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Commutativity degree of Zp ≀ Zpn
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Abstract. For a finite group G the commutativity degree denote by d(G) and defind:

d(G) =
|{(x, y)|x, y ∈ G, xy = yx}|

|G|2
.

In [2] authors found commutativity degree for some groups,in this paper we find commuta-
tivity degree for a class of groups that have high nilpontencies.
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1. Introduction

For a finite group G the commutativity degree

d(G) =
|{(x, y)|x, y ∈ G, xy = yx}|

|G|2
.

is defined and studied by several authors (see for example [2, 3, 7]).
When d(G) > 1

2 , it is proved by P.Lescot in 1995 that G is abelain ,or G
Z(G) is

elementary abelian with |Ǵ| = 2 ,or G is isoclinic with S3 and d(G) = 1.

Throughout this paper n is positive integer and p is odd prime number.
We consider the wreath product Gn = Zp ≀Zpn where ,the standard wreath product
G ≀ H of the finite groups G and H is defined to be semidirect product of G by
direct product B of |G| copies of H.

In [1] it is proved that Gn has efficient presentation as follows:

Gn = 〈x, y|yp = xp
n

= 1 , [x, xy
i

] = 1 , 1 6 i 6
p− 1

2
〉 .
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Main theorems in this paper are:

Theorem 1.1

d(Gn) =
p(p−1)n + (p2 − 1)

p(p−1)n+2
.

Theorem 1.2

lim
n→∞

d(Gn) =
1

p2
.

Theorem 1.3

1

p2
< d(Gn) <

1

p
.

2. Proofs

We need some lemmas for proving Theorems 1.1, 1.2 and 1.3.

Lemma 2.1 In group Gn every element z has an unique presentations as follows:

z = yα(x)β0(xy)β1(xy
2

)β2 ...(xy
p−1

)βp−1

where α ∈ {0, 1, 2, ..., p− 1} and βi ∈ {0, 1, 2, ..., p
n − 1} (0 6 i 6 p− 1).

Proof By presentation of Gn,it is clearly. �

Lemma 2.2 Let z1,z2 ∈ Gn and z1 = yα1(x)β0(xy)β1(xy
2

)β2 ...(xy
p−1

)βp−1 and z2 =
yα2(x)γ0(xy)γ1(xy

2

)γ2 ...(xy
p−1

)γp−1.Then z1z2 = z2z1 if and only if:

βi + γα2+i ≡ βα2+i + γα2−α1+i (mod pn) , (i = 0, 1, 2, ..., p− 1)

where indices are reduced module of p.

Proof We have:
z2z1 =

yα1+α2(xy
α1
)γ0(xy

α1+1

)γ1 ...(xy
α1+p−1

)γp−1(x)β0(xy)β1(xy
2

)β2 ...(xy
p−1

)βp−1

and
z1z2 =

yα1+α2(xy
α2
)β0(xy

α2+1

)β1 ...(xy
α2+p−1

)βp−1(x)γ0(xy)γ1(xy
2

)γ2 ...(xy
p−1

)γp−1 .

By lemma 2.1 every element in Gn has unique presentation ,so we have:



M. Maghasedi/ JLTA, 01 - 01 (2012) 41-44. 43







β0 + γα2
≡ βα2

+ γα2−α1
(mod pn)

β1 + γα2+1 ≡ βα2+1 + γα2−α1+1 (mod pn)
...

...
βp−1 + γα2+p−1 ≡ βα2+p−1 + γα2−α1+p−1 (mod pn).

Then we have:

βi + γα2+i ≡ βα2+i + γα2−α1+i (mod pn) , (i = 0, 1, 2, ..., p− 1).

�

Remark:On set Gn ×Gn,we consider:

ζ(Gn) = {(z1, z2)|z1, z2 ∈ Gn, z1z2 = z2z1}.

Lemma 2.3

|ζ(Gn)| = p(p+1)n(p(p−1)n + p2 − 1).

Proof Let z ∈ Gn and z = yα(x)β0(xy)β1(xy
2

)β2 ...(xy
p−1

)βp−1 .
We consider ψ(z) = α. Now let

ζα1,α2
(Gn) = {(z1, z2)|z1, z2 ∈ Gn, z1z2 = z2z1, ψ(z1) = α1, ψ(z2) = α2}.

So we have:

p−1
⋃

α1=0

p−1
⋃

α2=0

ζα1,α2
(Gn) = ζ(Gn).

More over:

|ζ(Gn)| =

p−1
∑

α1=0

p−1
∑

α2=0

|ζα1,α2
(Gn)|.

Now we have two cases.
Case I: α1 = 0 ,α2 = 0
let z1 = xβ0(xy)β1(xy

2

)β2 ...(xy
p−1

)βp−1 and z2 = xγ0(xy)γ1(xy
2

)γ2 ...(xy
p−1

)γp−1 where
βi,γj ∈ {0, 1, ..., p

n − 1} and 0 6 i, j 6 p− 1.
Since z1z2 = z2z1 then:

|ζ0,0(Gn)| = pn × pn × · · · × pn
︸ ︷︷ ︸

2p

= p2pn.

Case II: α1 6= 0 or α2 6= 0,
let z1 = yα1(x)β0(xy)β1(xy

2

)β2 ...(xy
p−1

)βp−1 and z2 =
yα2(x)γ0(xy)γ1(xy

2

)γ2 ...(xy
p−1

)γp−1 .If z1z2 = z2z1 by lemma 2.2 we have:

βi + γα2+i ≡ βα2+i + γα2−α1+i (mod pn) , (i = 0, 1, 2, ..., p− 1) (∗)
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where indices are reduced module of p.
Now we can choose β0, β1, ..., βp−1, γ0 and findγ1, γ2, ..., γp−1 uniquely by (∗), then

|ζα1,α2
(Gn)| = pn × pn × ...× pn

︸ ︷︷ ︸

p+1

= pn(p+1).

Finally we have

|ζ(Gn)| =

p−1
∑

α1=0

p−1
∑

α2=0

|ζα1,α2
(Gn)| = p2np+(p2−1)pn(p+1) = p(p+1)n(p(p−1)n+p2−1).

�

Proof theorems 1.1,1.2 and 1.3:

For 1.1 since d(Gn) =
|ζ(Gn)|
|Gn|2

so by lemma 2.3 we find d(Gn) =
p(p−1)n+(p2−1)

p(p−1)n+2 .

For 1.2 and 1.3 we have d(Gn) =
1
p2 + p2−1

p(p−1)n+2 , so

lim
n→∞

d(Gn) =
1

p2

and d(Gn) >
1
p2 . d(Gn) <

1
p
is simple . �
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