Journal of Linear and Topological Algebra Vol. 03, No. 01, 2014, 15-22

On the superstability of a special derivation

M. Hassani^{a*} and E. Keyhani^a

^aDepartment of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad 91735, Iran.

Received 14 May 2014; revised 8 August 2014; accepted 20 August 2014.

Abstract. The aim of this paper is to show that under some mild conditions a functional equation of multiplicative (α, β) -derivation is superstable on standard operator algebras. Furthermore, we prove that this generalized derivation can be a continuous and an inner (α, β) - derivation.

 \bigodot 2014 IAUCTB. All rights reserved.

Keywords: Ring (α, β) -derivations, Linear (α, β) -derivations, Stable, Superstable, Multiplicative (α, β) -derivations, Multiplicative Derivations.

2010 AMS Subject Classification: Primary 16W25, Secondary 17A36, 17B40, 47B47.

1. Introduction

Questions concerning the stability of functional equations seems to be originated with S. M. Ulam [15]. In fact if X and Y are two Banach spaces and if $f : X \to Y$ is an approximately additive mapping, he wanted the functional equation for additive functions to be stable.

The case of approximately additive mapping between Banach spaces was solved by D. H. Hyers [9]. In 1968 S. M. Ulam proposed a more general problems: "When is it true that by changing the hypothesis of Hyers theorem a little one can still assert that the thesis of the theorem remains true of approximately true!"

Th. M. Rassias [12] proved a substantial generalization of the result of Hyers. Taking it into account, the additive functional equation is said to have the "Hyers- Ulam- Rassias" stability. And many authors answered the Ulam's equation for several cases. In [4] the

^{*}Corresponding author.

E-mail address: Hassani@mshdiau.ac.ir (M. Hassani).

author proved that every mapping f of a Banach algebra A onto a Banach algebra B which is approximately multiplicative is a ring homomorphism of A onto B.

J. A. Baker [2] showed that every approximately multiplicative unbounded complexvalued function defined on a semigroup S is actually a multiplicative function. We can find further references on problems concerning stability and superstability in survey papers.

In 1994 Peter Semrl [14] proved that the question of multiplicative derivation is superstable on standard operator algebras. In this paper at first we prove that the functional equation of linear (α, β) -derivation is superstable on whole of $\mathcal{B}(X)$ and furthermore we prove that this (α, β) -derivation can be a continuous and inner (α, β) -derivation and then we extend superstability to functional equation of multiplicative (α, β) -derivation on standard operator algebras. (for further results see [3],[9],[16]).

2. Preliminaries

Let R and S be two arbitrary associative rings (not necessarily with identity element). A mapping $\sigma: R \longrightarrow S$ such that $\sigma(x+y) = \sigma(x) + \sigma(y)$ $(x, y \in R)$ is called an additive mapping of R into S and is called a multiplicative mapping of R into S if $\sigma(xy) = \sigma(x)\sigma(y)$ $(x, y \in R)$ and a ring homomorphism from R into S is a mapping that is additive and also multiplicative. Furthermore a one to one and onto ring homomorphism is called a ring isomorphism from R into R is called a ring automorphism of R.

If α and β are mappings on R, by multiplicative derivation from R into itself we call a mapping $D: R \longrightarrow R$ such that

$$D(xy) = D(x)y + xD(y) \quad (x, y \in R).$$

And by a multiplicative (α, β) – derivation from R into itself we call a mapping D: $R \longrightarrow R$ such that

$$D(xy) = D(x)\alpha(y) + \beta(x)D(y) \quad (x, y \in R).$$

In addition, if there exists $x_0 \in R$ such that $d(x) = \beta(x)x_0 - x_0\alpha(x)$ holds for each $x \in R$, then d is called an inner (α, β) - derivation.

Note that if $R \subseteq S$ similarly the derivation and (α, β) -derivation $D : R \longrightarrow S$ can be defined (for further results see [5],[6],[7]).

Definition 2.1 A mapping σ from a ring R into a normed linear space S is approximately additive if there is $\delta > 0$ such that

$$||\sigma(x+y) - \sigma(x) - \sigma(y)|| \leq \delta \quad (x, y \in R).$$

And is approximately multiplicative if there is $\varepsilon > 0$ such that

$$||\sigma(xy) - \sigma(x)\sigma(y)|| \leq \varepsilon \quad (x, y \in R).$$

Definition 2.2 A mapping D from a normed linear space R into R is an approximate multiplicative derivation if there is $\delta > 0$ such that

$$||D(xy) - D(x)y - xD(y)|| \le \delta \quad (x, y \in R).$$

And is an approximate multiplicative (α, β) -derivation if there is $\varepsilon > 0$ such that

$$||D(xy) - D(x)\alpha(y) - \beta(x)D(y)|| \leq \varepsilon \quad (x, y \in R).$$

Definition 2.3 Let R be a ring and S be a normed space. If for given $\epsilon > 0$ and for an approximate additive mapping $f : R \to S$ there exists a unique additive mapping $g: R \to S$ such that $|| f(x) - g(x) || \leq \epsilon$ then we say the functional equation for additive functions is stable. In a situation where an approximate additive mapping must be a true additive mapping we say that the equation of the additive mapping is superstable.

In a similar fashion we can define stability and superstability of the functional equations of multiplicative functions and multiplicative derivations and multiplicative (α, β) derivations.

Definition 2.4 A ring R is called a prime ring if xRy = 0 for $x, y \in R$, implies that x = 0 or y = 0.

Let X be a Banach space over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. We denote by $\mathcal{B}(X)$, the algebra of all bounded linear operators of X and $\mathcal{F}(X)$ the subalgebra of all bounded linear finite rank operators and $\mathcal{F}_1(X)$ the subalgebra of all bounded linear rank one operators. We shall call a subalgebra \mathcal{A} of $\mathcal{B}(X)$ standard provided \mathcal{A} contains $\mathcal{F}(X)$.

Definition 2.5 Let \mathcal{A} be a standard operator algebra on a Banach space X. A mapping $D : \mathcal{A} \longrightarrow \mathcal{B}(X)$ is called a linear derivation if

(i) $D(\lambda A) = \lambda D(A)$.

- (ii) D(A+B) = D(A) + D(B).
- (iii) D(AB) = AD(B) + D(A)B.
- For each $A, B \in \mathcal{A}$ and $\lambda \in \mathbb{F}$.

A mapping satisfying (ii) and (iii) is called a ring derivation. Multiplicative derivations are mapping satisfying only (iii). Linear (α, β) -derivation and ring (α, β) -derivation are defined similarly.

Given a Banach algebra A it is also to consider $n \times n$ matrix algebra $M_n(A)$ with the following standard operations,

 $(a_{ij}) + (b_{ij}) = (a_{ij} + b_{ij})$, $\lambda(a_{ij}) = (\lambda a_{ij})$, $(a_{ij})(b_{ij}) = (\sum_{k=1}^{n} a_{ik}b_{kj})$ (i, j = 1, 2, ..., n)

And the norm $||(a_{ij})|| = \sup_{1 \le i \le n} (||a_{i1}|| + ... + ||a_{in}||)$.

Note that if X is finite dimensional vector space then all norms defined on X are equivalent. So if A is finite dimensional then the above norm on $M_n(A)$ is equivalent to the operator norm.

Let X be a Banach space and X^* the dual space of X. If $x \in X$ and $f \in X^*$, then $x \otimes f$ denotes the operator defined by $(x \otimes f)(z) = f(z)x$ $(z \in X)$.

In particular if H is a Hilbert space and $x, y \in H$, then $x \otimes y$ denotes the operator defined by $(x \otimes y)(z) = \langle z, y \rangle x$ $(z \in H)$.

Clearly if $A \in B(X)$, then $A(x \otimes f) = A(x) \otimes f$.

Definition 2.6 A Banach space X is called simple if $\mathcal{B}(X)$ has a unique nontrivial norm-closed two- sided ideal. For example, l^p $(1 \leq p < \infty), c_0$ (The Banach space of all sequences which converges to zero, with l^{∞} norm) and a separable infinite dimensional Hilbert space H are simple. In this case, the norm closure of all the finite rank operators is the ideal of compact operators, which is dense in $\mathcal{B}(X)$ with weak operator topology and is the unique nontrivial norm-closed two-sided ideal of $\mathcal{B}(X)$. (for further results see [1],[11],[13]).

3. Main Results

Lemma 3.1 [10] Let R be a ring containing a family $\{e_{\alpha} : \alpha \in A\}$ of idempotent which satisfies:

(1) xR = 0 implies x = 0.

(2) if $e_{\alpha}Rx = 0$ for each $\alpha \in A$, then x = 0 (and hence Rx = 0 implies x = 0).

(3) for each $\alpha \in A$, $e_{\alpha} x e_{\alpha} R(1 - e_{\alpha}) = 0$ implies $e_{\alpha} x e_{\alpha} = 0$.

Then every multiplicative isomorphism σ of R onto a arbitrary ring is additive.

As a special case of Lemma 3.1, we conclude the following theorem:

Theorem 3.2 Suppose that \mathcal{R} is a ring containing a family $\{e_{\alpha}\}_{\alpha \in A}$ of idempotents, such that for each $\alpha \in A$ and $x \in \mathcal{R}$ satisfies the following conditions:

- (i) $x\mathcal{R} = 0$ implies x = 0;
- (ii) $e_{\alpha}\mathcal{R}x = 0$ implies x = 0;
- (iii) If $e_{\alpha}xe_{\alpha}R(1-e_{\alpha})=0$ then $e_{\alpha}xe_{\alpha}=0$.

If α and β are ring homomorphisms on \mathcal{R} and at least one of α and β is one to one then every multiplicative $(\alpha, \beta) - derivation$ of \mathcal{R} is additive.

Proof. Let
$$d : \mathcal{R} \to \mathcal{R}$$
 be a multiplicative $(\alpha, \beta) - derivation$, and let
 $\mathcal{S} = \left\{ \begin{pmatrix} \beta(x) \ d(x) \\ 0 \ \alpha(x) \end{pmatrix} | x \in \mathcal{R} \right\}$. Obviously \mathcal{S} is a ring. Define $\sigma : \mathcal{R} \to \mathcal{S}$ by
 $\sigma(x) = \begin{pmatrix} \beta(x) \ d(x) \\ 0 \ \alpha(x) \end{pmatrix}$, for each $x \in \mathcal{R}$. Then σ is onto and one to one, since one of α and β is one to one.

For every $x, y \in \mathcal{R}$, we have

$$\sigma(xy) = \begin{pmatrix} \beta(xy) \ d(xy) \\ 0 \ \alpha(xy) \end{pmatrix}$$
$$= \begin{pmatrix} \beta(x)\beta(y) \ d(x)\alpha(y) + \beta(x)d(y) \\ 0 \ \alpha(x)\alpha(y) \end{pmatrix}$$
$$= \begin{pmatrix} \beta(x) \ d(x) \\ 0 \ \alpha(x) \end{pmatrix}$$
$$= \begin{pmatrix} \beta(y) \ d(y) \\ 0 \ \alpha(y) \end{pmatrix}$$
$$= \sigma(x)\sigma(y).$$

Then σ is multiplicative. Hence it is an isomorphism and by Lemma 3.1, it is additive.

$$\sigma(x+y) = \begin{pmatrix} \beta(x+b) \ d(x+y) \\ 0 \ \alpha(x+y) \end{pmatrix}$$
$$= \sigma(x) + \sigma(y)$$
$$= \begin{pmatrix} \beta(x) + \beta(y) \ d(x) + d(y) \\ 0 \ \alpha(x) + \alpha(y) \end{pmatrix}$$

Hence d is additive.

Lemma 3.3 [8] Let X be a complex Banach space, α and β be mappings from $\mathcal{B}(X)$

into itself. Let $D : \mathcal{B}(X) \to \mathcal{B}(X)$ be a linear (α, β) -derivation. Then D is continuous if one of the following conditions holds:

(i) α is an automorphism, β is continuous at 0 and the set $\{\beta(T) : T \in \mathcal{F}_1(X)\}$ separates the points of X in the sense that, for each pair $\xi, \eta \in X$ with $\xi \neq \eta$, there is a rank one operator T such that $\beta(T)\xi \neq \beta(T)\eta$, equivalently, the set $\{\beta(T) : T \in \mathcal{F}_1(X)\}$ has no nonzero right annihilators in $\mathcal{B}(X)$.

(ii) β is an automorphism, α is continuous at 0 and the set $\{\alpha(T) : T \in \mathcal{F}_1(X)\}$ has no nonzero right annihilators in $\mathcal{B}(X)$.

(iii) α and β are continuous at 0, $span\{\alpha(T)\xi : T \in \mathcal{F}_1(X), \xi \in X\}$ is dense in X and there is a rank one S such that $\beta(S)$ is injective.

(iv) X is simple and α, β are surjective and continuous at zero.

(v) α, β are surjective and multiplicative and there are rank one operators T_0 and S_0 such that $\alpha(T_0) \neq 0$ and $\beta(S_0) \neq 0$.

Moreover, if either (i), or X is reflexive and (ii), holds, D is (α, β) -inner.

Let \mathbb{R}_+ the set of all nonnegative real numbers. We prove that the equation of a special multiplicative $(\alpha, \beta) - derivation$ is superstable on standard operator algebras.

Theorem 3.4 Let X be a complex Banach space with dim X > 1 and suppose that $\phi : \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ is a mapping such that $lim_{t\to\infty} \frac{\phi(t)}{t} = 0$ and $D : \mathcal{B}(X) \longrightarrow \mathcal{B}(X)$ is a mapping satisfying $D(\lambda A) = \lambda D(A)$ $(\lambda \in \mathbb{C}, A \in \mathcal{B}(X))$ and

$$||D(AB) - \beta(A)D(B) - D(A)\alpha(B)|| < \phi(||A||||B||) \quad (A, B \in \mathcal{B}(X)).$$

If α, β are ring homomorphisms on $\mathcal{B}(X)$ and at least one of α and β is one to one in which α is a scalar multiplicative preserving map then the following statements holds: (1) D is (α, β) -inner if either condition (i) or when X is reflexive, condition (ii) of lemma 3.3 holds.

(2) D is continuous if one of conditions (i),(ii), (iii), (iv) and (v) of Lemma 3.3 holds.

Proof. At first we show that if $A, B \in \mathcal{B}(X)$, then $A\mathcal{B}(X)B = 0$ implies A = 0 or B = 0. In fact if $B \neq 0$, then there exists $z \in A$ such that $B(z) \neq 0$ and then from Hahn Banach theorem there exists $f \in X^*$ such that $f(B(z)) \neq 0$. Now for every arbitrary $x \in X$ we have:

```
A\mathcal{B}(X)B = 0A(x \otimes f)B(z) = 0(Ax \otimes f)(B(z)) = 0f(B(z))A(x) = 0A(x) = 0 \qquad (x \in X)
```

A = 0.

Furthermore if $\{x_i\}$ is a base for X and j be considered fixed we can define $T: X \to X$ by $T(\sum a_i x_i) = a_j x_j$, then clearly T is a nontrivial idempotent of rank one.

Therefore $\mathcal{B}(X)$ is a prime ring with nontrivial idempotent and so satisfies the conditions of Theorem 3.2 and so every multiplicative (α, β) - derivation on $\mathcal{B}(X)$ is a ring (α, β) derivation.

Replacing *B* by *tB* in which *t* is a positive real number in $||D(AB) - \beta(A)D(B) - D(A)\alpha(B)|| < \phi(||A||||B||)$, and then by dividing the above inequality by *t*, we obtain $||D(AB) - \beta(A)D(B) - D(A)\alpha(B)|| < \frac{\phi(t||A||||B||)}{t}$. By taking a limit when $t \to \infty$ we see that *D* is multiplicative (α, β) - derivation and hence the above observations and assumption imply that *D* is a linear (α, β) -derivation. Now, the result follows from Lemma 3.3.

Now we want extend Theorem 3.4 for the case D is not nessecairly scalar multiplicative preserving maps.

Theorem 3.5 Let X be a Banach space with dim X > 1 and \mathcal{A} be a standard operator algebra on X. Assume that $\phi : \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ is a function satisfying $\lim_{t\to\infty} \frac{\phi(t)}{t} = 0$. Suppose $\alpha : \mathcal{A} \longrightarrow \mathcal{A}$ is an algebra automorphism and $\beta : \mathcal{A} \longrightarrow \mathcal{A}$ be a ring automorphism and suppose that $D : \mathcal{A} \longrightarrow \mathcal{B}(X)$ is a mapping such that $||D(AB) - \beta(A)D(B) - D(A)\alpha(B)|| < \phi(||A||||B||) \ (A, B \in \mathcal{A}).$ Then D is multiplicative (α, β) - derivation.

Proof. Let us define a mapping $\phi : \mathcal{A} \longrightarrow \mathcal{B}(X \oplus X)$ by

$$\phi(A) = \begin{pmatrix} \beta(A) \ D(A) \\ 0 \ \alpha(A) \end{pmatrix}$$

We have

$$\phi(AB) - \phi(A)\phi(B)$$

$$= \begin{pmatrix} \beta(AB) \ D(AB) \\ 0 \ \alpha(AB) \end{pmatrix} - \begin{pmatrix} \beta(A) \ D(A) \\ 0 \ \alpha(A) \end{pmatrix} \begin{pmatrix} \beta(B) \ D(B) \\ 0 \ \alpha(B) \end{pmatrix}$$

$$= \begin{pmatrix} \beta(AB) \ D(AB) \\ 0 \ \alpha(AB) \end{pmatrix} - \begin{pmatrix} \beta(A)\beta(B) \ \beta(A)D(B) + D(A)\alpha(B) \\ 0 \ \alpha(A)\alpha(B) \end{pmatrix}$$

$$= \begin{pmatrix} 0 \ D(AB) - \beta(A)D(B) - D(A)\alpha(B) \\ 0 & 0 \end{pmatrix}$$

Consequently

$$\left|\left|\phi(AB) - \phi(A)\phi(B)\right|\right| = \left|\left|\begin{pmatrix}0 \ D(AB) - \beta(A)D(B) - D(A)\alpha(B)\\0 \ 0\end{pmatrix}\right|\right|$$

$$=Sup(||0|| + ||D(AB) - \beta(A)D(B) - D(A)\alpha(B)||, ||0|| + ||0||)$$
$$=||D(AB) - \beta(A)D(B) - D(A)\alpha(B)|| < \phi(||A||||B||) \quad (A, B \in \mathcal{A})$$

So we have $(\phi(AB) - \phi(A)\phi(B)) \phi(C)$ $= \begin{pmatrix} 0 \ D(AB) - \beta(A)D(B) - D(A)\alpha(B) \\ 0 \ 0 \end{pmatrix} \begin{pmatrix} \beta(C) \ D(C) \\ 0 \ \alpha(C) \end{pmatrix}$ $= \begin{pmatrix} 0 \ (D(AB) - \beta(A)D(B) - D(A)\alpha(B))\alpha(C) \\ 0 \ 0 \end{pmatrix}.$

It follows that for arbitrary $A, B, C \in \mathcal{A}$, we have

$$\begin{split} &||(D(AB) - \beta(A)D(B) - D(A)\alpha(B))\alpha(C)|| \\ &= \left| \left| \begin{pmatrix} 0 & (D(AB) - \beta(A)D(B) - D(A)\alpha(B))\alpha(C) \\ 0 & 0 \end{pmatrix} \right| \right| \\ &= \left| |\phi(AB) - \phi(A)\phi(B))\phi(C) \right|| \\ &= \left| |\phi(AB)\phi(C) - \phi(A)\phi(BC) + \phi(A)\phi(BC) - \phi(A)\phi(B)\phi(C)| \right| \\ &\leq \left| |\phi(AB)\phi(C) - \phi(A)\phi(BC)| \right| + \left| |\phi(A)\phi(BC) - \phi(A)\phi(B)\phi(C)| \right| \\ &= \left| |\phi(AB)\phi(C) - \phi(ABC) + \phi(ABC) - \phi(A)\phi(BC)| \right| + \left| |\phi(A)\phi(BC) - \phi(A)\phi(B)\phi(C)| \right| \\ &\leq \left| |\phi(AB)\phi(C) - \phi(ABC)| \right| + \left| |\phi(ABC) - \phi(A)\phi(BC)| \right| + \left| |\phi(A)| ||\phi(BC) - \phi(B)\phi(C)| \right| \\ &\leq \left| |\phi(AB)\phi(C) - \phi(ABC)| \right| + \left| |\phi(ABC) - \phi(A)\phi(BC)| \right| + \left| |\phi(A)| ||\phi(BC) - \phi(B)\phi(C)| \right| \\ &\leq \phi(||AB||||C||) + \phi(||A||||BC||) + ||\phi(A)||\phi(||B||||C||). \end{split}$$
Replacing C by tC in which t is a positive real number;

$$||(D(AB) - \beta(A)D(B) - D(A)\alpha(B))\alpha(tC)||$$

$$<\phi(t||AB||||C||)+\phi(t||A||||BC||)+||\phi(A)||||\phi(t||B||||C||)||,$$

Dividing the above inequality by t, we get

 $0 \ \leqslant \ ||(D(AB) - \beta(A)D(B) - D(A)\alpha(B))\alpha(C)|| \ < \ \frac{\phi(t||AB||||C||)}{t} \ + \ \frac{\phi(t||A||||BC||)}{t} \ + \ \frac{\phi(t||A|||BC||)}{t} \ + \ \frac{\phi(t||A||BC||)}{t} \ + \ \frac{\phi(t||A|||BC||)}{t} \ + \ \frac{\phi(t||A|||BC||)}{t} \ + \ \frac{\phi(t||A||BC||)}{t} \ + \ \frac{\phi(t||A|||BC||)}{t} \ + \ \frac{\phi(t||A||BC||)}{t} \ + \ \frac{\phi(t||A|||BC||)}{t} \ + \ \frac{\phi(t||A|||BC||)}{t} \ + \ \frac{\phi(t||A|||BC||)}{t} \ + \ \frac{\phi(t||A|||BC||)}{t} \ + \ \frac{\phi(t||A||BC||)}{t} \ + \ \frac{\phi(t||A|||BC||)}{t} \ + \ \frac{\phi(t||A||BC||)}{t} \ + \ \frac{\phi(t||A||BC||$ $||\phi(A)||\frac{\phi(t||B||||C||)}{t}$, Taking t to infinity we have

$$||(D(AB) - \beta(A)D(B) - D(A)\alpha(B))\alpha(C)|| = 0.$$

$$(D(AB) - \beta(A)D(B) - D(A)\alpha(B))\alpha(C) = 0.$$

For any arbitrary $E \in \mathcal{A}$, there exists $C \in \mathcal{A}$, such that $\alpha(C) = E$, since α is onto. Hence

for any arbitrary $E \in \mathcal{A} \supseteq \mathcal{F}(X)$, we have $(D(AB) - D(A)\alpha(B) - \beta(A)D(B))E = 0$. Therefore $(D(AB) - D(A)\alpha(B) - \beta(A)D(B))F(X) = 0$. So with the similar argument in Theorem 3.4 with application Hahn Banach theorem we have:

$$D(AB) - D(A)\alpha(B) - \beta(A)D(B) = 0.$$

$$D(AB) = D(A)\alpha(B) + \beta(A)D(B).$$

as desired.

Corollary 3.6 Let X and \mathcal{A} and ϕ be the same as in Theorem 3.5 and $D : \mathcal{A} \to \mathcal{B}(X)$ be a mapping satisfies

$$\parallel D(AB) - AD(B) - D(A)B \parallel < \phi(\parallel A \parallel \parallel B \parallel) \quad (A, B \in \mathcal{A})$$

then D is a multiplicatic derivation.

Acknowledgement

The authors would like to thanks the anonymous referee for his/her comments that have been implemented in the final version of the paper.

References

- [1] B. Aupetit, A primer on spectral theory, Springer- Verlag, New York, 1990.
- [2] J. A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), 411-416.
- [3] A. Bodaghi, Cubic derivations on Banach algebras, Acta Mathematica Vietnamica, 38, No.2 (2013),517-528.
 [4] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke math, J. 16 (1949), 385-397.
- [5] A. Hosseini, M. Hassani, A. Niknam, Generalized σ-derivation on Banach algebras, Bulletin of the Iranian Mathematical Society, 37 No. 4 (2011), 81-94.
- [6] A. Hosseini, M. Hassani, A. Niknam, S. Hejazian, Some results on σ -derivations, Ann. Funct. Anal, No. 2 (2011), 75-84.
- [7] Ch. Hou, W. Zhang, Q. Meng, A note on (α, β)-derivations, Linear Algebra and its Applications, 432(2010), 2600-2607.
- [8] Ch. Hou, Q. Meng, Continuity of (α, β) -derivation of operator algebras, J. Korean Math. Soc. 48(2011),823-835.
- [9] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat'e. A cad. Sci. U. S. A. 27 (1941), 222-224.
- [10] W. S. Martindale, when are multiplicative mappings additive, proceeding of the American Mathematical Soc. 21 No. 3(1969), 695-698.
- [11] L. Molanar, On isomorphisms on standard operators algebras, ar Xiv Preprint Math, 2000.
- [12] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
 [13] P. Semrl, Approximate homomorphisms, Proc 34th Internat. Symp. On Functional Equations, Wisa Jaronik,
- [13] F. Seniri, Approximate homomorphisms, Proc 34th Internat. Symp. On Functional Equations, Wisa Jaronik, Poland, June 10-19 (1996).
- [14] P. Semrl, The functional equation of multiplicative derivation is superstable on standard operator algebras, Integr Equat oper th, Vol. 18 (1994).
- [15] S. M. Ulam, A Collection of Mathematical Problems, Inter Science, New York, 1960.
- [16] S. Y. Yang, A. Bodaghi, K. A. M. Atan, Approximate cubic *-derivations on Banach *-algebras. Abstract and Applied Analysis, Volume 2012, Article ID 684179, 12 pages, doi:10.1155/2012/684179.