

Journal of Linear and Topological Algebra Vol. 01, No. 02, Summer 2013, 67-69

A note on uniquely (nil) clean ring

Shervin Sahebi^a, and Mina Jahandar^{a,*}

^aDepartment of Mathematics, Islamic Azad University, Central Tehran Branch, PO. Code 14168-94351, Iran

Abstract. A ring R is uniquely (nil) clean in case for any $a \in R$ there exists a uniquely idempotent $e \in R$ such that a - e is invertible (nilpotent). Let $C = \begin{pmatrix} A & V \\ W & B \end{pmatrix}$ be the Morita Context ring. We determine conditions under which the rings A, B are uniquely (nil) clean. Moreover we show that the center of a uniquely (nil) clean ring is uniquely (nil) clean.

 ${\bf Keywords:}$ Full element, uniquely clean ring, nil clean ring

1. Introduction

We say that an element $a \in R$ is uniquely (nil) clean provided that there exists a unique idempotent $e \in R$ such that $a - e \in R$ is invertible (nilpotent). A ring Ris uniquely (nil) clean in case every element in R is uniquely (nil) clean. As is well known, every uniquely nil clean ring is uniquely clean. Many authors have studied such rings, see [1, 2, 4, 6, 8].

A Morita Context $(A, B, W, V, \psi, \varphi)$ consists two rings A, B, two bimodules ${}_{A}V_{B}$, ${}_{B}W_{A}$ and a pair of bimodule homomorphisms $\psi : V \otimes_{B} W \longrightarrow A$, $\phi : W \otimes_{A} V \longrightarrow B$, such that $\psi(v \otimes w)v' = v\phi(w \otimes v')$, $\phi(w \otimes v)w' = w\psi(v \otimes w')$. We can form

$$C = \left\{ \begin{pmatrix} a & v \\ w & b \end{pmatrix} \mid a \in A, b \in B, v \in V, w \in W \right\}$$

*Corresponding author. Email: m66.jahandar@gmail.com

© 2013 IAUCTB http://jlta.iauctb.ac.ir and define a multiplication on C as follows:

$$\begin{pmatrix} a & v \\ w & b \end{pmatrix} \begin{pmatrix} a' & v' \\ w' & b' \end{pmatrix} = \begin{pmatrix} aa' + \psi(v \otimes w') & av' + vb' \\ wa' + bw' & \phi(w \otimes v') + bb' \end{pmatrix}$$

A routine check shows that, with this multiplication (and entry-wise addition), C becomes an associative ring. We call C a Morita Context ring [3]. Obviously, the class of the rings of Morita Contexts includes all 2×2 matrix rings and all formal triangular matrix rings. In recent years, many authors studied Morita Contexts from different points of view [5, 7].

In this paper in the first section we obtain the relationship of uniquely (nil) cleanness between Morita Context ring C and A, B. At last in the second section, we investigate if the center of a uniquely (nil) clean rings are uniquely (nil) clean? Throughout, all rings are associative rings with identity. Z(R) will denote, the center of R.

1.1 Morita Context ring

The following results are useful tools needed in the proof of main results.

THEOREM 1.1 (see [8, Theorem 2.2] and [6, Corollary 3.3.7]) Every factor ring of uniquely (nil) clean ring is again uniquely (nil) clean.

LEMMA 1.2 Every idempotent in a uniquely clean ring is central.

Proof Let $e^2 = e \in R$. If $r \in R$, then e + (er - ere) is an idempotent. Hence 1 + (er - ere) is a unit, so the fact that [e + (er - ere)] + 1 = e + [1 + (er - ere)] implies that e + (er - ere) = e because R is uniquely clean. It follows that er = ere, and similarly re = ere.

LEMMA 1.3 Every idempotent in uniquely nil clean ring is central.

Proof Let $e \in R$ be an idempotent and let r be any element of R. Notice that the element e + er(1 - e) can be written as e + (er(1 - e)) or as (e + er(1 - e)) + 0 as the sum of an idempotent and a nilpotent. Since R is uniquely nil clean, this shows that e = e + er(1 - e), implying that er(1 - e) = 0. It can likewise be shown that (1 - e)re = 0, so e is central.

THEOREM 1.4 Let $C = \begin{pmatrix} A & V \\ W & B \end{pmatrix}$ be the Morita Context with $\varphi, \psi = 0$. If C is a uniquely (nil) clean ring then A, B are uniquely (nil) clean rings.

Proof Let $I = \begin{pmatrix} 0 & V \\ W & B \end{pmatrix}$, $J = \begin{pmatrix} A & V \\ W & 0 \end{pmatrix}$. One can check that I, J are ideals of C and $C/I \simeq A, C/J \simeq B$. The uniquely (nil) cleanness of A, B follows from Theorem 2.1.

68

The following example shows that the converse of Theorem 2.4 is not true.

Example 1.5 Let $C = \begin{pmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_2 \end{pmatrix}$. One can check that \mathbb{Z}_2 is uniquely (nil) clean. Since $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ is a noncentral idempotent in C, then C is not uniquely (nil) clean, by Lemma 2.2 and Lemma 2.3.

COROLLARY 1.6 Let R, S be two rings, and M be an (R, S)-bimodule. Let $E = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ be the formal triangular matrix ring. If E is a uniquely (nil) clean ring then R and S are uniquely (nil) clean rings.

Proof Formal triangular matrix rings are special cases of the Morita Context rings with zero morphisms, therefore the result follows by Theorem 2.1.

2. The center of uniquely (nil) clean rings

It is interesting to know if the center of a ring shares the same property with the ring. We don't know if the center of a clean ring is necessarily clean? But we have:

THEOREM 2.1 The center of a uniquely (nil) clean ring is uniquely (nil) clean.

Proof Let R be a uniquely (nil) clean ring and $x \in Z(R)$. Then there exists a unique idempotent $e \in R$ such that $x - e \in R$ is invertible (nilpotent). Since $e \in Z(R)$ by Lemma 2.2 and Lemma 2.3, then $x - e \in Z(R)$. Thus x is uniquely (nil) clean in Z(R).

References

- [1] M. Y. Ahn, (2003). Weakly clean rings and almost clean rings. Ph.D. Thesis, University of Lowa.
- [2] D. D. Anderson, V. P. Camillo, Commutative rings whose elements are a sum of unit and idempotent. Comm. Algebra 30 (2002), pp. 3327–3336.
- [3] B. Li, L. Feng, F-clean rings and rings having many full elements. J. Korean Math. Soc. 2 (2010), pp. 247-261.
- [4] J. Che, W. K. Nicholson, Y. Zhou, Group rings in which every element is uniquely the sum of a unit and idempotent. J. Algebra. 306 (2006), pp. 453–460.
- [5] H. Chen, Morita contexts with many units. Comm. Algebra. 30 (3) (2002), pp. 1499–1512.
- [6] A. J. Diesl, Classes of strongly clean rings. Ph.D. Thesis, University of California, Berkeley, (2006).
 [7] A. Haghany, Hopficity and co-hopficity for Morita Contexts. Comm. Algebra. 27(1)(1999), pp. 477–
- 492. [0] W. V. Nichshen, V. Zhao, Diamin which shows the conversion of the same start and write f_{int}
- [8] W. K. Nicholson, Y. Zhou, Rings in which elements are uniquely the some of an idempotent and unit. Clasy. Math. J. 46(2004), pp. 227–236.