lambda f)(x_2, j_2)| &= |f(x_1) - \overline{f(x_2)}| \\ &\leq 2 ||f||_X |j_1 - j_2| \\ &\leq 2 ||f||_{X,L} \rho((x_1, j_1), (x_2, j_2)). \end{aligned}$$

Thus,

$$L_{(Y,\rho)}(\Lambda f) \leq 2 \|f\|_{X,L}.$$

On the other hand, we have

$$\|\Lambda f\|_{Y} = \|f\|_{X} \leq 2\|f\|_{X,L}.$$

Therefore,

$$\|\Lambda f\|_{Y,L} \leq 2\|f\|_{X,L}.$$

Hence, (ii) holds.

Theorem 2.5 Let (X, d) be a metric space, $Y = X \times \{0, 1\}$, ρ be the metric on Y defined by $\rho((x_1, j_1), (x_2, j_2)) = \max\{d(x_1, x_2), |j_1 - j_2|\}$ and τ be the Lipschitz involution on (Y, ρ) defined by

$$\tau(x,0) = (x,1), \qquad \tau(x,1) = (x,0), \quad (x \in X).$$

Let $\phi: X \longrightarrow X$ be a Lipschitz mapping from (X, d) into (X, d) and let $\psi: Y \longrightarrow Y$ be the self-map on Y defined by

$$\psi(x,0) = (\phi(x),0), \qquad \psi(x,1) = (\phi(x),1) \quad (x \in X),$$

Then:

- (i) ψ is a Lipschitz mapping from (Y, ρ) into (Y, ρ) such that $\psi \circ \tau = \tau \circ \psi$.
- (ii) The composition operator $C_{\phi,Lip(X,d)} : Lip(X,d) \longrightarrow Lip(X,d)$ is compact if and only if the composition operator $C_{\psi,Lip(Y,\rho,\tau)} : Lip(Y,\rho,\tau) \longrightarrow Lip(Y,\rho,\tau)$ is compact.

Proof. Clearly, (i) holds. Let $\Lambda : Lip(X, d) \longrightarrow Lip(Y, \rho, \tau)$ defined by

$$(\Lambda f)(x,0) = f(x), \quad (\Lambda f)(x,1) = \overline{f(x)} \quad (x \in X).$$

By Theorem 2.4, Λ is an injective bounded real-linear operator from Lip(X, d) with the norm $\|\cdot\|_{X,L}$ regarded as a real Banach space, onto the real Banach space $Lip(Y, \rho, \tau)$ with the norm $\|\cdot\|_{Y,L}$. We can easily show that

$$\Lambda \circ C_{\phi, Lip(X,d)} = C_{\psi, Lip(Y,\rho,\tau)} \circ \Lambda.$$
(1)

According to $\Lambda \in BL_{\mathbb{R}}(Lip(X,d), Lip(Y,\rho,\tau))$ and (1), we deduce that the operator $C_{\phi,Lip(X,d)}$: $Lip(X,d) \longrightarrow Lip(X,d)$ is compact if and only if $C_{\psi,Lip(Y,\rho,\tau)}$: $Lip(Y,\rho,\tau) \longrightarrow Lip(Y,\rho,\tau)$ is compact. Hence, (ii) holds.

According to Theorems 2.4 and 2.5, it is clear that Theorem 2.3 is also a generalization of Theorem 2.2, whenever $\mathbb{K} = \mathbb{C}$.

In [4], Jiménez-Vargas and Villegas-Vallecillos obtained the analogous result for compact composition operators on little Lipschitz spaces $(lip_{\mathbb{K}}(X,d), \|\cdot\|_{X,L})$ that satisfy a kind of uniform separation property.

Definition 2.6 (see [4, Definition 1.1]). Let (X, d) be a metric space, not assumed to be compact. It is said that a linear subspace \mathcal{M} of $Lip_{\mathbb{K}}(X, d)$ separates the points uniformly on bounded subsets of X if for each bounded set $K \subseteq X$, there exists a constant $a \ge 1$ (which may depend on K) such that for every $x, y \in K$, some $f \in \mathcal{M}$ satisfies $||f||_{X,L} \le a$ and |f(x) - f(y)| = d(x, y).

Note that $lip_{\mathbb{K}}(X, d)$ satisfies aforementioned uniform separation property when (X, d) is uniformly discrete (that is, $\inf\{d(x, y) : x \neq y\} > 0$), or when (X, d) is a totally disconnected metric space [10, Example 3.1.6].

Theorem 2.7 (see [4, Theorem 1.3]). Let (X, d) be a metric space and $\phi : X \longrightarrow X$ be a bounded Lipschitz mapping from (X, d) into (X, d). Assume that $lip_{\mathbb{K}}(X, d)$ separates points uniformly on bounded subsets of X. Then the composition operator $C_{\phi, lip_{\mathbb{K}}(X, d)} :$ $lip_{\mathbb{K}}(X, d) \longrightarrow lip_{\mathbb{K}}(X, d)$ is compact if and only if ϕ is supercontractive and $\phi(X)$ is totally bounded in (X, d).

In the following result, we characterize compact composition operators on real little Lipschitz spaces $(lip(X, d, \tau), \|\cdot\|_{X,L})$ when lip(X, d) satisfies aforementioned uniform separation property.

Theorem 2.8 Let (X, d) be a metric space, τ be a Lipschitz involution on (X, d) and $\phi : X \longrightarrow X$ be a Lipschitz mapping from (X, d) into (X, d) with $\phi \circ \tau = \tau \circ \phi$. Suppose that lip(X, d) separates points uniformly on bounded subsets of X. Then the composition operator $C_{\phi, lip(X, d, \tau)} : lip(X, d, \tau) \longrightarrow lip(X, d, \tau)$ is compact if and only if ϕ is supercontractive and $\phi(X)$ is totally bounded in (X, d). **Proof.** Since τ is a Lipschitz involution on (X, d), by Theorem 1.2, we deduce that $lip(X, d) = lip(X, d, \tau) \oplus i lip(X, d, \tau)$, there exists a constant $C \ge 1$ such that

$$\max\{\|f\|_{X,L}, \|g\|_{X,L}\} \leq C\|f + ig\|_{X,L} \leq 2C \max\{\|f\|_{X,L}, \|g\|_{X,L}\}$$

for all $f, g \in lip(X, d, \tau)$ and $lip(X, d, \tau)$ with the norm $\|\cdot\|_{X,L}$ is a real Banach space. Hence, by Theorem 2.1, the compactness of the operator $C_{\phi,lip(X,d,\tau)} : lip(X, d, \tau) \longrightarrow lip(X, d, \tau)$ is equivalent to the compactness of the operator $(C_{\phi,lip(X,d,\tau)})' : lip(X, d) \longrightarrow lip(X, d)$ which is defined by

$$(C_{\phi, lip(X, d, \tau)})'(f + ig) = C_{\phi, lip(X, d, \tau)}(f) + iC_{\phi, lip(X, d, \tau)}(g)$$

for all $f, g \in lip(X, d, \tau)$. It is easy to see that

$$(C_{\phi, lip(X, d, \tau)})' = C_{\phi, lip(X, d)}.$$

Since lip(X,d) separates the points uniformly on bounded subsets of X and ϕ is a bounded Lipschitz mapping from (X,d) into (X,d), by Theorem 2.7, the compactness of $C_{\phi,lip(X,d)}$ is equivalent to ϕ is supercontractive and $\phi(X)$ is totally bounded in (X,d). Hence, the proof is complete.

Note that Theorem 2.8 is a generalization of [4, Theorem 1.3] whenever $\mathbb{K} = \mathbb{R}$.

We now show that the class of real little Lipschitz space $lip(Y, \rho, \tau)$ with the norm $\|\cdot\|_{Y,L}$ is larger than the class of complex little Lipschitz spaces lip(X, d) with the norm $\|\cdot\|_{X,L}$ regarded as real Lipschitz spaces (Theorem 2.9, below) and the class of compact composition operators on $(lip(Y, \rho, \tau), \|\cdot\|_{Y,L})$ is larger than the class of compact composition operators on $(lip(X, d), \|\cdot\|_{X,L})$ (Theorem 2.10, below).

Theorem 2.9 Let (X, d) be a metric space, $Y = X \times \{0, 1\}$, ρ be the metric on Y defined by $\rho((x_1, j_1), (x_2, j_2)) = \max\{d(x_1, x_2), |j_1 - j_2|\}$ and τ be the Lipschitz involution on (Y, ρ) defined by

$$\tau(x,0) = (x,1), \qquad \tau(x,1) = (x,0) \quad (x \in X).$$

Then the map $\Gamma : lip(X, d) \longrightarrow lip(Y, \rho, \tau)$ defined by

$$(\Gamma f)(x,0) = f(x), \quad (\Gamma f)(x,1) = \overline{f(x)} \quad (f \in lip(X,d), x \in X),$$

is an injective real-linear operator from $(lip(X, d), \|\cdot\|_{X,L})$ regarded as a real Banach space onto $(lip(Y, \rho, \tau), \|\cdot\|_{Y,L})$ satisfying

$$||f||_{X,L} \leq ||\Gamma f||_{Y,L} \leq 2||f||_{X,L},$$

for all $f \in lip(X, d)$.

Proof. Let $\Lambda : Lip(X, d) \longrightarrow Lip(Y, \rho, \tau)$ defined by

$$(\Lambda f)(x,0) = f(x), \quad (\Lambda f)(x,1) = \overline{f(x)} \quad (f \in Lip(X,d), x \in X).$$

By Theorem 2.4, Λ is an injective bounded real-linear operator from Lip(X, d) with the norm $\|\cdot\|_{X,L}$ regarded as a real Banach space onto $Lip(Y, \rho, \tau)$ with the norm $\|\cdot\|_{Y,L}$ satisfying

$$||f||_{X,L} \leq ||\Lambda f||_{Y,L} \leq 2||f||_{X,L}$$

for all $f, g \in Lip(X, d)$. We claim that

$$\Lambda(lip(X,d)) = lip(Y,\rho,\tau).$$
⁽²⁾

Let $f \in lip(X, d)$. Then $f \in Lip(X, d)$ and so $\Lambda f \in Lip(Y, \rho, \tau)$. Let $\varepsilon > 0$ be given. There exists $\delta_0 > 0$ such that $\frac{|f(x_1) - f(x_2)|}{d(x_1, x_2)} < \varepsilon$, whenever $x_1, x_2 \in X$ and $0 < d(x_1, x_2) < \delta_0$. Set $\delta = \min\{\delta_0, 1/2\}$. If $(x_1, j_1), (x_2, j_2) \in Y$ with $0 < \rho((x_1, j_1), (x_2, j_2))$, then $0 < d(x_1, x_2) < \delta_0$ and $j_1 = j_2$, so we have

$$\frac{|(\Lambda f)(x_1, j_1) - (\Lambda f)(x_2, j_2)|}{\rho((x_1, j_1), (x_2, j_2))} = \frac{|f(x_1) - f(x_2)|}{d(x_1, x_2)} < \varepsilon.$$

Thus, $\Lambda f \in lip(Y, \rho, \tau)$.

Now, let $g \in lip(Y, \rho, \tau)$. Then $g \in Lip(Y, \rho, \tau)$ and so there exists $f \in Lip(X, d)$ such that $\Lambda f = g$. Let $\varepsilon > 0$ be given. Then there exists $\delta > 0$ such that $\frac{|g(x_1, j_1) - g(x_2, j_2)|}{\rho((x_1, j_1), (x_2, j_2))} < \varepsilon$, whenever $(x_1, j_1), (x_2, j_2) \in Y$ and $0 < \rho((x_1, j_1), (x_2, j_2)) < \delta$. If $x_1, x_2 \in X$ with $0 < d(x_1, x_2) < \delta$, then $(x_1, 0), (x_2, 0) \in Y$ with $0 < \rho((x_1, 0), (x_2, 0)) < \delta$, and so

$$\frac{|f(x_1) - f(x_2)|}{d(x_1, x_2)} = \frac{|(\Lambda f)(x_1, 0) - (\Lambda f)(x_2, 0)|}{\rho((x_1, 0), (x_2, 0))} < \varepsilon.$$

Thus, $f \in lip(X, d)$ implies that $g \in \Lambda(lip(X, d))$. Hence, our claim is justified.

From (2) and definitions of Γ and Λ , we conclude that Γ is well- defined and $\Gamma = \Lambda|_{lip(X,d)}$. According to (2) and the above mentioned properties of Λ , we conclude that Γ satisfies the required conditions.

Theorem 2.10 Let (X, d) be a metric space, $Y = X \times \{0, 1\}$, ρ be the metric on Y defined by $\rho((x_1, j_1), (x_2, j_2)) = \max\{d(x_1, x_2), |j_1 - j_2|\}$ and τ be the Lipschitz involution on (Y, ρ) defined by

$$\tau(x,0) = (x,1), \qquad \tau(x,1) = (x,0) \quad (x \in X).$$

Let ϕ be a bounded Lipschitz mapping from (X, d) into (X, d) and the map $\psi : Y \longrightarrow Y$ defined by

$$\psi(x,0) = (\phi(x),0), \qquad \psi(x,1) = (\phi(x),1) \quad (x \in X),$$

Then:

- (i) ψ is a bounded Lipschitz mapping from (Y, ρ) into (Y, ρ) such that $\psi \circ \tau = \tau \circ \psi$.
- (ii) The composition operator $C_{\phi,lip(X,d)} : lip(X,d) \longrightarrow lip(X,d)$ is compact if and only if the composition operator $C_{\psi,lip(Y,\rho,\tau)} : lip(Y,\rho,\tau) \longrightarrow lip(Y,\rho,\tau)$ is compact.

Proof. By part (i) of Theorem 2.5, ψ is a Lipschitz mapping from (Y, ρ) onto (Y, ρ) such that $\psi \circ \tau = \tau \circ \psi$. Since ϕ is bounded, there exists $x_1 \in X$ and $\delta_1 > 0$ such that

$$\phi(X) \subseteq \{x \in X : d(x, x_1) < \delta_1\}.$$

We assume that $y_1 = (x_1, 0)$ and $\gamma_1 = 1 + \delta_1$. It is easy to see that

$$\psi(Y) \subseteq \{ y \in Y : \rho(y, y_1) < \gamma_1 \}.$$

Therefore, ψ is bounded. Hence, (i) holds. Let $\Gamma : lip(X, d) \longrightarrow lip(Y, \rho, \tau)$ defined by

$$(\Gamma f)(x,0) = f(x), \quad (\Gamma f)(x,1) = \overline{f(x)} \quad (f \in lip(X,d), x \in X).$$

By Theorem 2.9, Γ is an injective bounded real linear operator from lip(X, d) with the norm $\|\cdot\|_{X,L}$ regarded as a real Banach space onto real Banach space $lip(Y, \rho, \tau)$ with the norm $\|\cdot\|_{Y,L}$. We can easily show that

$$\Gamma \circ C_{\phi, lip(X,d)} = C_{\psi, lip(Y,\rho,\tau)} \circ \Gamma.$$
(3)

According to $\Gamma \in BL_{\mathbb{R}}(lip(X,d), lip(Y,\rho,\tau))$ and (2.3), we deduce that the operator $C_{\phi,lip(X,d)} : lip(X,d) \longrightarrow lip(X,d)$ is compact if and only if $C_{\psi,lip(Y,\rho,\tau)} : lip(Y,\rho,\tau) \longrightarrow lip(Y,\rho,\tau)$ is compact. Hence, (*iii*) holds.

According to Theorems 2.9 and 2.10, it is clear that Theorem 2.8 is also a generalization of [4, Theorem 1.3], whenever $\mathbb{K} = \mathbb{C}$.

The following result is concerning the compactness of composition operators on Lipschitz spaces $Lip_{0,\mathbb{K}}(X,d)$ obtained by Jiménez-Vargas and Villegas-Vallecillos [4].

Theorem 2.11 (see [4, Theorem 1.2]). Let (X, d) be a base pointed metric space and $\phi: X \longrightarrow X$ be a base point preserving Lipschitz mapping from (X, d) into (X, d). Then the composition operator $C_{\phi, Lip_{0,\mathbb{K}}(X,d)}: Lip_{0,\mathbb{K}}(X,d) \longrightarrow Lip_{0,\mathbb{K}}(X,d)$ is compact if and only if ϕ supercontractive and $\phi(X)$ is totally bounded in (X, d).

In the following result, we characterize compact composition operators on real Lipschitz spaces $Lip_0(X, d, \tau)$.

Theorem 2.12 Let (X, d) be a base pointed metric space, τ be a base point preserving Lipschitz involution on (X, d) and $\phi : X \longrightarrow X$ be a base point preserving Lipschitz mapping from (X, d) into (X, d) satisfying $\phi \circ \tau = \tau \circ \phi$. Then the composition operator $C_{\phi, Lip_0(X, d, \tau)} : Lip_0(X, d, \tau) \longrightarrow Lip_0(X, d, \tau)$ is compact if and only if ϕ is supercontractive and $\phi(X)$ is totally bounded in (X, d).

Proof. Since τ is a Lipschitz involution on (X, d), by Theorem 1.3, we deduce that $Lip_0(X, d) = Lip_0(X, d, \tau) \oplus i Lip_0(X, d, \tau)$, there exists a constant $C \ge 1$ such that

$$\max\{L_{(X,d)}(f), L_{(X,d)}(g)\} \leq CL_{(X,d)}(f+ig)$$
$$\leq 2C \max\{L_{(X,d)}(f), L_{(X,d)}(g)\}$$

for all $f, g \in Lip_0(X, d, \tau)$, and $(Lip_0(X, d, \tau), L_{(X,d)}(\cdot))$ is a real Banach space. Hence, by Theorem 2.1, the compactness of $C_{\phi,Lip_0(X,d,\tau)}$: $Lip_0(X, d, \tau) \longrightarrow Lip_0(X, d, \tau)$ is equivalent to the compactness of $(C_{\phi,Lip_0(X,d,\tau)})'$: $Lip_0(X, d) \longrightarrow Lip_0(X, d)$ which is defined by

$$(C_{\phi,Lip_0(X,d,\tau)})'(f+ig) = C_{\phi,Lip_0(X,d,\tau)}(f) + iC_{\phi,Lip_0(X,d,\tau)}(g)$$

for all $f, g \in Lip_0(X, d, \tau)$. It is easy to see that

$$(C_{\phi,Lip_0(X,d,\tau)})' = C_{\phi,Lip_0(X,d)}.$$

Therefore, the compactness of $C_{\phi,Lip(X,d,\tau)} : Lip(X,d,\tau) \longrightarrow Lip(X,d,\tau)$ is equivalent to the compactness of $C_{\phi,Lip_0(X,d)} : Lip_0(X,d) \longrightarrow Lip_0(X,d)$ and this is equivalent to ϕ is supercontractive and $\phi(X)$ is totally bounded in (X,d). Hence, the proof is complete.

Note that Theorem 2.12 is a generalization of Theorem 2.11 whenever $\mathbb{K} = \mathbb{R}$.

3. Spectra of compact composition operators

We recall that if Y is a nonempty set, $n \in \mathbb{N}$ and $\psi: Y \longrightarrow Y$ is a self-map of Y, then a point $y_0 \in Y$ is called a fixed point of ψ of order n if $\psi(y_0) = y_0$ whenever n = 1, and $\psi^n(y_0) = y_0$ and $\psi^k(y_0) \neq y_0$ for all $k \in \{1, ..., n-1\}$ whenever $n \ge 2$.

Let (X, d) be a metric space and the metric space (\tilde{X}, \tilde{d}) be the completion of (X, d). It is known [10, Proposition 1.7.1] that if (Y, ρ) is a complete metric space, then every Lipschitz mapping $\phi : X \longrightarrow Y$ from (X, d) into (Y, ρ) has a unique Lipschitz extension $\tilde{\phi} : \tilde{X} \longrightarrow Y$ from (\tilde{X}, \tilde{d}) into (Y, ρ) , and

$$\sup\{\frac{\rho(\phi(\tilde{x}),\phi(\tilde{y}))}{\tilde{d}(\tilde{x},\tilde{y})}:\tilde{x},\tilde{y}\in\tilde{X},\tilde{x}\neq\tilde{y}\}=\sup\{\frac{\rho(\phi(x),\phi(y))}{d(x,y)}:x,y\in X,x\neq y\}$$

Jiménez-Vargas and Villegas-Vallecillos [4] determined spectra of compact composition operators on Lipschitz spaces $(Lip_{\mathbb{K}}(X,d), \|\cdot\|_{X,L})$ and little Lipschitz spaces $(lip_{\mathbb{K}}(X,d), \|\cdot\|_{X,L})$ as the following.

Theorem 3.1 (see [4, Theorem 1.4]). Let (X, d) be a metric space, $\phi : X \longrightarrow X$ is a Lipschitz mapping from (X, d) into (X, d), $\tilde{\phi} : \tilde{X} \longrightarrow \tilde{X}$ its extension to the completion (\tilde{X}, \tilde{d}) of (X, d) and A the set of all $n \in \mathbb{N}$ such that $\tilde{\phi}$ has a fixed point of order n.

(i) If $C_{\phi,Lip_{\mathbb{K}}(X,d)} : Lip_{\mathbb{K}}(X,d) \longrightarrow Lip_{\mathbb{K}}(X,d)$ is a compact operator, then A is finite and

$$\sigma(C_{\phi,Lip_{\mathbb{K}}(X,d)})\setminus\{0\}=\bigcup_{n\in A}\{\lambda\in\mathbb{K}:\lambda^n=1\}.$$

Moreover, if X is infinite and connected in (X, d), then

$$\sigma(C_{\phi,Lip_{\mathbb{K}}(X,d)}) = \{0,1\}.$$

(ii) Assume that ϕ is bounded and $lip_{\mathbb{K}}(X,d)$ separates points uniformly on bounded subsets of X. If $C_{\phi,lip_{\mathbb{K}}(X,d)} : lip_{\mathbb{K}}(X,d) \longrightarrow lip_{\mathbb{K}}(X,d)$ is compact, then A is finite and

$$\sigma(C_{\phi, lip_{\mathbb{K}}(X, d)}) \setminus \{0\} = \bigcup_{n \in A} \{\lambda \in \mathbb{K} : \lambda^n = 1\}.$$

Moreover, if X is infinite and connected in (X, d), then

$$\sigma(C_{\phi, lip_{\mathbb{K}}(X,d)}) = \{0,1\}.$$

In the following theorem, we determine spectra of compact composition operators on $Lip(X, d, \tau)$ and $lip(X, d, \tau)$.

Theorem 3.2 Let (X, d) be a metric space, τ a topological involution on $X, \phi : X \longrightarrow X$ a Lipschitz mapping from (X, d) into (X, d) with $\phi \circ \tau = \tau \circ \phi$, $\tilde{\phi}$ the unique Lipschitz extension to completion (\tilde{X}, \tilde{d}) of (X, d) and A the set of all $n \in \mathbb{N}$ such that $\tilde{\phi}$ has a fixed point of order n.

(i) If $C_{\phi,Lip(X,d,\tau)} : Lip(X,d,\tau) \longrightarrow Lip(X,d,\tau)$ is a compact operator, then A is finite and

$$\sigma(C_{\phi,Lip(X,d,\tau)}) \setminus \{0\} = \bigcup_{n \in A} \{\lambda \in \mathbb{R} : \lambda^n = 1\}.$$

Moreover, if X is infinite and connected in (X, d), then

$$\sigma(C_{\phi,Lip(X,d,\tau)}) = \{0,1\}.$$

(ii) Assume that ϕ is bounded and lip(X, d) separates points uniformly on bounded subsets of X. If $C_{\phi, lip(X, d, \tau)} : lip(X, d, \tau) \longrightarrow lip(X, d, \tau)$ is compact, then A is finite and

$$\sigma(C_{\phi, lip(X, d, \tau)}) \setminus \{0\} = \bigcup_{n \in A} \{\lambda \in \mathbb{R} : \lambda^n = 1\}.$$

Moreover, if X is infinite and connected in (X, d), then

$$\sigma(C_{\phi,lip(X,d,\tau)}) = \{0,1\}.$$

Proof. Let $\mathcal{A} = Lip(X, d, \tau)$ and $\mathcal{B} = Lip(X, d)$ ($\mathcal{A} = lip(X, d, \tau)$ and $\mathcal{B} = lip(X, d)$, respectively). Suppose that ϕ is bounded and \mathcal{B} separates points uniformly on bounded subsets of X whenever $\mathcal{A} = lip(X, d, \tau)$.

Let $C_{\phi,\mathcal{A}} : \mathcal{A} \longrightarrow \mathcal{A}$ be a compact operator. Since τ is a topological involution on (X, d), by Theorem 1.2, $\mathcal{B} = \mathcal{A} \oplus i \mathcal{A}$ and there exists a constant $C \ge 1$ such that

 $\max\{\|f\|_{X,L}, \|g\|_{X,L}\} \leqslant C \|f + ig\|_{X,L} \leqslant 2C \max\{\|f\|_{X,L}, \|g\|_{X,L}\},\$

for all $f, g \in \mathcal{A}$. By Theorem 2.1, $(C_{\phi,\mathcal{A}})' : \mathcal{B} \longrightarrow \mathcal{B}$ is a compact operator and

$$\sigma(C_{\phi,\mathcal{A}}) = \mathbb{R} \cap \sigma((C_{\phi,\mathcal{A}})').$$

By the argument given in the proofs of Theorem 2.3 for $\mathcal{A} = Lip(X, d, \tau)$ and Theorem 2.8 for $\mathcal{A} = lip(X, d, \tau)$, we have

$$(C_{\phi,\mathcal{A}})' = C_{\phi,\mathcal{B}}.$$

Therefore,

$$\sigma(C_{\phi,\mathcal{A}}) = \mathbb{R} \cap \sigma(C_{\phi,\mathcal{B}}).$$
(4)

On the other hand, by Theorem 3.1, we have

$$\sigma(C_{\phi,\mathcal{B}}) \setminus \{0\} = \bigcup_{n \in A} \{\lambda \in \mathbb{C} : \lambda^n = 1\}.$$
(5)

From (4) and (5), we conclude that

$$\sigma(C_{\phi,\mathcal{A}})\setminus\{0\}=\bigcup_{n\in A}\{\lambda\in\mathbb{R}:\lambda^n=1\}.$$

Moreover, if X is infinite and connected in (X, d), then

$$\sigma(C_{\phi,\mathcal{B}}) = \{0,1\}.$$

So by (4), we have

$$\sigma(C_{\phi,\mathcal{A}}) = \{0,1\}.$$

Hence, the proof is complete.

In the following example which is a modification of [4, Example 1.1], we determine the spectrum of the compact composition operator $C_{\phi,Lip(X,d,\tau)}$ on $Lip(X,d,\tau)$, where τ is a suitable Lipschitz involution on (X,d).

Example 3.3 Take the sets $Z = [-1, -1/2] \cup [1/2, 1]$ and $Y = [-1/2, -1/4] \cup [1/4, 1/2]$ endowed, respectively, with the metrics

$$d_Z(x,y) = |x-y|, \quad (\forall x, y \in Z); \quad d_Y(x,y) = \sqrt{|x-y|}, \quad (\forall x, y \in Y).$$

Let $X = Y \cup Z$ and let $d: X \times X \longrightarrow \mathbb{R}$ the distance on X given by

$$d(x,y) = \begin{cases} d_Z(x,y) & \text{if } x, y \in Z; \\ d_Y(x,y) & \text{if } x, y \in Y; \\ d_Z(x,-1/2) + d_Y(-1/2,y) & \text{if } x \in [-1,-1/2], y \in Y; \\ d_Z(y,-1/2) + d_Y(-1/2,x) & \text{if } y \in [-1,-1/2], x \in Y; \\ d_Z(x,1/2) + d_Y(1/2,y) & \text{if } x \in [1/2,1], y \in Y; \\ d_Z(y,1/2) + d_Y(1/2,x) & \text{if } y \in [1/2,1], x \in Y. \end{cases}$$

Notice that (X, d) is compact since the topology generated by d is the usual topology of X. Define the map $\tau : X \longrightarrow X$ by $\tau(x) = -x$. It is easy to see that

$$d(\tau(x), \tau(y)) = d(x, y),$$

for all $x, y \in X$, and so τ is a Lipschitz involution on (X, d). Consider now $\phi : X \longrightarrow X$ defined by

$$\phi(x) = \begin{cases} -2x \text{ if } x \in Y, \\ 1 \quad \text{if } x \in [-1, -1/2], \\ -1 \quad \text{if } x \in [1/2, 1]. \end{cases}$$

It is not hard to check that ϕ is Lipschitz mapping from (X, d) into (X, d) and $\phi \circ \tau = \tau \circ \phi$. Thus, $C_{\phi,Lip(X,d,\tau)} : Lip(X,d,\tau) \longrightarrow Lip(X,d,\tau)$ is compact by Theorem 2.3. It is easy to see that -1 and 1 are fixed point of ϕ of order 2 and if $x \in X \setminus \{-1,1\}$, then x is not fixed point of ϕ of order n for all $n \in \mathbb{N}$. Since (X, d) is a compact metric space, we deduce that $(\tilde{X}, \tilde{d}) = (X, d)$ and $\tilde{\phi} = \phi$. Thus, $A = \{2\}$ and so, by Theorem 3.2, we have

$$\sigma(C_{\phi,Lip(X,d,\tau)}) \setminus \{0\} = \bigcup_{n \in A} \{\lambda \in \mathbb{R} : \lambda^2 = 1\} = \{-1,1\}.$$
(6)

104

On the other hand, $0 \in \sigma(C_{\phi,Lip(X,d)})$ since X is infinite. Thus, $0 \in \mathbb{R} \cap \sigma(C_{\phi,Lip(X,d)})$. By the argument given in the proof of Theorem 3.2, we conclude that $0 \in \sigma(C_{\phi,Lip(X,d,\tau)})$. Now, from (6) we have

$$\sigma(C_{\phi,Lip(X,d,\tau)}) = \{-1,0,1\}$$

References

- D. Alimohammadi and A. Ebadian, Hedberg s theorem in real Lipschitz algebras, Indian J. Pure Appl. Math. 32 (10)(2001), 1479-1493.
- [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer- Verlag, 1973.
- [3] A. Ebadian and S. Ostadbashi, Compact homomorphisms of real Lipschitz algebras, Southeast Asian Bull. Math. 30(4) (2006), 653-661.
- [4] A. Jiménez-Vargas and M. Villegas-Vallecillos, Compact composition operators on noncompact Lipschitz spaces, J. Math. Anal. Appl. 398(2013), 221-229.
- [5] H. Kamowitz and S. Scheinberg, Some properties of endomorphisms of Lipschitz algebras, Studia Math. 96 (1990), 61-67.
- [6] S. H. Kulkarni and B. V. Limaye, Gleason parts of real function algebras, Canad. J. Math. (33) (1) (1981), 181-200.
- [7] S. H. Kulkarni and B. V. Limaye, Real Function Algebras, Marcel Dekker, New Yorke, 1992.
- [8] D. R. Sherbert, Banach algebras of Lipschitz functions, Pacific J. Math. 13(1963), 1387-1399.
- D. R. Sherbert, The structure of ideals and point derivations of Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111(1964). 240-272.
- [10] N. Weaver, Lipschitz Algebras, World Scientific, New Jersey, 1999.