Journal of Linear and Topological Algebra Vol. 13, No. 01, 2024, 1- 12 DOR: DOI: 10.71483/JLTA.2024.1080984

Some results on graded S-strongly prime submodules

F. Farzalipour^a

^aDepartment of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran.

Received 6 August 2023; Revised 6 January 2024; Accepted 31 January 2024.

Communicated by Shervin Sahebi

Abstract. Let G be a group with identity e and R be a commutative G-graded ring with nonzero identity, $S \subseteq h(R)$ a multiplicatively closed subset of R and M be a graded Rmodule. A graded submodule N of M with $(N:_R M) \cap S = \emptyset$ is said to be graded S-strongly prime if there exists $s \in S$ such that whenever $((N + Rx_g):_R M)y_h \subseteq N$, then $sx_g \in N$ or $sy_h \in N$ for all $x_g, y_h \in h(M)$. The aim of this paper is to introduce and investigate some basic properties of the notion of graded S-strongly prime submodules, especially in graded multiplication modules. Moreover, we investigate the behaviour of this structure under graded module homomorphisms, localizations of graded modules, quotient graded modules, Cartesian product.

Keywords: Graded S-prime submodule, graded S-strongly prime submodule, graded multiplication module.

2010 AMS Subject Classification: 16W50, 13C05, 16D80.

1. Introduction

In recent years, rings with a group-graded structure have become increasingly important and consequently, the graded analogues of different concepts are widely studied in [1, 2, 4-8, 10, 12-15]. In this paper, first, we introduce and study the notions of graded *S*-strongly prime submodules and graded *S*-strongly semiprime submodules of a graded *R*-module *M* as a generalization of graded prime submodules and we investigate some properties of such graded submodules. For example, we show that if *N* is a graded *S*strongly prime submodule of *M*, then *N* is a graded *S*-strongly semiprime submodule and $(N :_R M)$ is a graded *S*-prime ideal of *R*. Also, we give some characterizations of graded *S*-strongly prime submodules in graded multiplication modules. Second, we

© 2024 IAUCTB. http://jlta.ctb.iau.ir

E-mail address: f_farzalipour@pnu.ac.ir (F. Farzalipour).

investigate the behaviour of this structure under graded module homomorphisms, localizations, quotient graded modules, Cartesian product.

Let G be a group with identity e and R be a ring. Then R is said to be a G-graded if $R = \bigoplus_{g \in G} R_g$ such that $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$, where R_g is an additive subgroup of R for all $g \in G$ [13]. The elements of R_g are homogeneous of degree g. An element r of R has a unique decomposition as $r = \sum_{g \in G} r_g$ with $r_g \in R_g$ for all $g \in G$, but the sum being a finite sum, i.e. almost all r_g zero. Let $R = \bigoplus_{g \in G} R_g$ be a graded ring and I be an ideal of a graded ring R. Then I is said to be a graded ideal of R, if $I = \bigoplus_{g \in G} (I \cap R_g)$, i.e., for $x \in I$, $x = \sum_{g \in G} x_g$, where $x_g \in I$ for all $g \in G$. Moreover, R/I becomes a G-graded ring with g-component $(R/I)_g = (R_g + I)/I$ for $g \in G$ [13]. A graded ring R is called graded quasilocal ring if it has a unique graded maximal ideal [12]. We call $S \subseteq h(R)$ is a multiplicatively closed subset of R if $0 \notin S, 1 \in S$ and $s_g s'_{q'} \in S$ for all $s_g, s'_{q'} \in S$ [12]. Let R be a graded ring and M an R-module. We say that M is a graded R-module if there exists a family of subgroups $\{M_g\}_{g\in G}$ of M such that $M = \bigoplus_{g \in G} M_g$ and $R_g M_h \subseteq M_{gh}$ for all $g, h \in G$. The elements of M_g are called homogeneous of degree g. It is clear that M_g is an R_e -submodule of M for all $g \in G$. Moreover, $h(M) = \bigcup_{g \in G} M_g$ [13]. Let N be an R-submodule of a graded R-module M. Then N is said to be a graded R-submodule if $N = \bigoplus_{g \in G} (N \cap M_g)$, i.e. for $m \in N$, $m = \sum_{g \in G} m_g$, where $m_g \in N$ for all $g \in G$. Moreover, M/N becomes a G-graded module with g-component $(M/N)_q = (M_q + N)/N$ for $g \in G$ [13]. A proper graded submodule N of a graded R-module M is said to be graded prime if $r_g m_h \in N$ where $r_g \in h(R)$ and $m_h \in h(M)$, then $m_h \in N$ or $r_g \in (N:M)$. A graded *R*-module *M* is called graded prime if the zero graded submodule is graded prime in M [2]. A proper graded submodules N of a graded R-module M is call graded semiprime if $r_a^k m_h \in N$ for some $r_q \in h(R), m_h \in h(M)$ and $k \in \mathbb{N}$, then $r_q m_h \in N$ [9]. Let $S \subseteq h(R)$ be a multiplicatively closed subset of R and N be a graded submodule of a graded R-module M with $(N:_R M) \cap S = \emptyset$. Then N is said to be a graded S-prime submodule if there exists $s \in S$ such that whenever $r_g m_h \in N$, then $sm_h \in N$ or $sr_g \in (N : M)$ for each $r_g \in h(R)$ and $m_h \in h(M)$ [15]. A graded *R*-module *M* is called graded finitely generated if $M = Rm_{g_1} + Rm_{g_2} + \cdots + Rm_{g_n}$ for some $m_{g_1}, \ldots, m_{g_n} \in h(M)$ [2]. Let $S \subseteq h(R)$ be a multiplicatively closed subset of R and M be a graded R-module. Then $S^{-1}M$ is a graded $S^{-1}R$ -module with

$$(S^{-1}M)_g = \{\frac{m}{s} : (\deg m)(\deg s)^{-1} = g\}$$

and $(S^{-1}R)_g = \{\frac{r}{s} : (\deg r)(\deg s)^{-1} = g\}$ [13] Let $M = \bigoplus_{q \in G} M_g$ and $M' = \bigoplus_{q \in G} M'_q$ be two graded R-modules. A mapping f from M into M' is said to be a graded homomorphism, if for all $m, n \in M$;

(2)
$$f(rm) = rf(m)$$
, for any $r \in R$ and $m \in M$,

(1) f(m+n) = f(m) + f(n),(2) $f(rm) = rf(m), \text{ for any } r \in R \text{ an}$ (3) For any $g \in G; f(M_g) \subseteq M'_g$ [12].

Let R_1 and R_2 be G-graded rings. Then $R = R_1 \times R_2$ is a G-graded ring with $R_q =$ $(R_1)_g \times (R_2)_g$ for all $g \in G$. Let M_1 be a G-graded R_1 -module, M_2 be a G-graded R_2 -module and $R = R_1 \times R_2$. Then $M = M_1 \times M_2$ is a G-graded R-module with $M_q = (M_1)_q \times (M_2)_q$ for all $g \in G$. Also, if $S_1 \subseteq h(R_1)$ is a multiplicatively closed subset of R_1 and $S_2 \subseteq h(R_2)$ is a multiplicatively closed subset of R_2 , then $S = S_1 \times S_2$ is a multiplicatively closed subset of R. Furthermore, each graded submodule of M is of the form $N = N_1 \times N_2$ where N_i is a graded submodule of M_i for i = 1, 2 [12]. A graded *R*-module *M* is called graded multiplication module, if every graded submodule *N* of *M*, N = IM for some graded ideal *I* of *R* [3].

Throughout this work, R is a commutative graded rings with identity and M is a graded R-module. Also, $S \subseteq h(R)$ is a multiplicatively closed subset of R.

2. Characterizations of graded S-strongly prime submodules

Definition 2.1 (a) A proper graded submodule N of M is said to be a graded strongly prime submodule if $((N + Rx_g) :_R M)y_h \subseteq N$, then $x_g \in N$ or $y_h \in N$ for each $x_g, y_h \in h(M)$.

(b) A graded submodule N of M with $(N :_R M) \cap S = \emptyset$ is said to be graded S-strongly prime if there exists $s \in S$ such that whenever $((N + Rx_g) :_R M)y_h \subseteq N$, then $sx_g \in N$ or $sy_h \in N$ for each $x_g, y_h \in h(M)$.

Note that if we consider R as a graded R-module, then graded S-strongly prime submodules are exactly graded S-prime ideals of R.

The following Lemma is known, but we write it here for the sake of references.

Lemma 2.2 Let M be a graded module over a graded ring R. Then the following hold:

- (i) If I and J are graded ideals of R, then I + J and $I \cap J$ are graded ideals of R.
- (ii) If I is a graded ideal of R, N is a graded submodule of M, $r_g \in h(R)$ and $x_h \in h(M)$, then Rx_h , IN, r_gN and $(0:_M I)$ are graded submodules of M.
- (iii) If N and K are graded submodules of M, then N + K and $N \bigcap K$ are also graded submodules of M and $(N :_R M)$ is a graded ideal of R. Also, $Ann_R(M) = (0 :_R M)$ is a graded ideal of R.
- (iv) Let $\{N_{\lambda}\}_{\lambda \in \Lambda}$ be a collection of graded submodules of M. Then $\sum_{\lambda} N_{\lambda}$ and $\bigcap_{\lambda} N_{\lambda}$ are graded submodules of M.

Proposition 2.3

- (i) Every graded strongly prime submodule N of M with $(N :_R M) \cap S = \emptyset$ is also a graded S-strongly prime submodule of M.
- (ii) Let $S \subseteq h(R)$ be a multiplicatively closed subset of R consisting of units in R. Then a graded submodule N of M is graded strongly prime if and only if N is graded S-strongly prime.

Proof. The proof is completely straightforward.

By setting $S = \{1\}$, we conclude that every graded strongly prime submodule is a graded S-strongly prime submodule by Proposition 2.3. The following example shows that the converse is not true in general.

Example 2.4

- (i) Let us observe $R = \mathbb{Z}$ as a trivially \mathbb{Z}_2 -graded ring and $M = \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ be a \mathbb{Z}_2 graded *R*-module with $M_0 = \mathbb{Z}/n\mathbb{Z} \times \{0\}$ and $M_1 = \{0\} \times \mathbb{Z}/n\mathbb{Z}$ where *n* is a positive integer with M_0 . Let *p* be a prime factor of *n* and $S = \mathbb{Z} - p\mathbb{Z}$. Then the submodule $p\mathbb{Z}/n\mathbb{Z} \times \{0\}$ is a graded *S*-strongly prime submodule of *M*.
- (ii) Let $R = \mathbb{Z}[i]$ be \mathbb{Z}_2 -graded *R*-module with $R_0 = \mathbb{Z}$ and $R_1 = i\mathbb{Z}$ and $S = \{2^n \mid n \in \mathbb{N} \cup \{0\}\}$. Consider the graded submodule $N = \langle 4i \rangle$ of graded *R*-module *R*. Put s = 4. It is easy to see that *N* is a graded *S*-strongly prime submodule. But *N* is not a graded strongly prime submodule.

Definition 2.5 (a) Let N be a graded submodule of M such that $(N :_R M) \cap S = \emptyset$. Then N is said to be a graded S-semiprime submodule if there exists $s \in S$ such that whenever $r_a^2 m_h \in N$, then $sr_g m_h \in N$ for all $r_g \in h(R)$ and $m_h \in h(M)$.

(b) Let \tilde{N} be a graded submodule of M such that $(N :_R M) \cap S = \emptyset$. Then N is said to be a graded S-strongly semiprime submodule if there exists $s \in S$ such that whenever $((N + Rx_g) :_R M)x_g \subseteq N$, then $sx_g \in N$ for all $x_g \in h(M)$.

(c) A graded ideal I of R is called graded S-semiprime if $I \cap S = \emptyset$ and there exists $s \in S$ such that whenever $a_g^2 \in I$, then $sa_g \in I$ for all $a_g \in h(R)$.

Lemma 2.6 Every graded S-strongly semiprime submodule is a graded S-semiprime submodule.

Proof. Let N be a graded S-strongly semiprime submodule of M and suppose $r_g^2 m_h \in N$ where $r_g \in h(R)$ and $m_h \in h(M)$. Thus, $((N + R(r_g m_h)) :_R M)(r_g m_h) = r_g((N + R(r_g m_h)) :_R M)m_h \subseteq r_g(N + R(r_g m_h)) \subseteq N$. Since N is a graded S-strongly semiprime submodule, there exists $s \in S$ such that $sr_g m_h \in N$. Therefore, N is a graded Ssemiprime submodule.

Proposition 2.7 If N is a graded S-strongly semiprime submodule of M, then $(N :_R M)$ is a graded S-semiprime ideal of R.

Proof. Let $a_g^2 \in (N :_R M)$ where $a_g \in h(R)$. Let $m \in M$. Hence $m = \sum_{h \in G} m_h$ where $m_h \in M_h$ for all $h \in G$. Suppose $m_h \in M_h$. Thus $((N + R(a_gm_h)) :_R M)(a_gm_h) = a_g((N + R(a_gm_h)) :_R M)m_h \subseteq a_g(N + R(a_gm_h)) \subseteq N$. Since N is graded S-strongly semiprime, there exists $s \in S$ such that $sa_gm_h \in N$, so $sa_gm \in N$ and $sa_g \in (N :_R M)$. Therefore, $(N :_R M)$ is a graded S-semiprime ideal of R.

The following example shows that the converse of Proposition 2.7 is not hold.

Example 2.8 Let $R = \mathbb{Z}$ be a trivially \mathbb{Z}_2 -graded ring and $M = \mathbb{Q} \times \mathbb{Q}$ where \mathbb{Q} is the field of rational numbers be a \mathbb{Z}_2 -graded module with $M_0 = \mathbb{Q} \times \{0\}$ and $M_1 = \{0\} \times \mathbb{Q}$. Take the graded submodule $N = \mathbb{Z} \times \{0\}$ and the multiplicatively closed subset $S = \mathbb{Z} - \{0\}$ of \mathbb{Z} . Then the graded ideal $(N :_{\mathbb{Z}} M) = 0$ is a graded S-semiprime, but N is not a graded S-strongly semiprime submodule of M. Let s be an arbitrary element of S. Choose a prime number p with gcd(p,s) = 1. Note that $((N + R(\frac{1}{p}, 0)) :_R M)(\frac{1}{p}, 0) \subseteq N$, but $(\frac{s}{p}, 0) \notin N$.

Proposition 2.9

- (i) Every graded S-strongly prime submodule is a graded S-prime submodule.
- (ii) Every graded S-strongly prime submodule is a graded S-strongly semiprime submodule.
- (iii) Every graded maximal submodule N of M with $(N :_R M) \cap S = \emptyset$ is a graded S-strongly prime submodule.

Proof. (i) Let N be a graded S-strongly prime submodule of M. Thus there exists $s \in S$ such that whenever $((N + Rx_g) : M)y_h \subseteq N$ for all $x_g, y_h \in h(M)$, implies that $sx_g \in N$ or $sy_h \in N$. Let $r_gm_h \in N$ and $sm_h \notin N$ for some $r_g \in h(R)$ and $m_h \in h(M)$. We show that $sr_g \in (N :_R M)$. Let $x = \sum_{k \in G} x_k \in M$. Thus we have $((N + Rm_h) :_R M)(r_gx_k) = r_g((N + Rm_h) :_R M)x_k \subseteq r_g(N + Rm_h) \subseteq N$ for any $x_k \in M_k$, since $sm_h \notin N$ and N is a graded S-strongly prime submodule of M, we conclude $sr_gx_k \in N$ for any $x_k \in M_k$. Hence $sr_gx \in N$. Therefore $sr_gM \subseteq N$ and so $sr_g \in (N :_R M)$.

(ii) It is clear.

(*iii*) Let N be a graded maximal submodule of M such that $(N :_R M) \cap S = \emptyset$. Let $x_g, y_h \in h(M)$ and $((N + Rx_g) : M)y_h \subseteq N$. Let $x_g \notin N$. Thus $N + Rx_g = M$, hence $(N + Rx_g :_R M) = R$ and we conclude $y_h \in N$. Therefore N is a graded strongly prime submodule, and since $(N :_R M) \cap S = \emptyset$, then by Proposition 2.3, N is a graded S-strongly prime submodule of M.

The following example shows that the concept of graded S-strongly prime submodules is different from the concept of graded S-prime submodules.

Example 2.10 Let R be a G-graded ring, P be a graded prime ideal of R and S = h(R) - P. Then $P \times P$ is a graded S-prime submodule of graded R-module $R \times R$, because $P \times P$ is a graded prime submodule of $R \times R$ and $(P \times P :_R R \times R) \cap S = P \cap S = \emptyset$. But it is not a graded S-strongly prime submodule of M. Let s be an arbitrary element of S. Then $((P \times P + R(1, 0)) :_R R \times R)(0, 1) \subseteq P \times P$, but $s(1, 0) \notin P \times P$ and $s(0, 1) \notin P \times P$.

Proposition 2.11 Let M be a graded module over a graded field R and N be a proper graded submodule of M. Then N is a graded maximal submodule of M if and only if N is a graded S-strongly prime submodule of M.

Proof. Let N be a graded maximal submodule of M. We have $(N :_R M) \cap S = \emptyset$, because if $s \in (N :_R M) \cap S$, then $1 = s^{-1}s \in (N :_R M)$, a contradiction. Thus by Proposition 2.9, N is a graded S-strongly prime submodule of M. Conversely, let N be a graded S-strongly prime submodule of M which is not a graded maximal submodule of M. Then there exists $x_g \in h(M) \setminus N$ such that $Rx_g + N \neq M$. Let $y = \sum_{h \in G} y_h \in M$. Hence for any $y_h \in M_h$, we have $((N + Rx_g) :_R M)y_h = \{0\}y_h = \{0\} \subseteq N$. Thus there exists $s \in S$ such that $sx_g \in N$ or $sy_h \in N$ since N is a graded S-strongly prime submodule of M. Since $x_g \notin N$, so $sx_g \notin N$. We conclude that $sy_h \in N$ and $y_h \in N$, so $y \in N$. Thus, N = M, which is a contradiction.

Corollary 2.12 Let N a graded submodule of M with (N : M) = P and S = h(R) - P. If P is a graded maximal ideal of R, then there exists a graded S-strongly prime submodule \mathcal{M} of M with $(\mathcal{M} : M) = P$.

Proof. Note that M/N is a graded module over the graded field R/P, so it has a graded maximal submodule, say \mathcal{M}/N . Then \mathcal{M} is a graded maximal submodule of M containing of N and hence $P = (N : M) \subseteq (\mathcal{M} : M)$, we have $(\mathcal{M} : M) = P$. Since $(\mathcal{M} : M) \cap S = \emptyset$, then by Proposition 2.9, \mathcal{M} is a graded S-strongly prime submodule of M.

Definition 2.13 A graded submodule N of a graded R-module M is called graded S-I-maximal if $(N :_R M) = I$ and there exists $s \in S$ such that whenever K is a graded submodule of M containing of N with $(K :_R M) = I$, then $sK \subseteq N$.

Theorem 2.14 Let M be a graded R-module and N be a graded submodule of M.

- (i) N is a graded S-strongly prime submodule of M.
- (ii) N is a graded S-strongly semiprime submodule of M and N is a graded S-prime submodule of M.
- (iii) N is a graded S-strongly semiprime submodule of M and $(N :_R M)$ is a graded S-prime ideal of R.
- (iv) N is a graded S-($N :_R M$)-maximal submodule of M.

Then $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv)$.

Proof. $(i) \Rightarrow (ii)$ Apply Proposition 2.9.

 $(ii) \Rightarrow (iii)$ Note that for every graded S-prime submodule N of M, the graded ideal $(N:_R M)$ is a graded S-prime ideal of R (see [15, Proposition 2.6]).

 $(iii) \Rightarrow (iv)$ Since N is a graded S-strongly semiprime submodule of M, there exists $s \in S$ such that whenever $((N + Rx_g) : M)x_g \subseteq N$, then $sx_g \in N$ for all $x_g \in M$. Let K be a graded submodule of M containing of N with $(K :_R M) = (N :_R M)$. We show that $sK \subseteq N$. Let $x = \sum_{g \in G} x_g$ be an arbitrary element of K. Since $N \subseteq N + Rx_g \subseteq K$ for any $g \in G$, then $(N :_R M) \subseteq ((N + Rx_g) :_R M) \subseteq (K :_R M) = (N :_R M)$ and so $((N + Rx_g) :_R M) = (N :_R M)$. Thus, $((N + Rx_g) :_R M)x_g = (N :_R M)x_g \subseteq N$, since N is a graded S-strongly semiprime submodule of M, $sx_g \in N$ and hence $sx \in N$. Therefore, $sK \subseteq N$ as required.

Proposition 2.15 Let $\{N_i\}_{i \in I}$ be a family of graded S-strongly prime submodules of M such that $(N_i :_R M) = P$ for all $i \in I$. If $\bigcap_{i \in I} N_i$ is a graded S-strongly prime submodule of M, then there exists $s \in S$ such that $sN_i \subseteq N_j$ for all $i, j \in I$.

Proof. Let $N = \bigcap_{i \in I} N_i$. Thus $(N :_R M) = \bigcap_{i \in I} (N_i :_R M) = P = (N_j :_R M)$ for each $j \in I$. Since N is graded S-strongly semiprime and by Proposition 2.14($(i) \Rightarrow (iv)$), N is graded S-($N :_R M$)-maximal and $N \subseteq N_j$ with $(N :_R M) = (N_j :_R M)$, so there exists $s \in S$ such that $sN_j \subseteq N$ for all $j \in I$.

Lemma 2.16 Let N be a graded S-strongly prime submodule of a graded R-module M. Then the following statements hold for some $s \in S$.

(i) $(N:_M s') \subseteq (N:_M s)$ for all $s' \in S$.

(ii) $((N:_R M):_R s') \subseteq ((N:_R M):_R s)$ for all $s' \in S$.

Proof. (i) Let $m = \sum_{g \in G} m_g \in (N :_M s')$ where $s' \in S$. Then $s'm_g \in N$ for any $m_g \in h(M)$. Since every graded S-strongly prime is graded S-prime, there exists $s \in S$ such that $sm_g \in N$ or $ss' \in (N :_R M)$. As $(N :_R M) \cap S = \emptyset$, we get $sm_g \in N$ so $sm \in N$, namely $m \in (N :_M s)$.

(ii) It follows from (i).

Theorem 2.17 Let N be a graded submodule of a graded R-module M provided $(N :_R M) \cap S = \emptyset$. Then N is a graded S-strongly prime submodule of M if and only if $(N :_M s)$ is a graded strongly prime submodule of M for some $s \in S$.

Proof. Assume that N is a graded S-strongly prime submodule of M. Then there exists $s \in S$ such that whenever $((N + Rx_g) :_R M)y_h \subseteq N$, then $sx_g \in N$ or $sy_h \in N$ for all $x_g, y_h \in h(M)$. We prove that $(N :_M s)$ is a graded strongly prime submodule. Taking $x_g, y_h \in M$ with $(((N :_M s) + Rx_g) :_R M)y_h \subseteq (N :_M s)$, we have $(((N :_M s) + Rx_g) :_R M)(sy_h) \subseteq s(N :_M s) \subseteq N$. Since $N \subseteq (N :_M s)$, $((N + Rx_g) :_R M)(sy_h) \subseteq N$. Thus, $sx_g \in N$ or $s^2y_h \in N$. If $sx_g \in N$, then $x_g \in (N :_M s)$. If $s^2y_h \in N$, then $y_h \in (N :_M s^2) \subseteq (N :_M s)$ by Lemma 2.16. Hence $(N :_M s)$ is a graded strongly prime submodule of M. Let $((N + Rx_g) :_R M)y_h \subseteq N$ for some $x_g, y_h \in h(M)$. Since $N \subseteq (N :_M s)$, we have $x_g \in (N :_M s)$ or $y_h \in (N :_M s)$. Thus, $sx_g \in N$ or $sy_h \in N$ for some $x_g, y_h \in h(M)$. Since $N \subseteq (N :_M s)$, we have $x_g \in (N :_M s)$ or $y_h \in (N :_M s)$. Thus, $sx_g \in N$ or $sy_h \in N$, and so N is a graded strongly prime submodule of M.

Theorem 2.18 Let N be a graded submodule of M provided $(N :_R M) \subseteq Jac^{gr}(R)$, where $Jac^{gr}(R)$ is the intersection of all graded maximal ideals of R. Then the following statements are equivalent:

- (i) N is a graded strongly prime submodule of M.
- (ii) N is a graded prime submodule of M and N is a graded $(h(R) \mathfrak{m})$ -strongly prime

submodule of M for each graded maximal ideal \mathfrak{m} .

Proof. $(i) \Rightarrow (ii)$ Let N be a graded strongly prime submodule of M. Then N is a graded prime submodule of M. Since $(N :_R M) \subseteq Jac^{gr}(R)$, $(N :_R M) \subseteq \mathfrak{m}$ for each graded maximal ideal \mathfrak{m} and so $(N :_R M) \cap (h(R) - \mathfrak{m}) = \emptyset$. Thus, N is a graded $(h(R) - \mathfrak{m})$ -strongly prime submodule of M by Proposition 2.3.

 $(ii) \Rightarrow (i)$ Suppose that N is a graded prime submodule of M and N is a graded $(h(R) - \mathfrak{m})$ -strongly prime submodule of M for each graded maximal ideal \mathfrak{m} . Let $((N + Rx_g) :_R M)y_h \subseteq N$ and $y_h \notin N$ for some $x_g, y_h \in h(M)$. Let \mathfrak{m} be a graded maximal ideal of R. Since N is a graded $(h(R) - \mathfrak{m})$ -strongly prime submodule of M, there exists $s_{\mathfrak{m}} \in h(R) - \mathfrak{m}$ such that $s_{\mathfrak{m}}x_g \in N$ or $s_{\mathfrak{m}}y_g \in N$. If $s_{\mathfrak{m}}y_h \in N$, then since N is a graded prime submodule of M and $y_h \notin N$, $s_{\mathfrak{m}} \in (N :_R M)$ which is a contradiction. Hence, $s_{\mathfrak{m}}x_g \in N$. Consider the set $Q = \{s_{\mathfrak{m}} \mid \exists \mathfrak{m} \in Max^{gr}(R); s_{\mathfrak{m}} \notin \mathfrak{m} \text{ and } s_{\mathfrak{m}}x_g \in N\}$. Suppose that $\langle Q \rangle \neq R$. Take any graded maximal ideal \mathfrak{m}' containing Q. Then the definition of Q requires that there exists $s_{\mathfrak{m}'} \in Q$ and $s_{\mathfrak{m}'} \notin \mathfrak{m}'$, which is a contradiction. Thus, $\langle Q \rangle = R$ and $1 = r_1 s_{\mathfrak{m}_1} + r_2 s_{\mathfrak{m}_2} + \cdots + r_n s_{\mathfrak{m}_n}$ for some $r_i \in R$ and $s_{\mathfrak{m}_i} \notin \mathfrak{m}_i$ with $s_{\mathfrak{m}_i}x_g \in N$, where $\mathfrak{m}_i \in Max^{gr}(R)$ for each $i = 1, 2, \ldots, n$. Therefore, $x_g = r_1 s_{\mathfrak{m}_1} x_g + r_2 s_{\mathfrak{m}_2} x_g + \cdots + r_n s_{\mathfrak{m}_n} x_g \in N$. Hence N is a graded strongly prime submodule of M.

By the previous theorem we have the following result:

Corollary 2.19 Let M be a graded module over a graded quasilocal ring (R, \mathfrak{m}) . Then the following statements are equivalent:

- (i) N is a graded strongly prime submodule of M.
- (ii) N is a graded prime submodule of M and N is a graded $(h(R) \mathfrak{m})$ -strongly prime submodule of M.

Now, we characterize graded S-strongly prime submodules of a graded multiplication module.

Theorem 2.20 Let M be a graded multiplication R-module and N be a graded submodule of M provided that $(N :_R M) \cap S = \emptyset$. Then the following statements are equivalent:

- (i) N is a graded S-strongly prime submodule of M.
- (ii) $(N:_R M)$ is a graded S-prime ideal of R.

(iii) N = IM for some graded S-prime ideal I of R with $ann(M) \subseteq I$.

Proof. $(i) \Rightarrow (ii)$ It follows from Theorem 2.14.

 $(ii) \Rightarrow (iii)$ Consider $I = (N :_R M)$.

 $(iii) \Rightarrow (i)$ By [15, Proposition 2.8], N is a graded S-prime submodule of M. Thus, there exists $s \in S$ such that whenever $r_g m_h \in N$, then $sm_h \in N$ or $sr_g \in (N :_R M)$ for all $m_h \in h(M)$ and $r_g \in h(R)$. Now, we show that N is a graded S-strongly prime submodule of M. Let $((N + Rx_g) :_R M)y_h \subseteq N$ and $sy_h \notin N$ for some $x_g, y_h \in h(M)$. Since N is a graded S-prime submodule of M, $s((N + Rx_g) :_R M) \subseteq (N :_R M)$. As M is a graded multiplication R-module, we have

$$s(N+Rx_g)=s((N+Rx_g):_RM)M\subseteq (N:_RM)M=N.$$

Therefore, $sx_q \in N$ and N is a graded S-strongly prime submodule of M.

Lemma 2.21 Let Q be a graded S-primary ideal of R. Then Grad(Q) is a graded S-prime ideal of R.

Proof. First note that $Grad(Q) \cap S = \emptyset$, because if $s \in Grad(Q) \cap S$, then $s^n \in Q \cap S$ for some $n \in \mathbb{N}$, a contradiction. Let $a_g b_h \in Grad(Q)$ where $a_g, b_h \in h(R)$. Thus, $(a_g b_h)^k \in Q$ for some $k \in \mathbb{N}$. Since Q is a graded S-primary ideal of R, there exists $s \in S$ such that $sa_g^k \in Q$ or $sb_h^k \in Grad(Q)$. We conclude $sa_g \in Grad(Q)$ or $sb_h \in Grad(Q)$. Hence, Grad(Q) is a graded S-prime ideal of R.

Lemma 2.22 Let M be a finitely generated multiplication R-module and N be a submodule of M. Then $(Grad(N) :_R M) = Grad((N :_R M))$.

Proof. The proof is similar to Theorem 4 of [11].

Theorem 2.23 Let M be a graded finitely generated multiplication R-module. If N is a graded S-strongly prime submodule of M, then Grad(N) is a graded S-strongly prime submodule of M.

Proof. Since N is a graded S-strongly prime submodule of M, $(N :_R M)$ is a graded S-prime ideal of R by Theorem 2.14. Thus, by Lemma 2.21, $Grad((N :_R M))$ is a graded S-prime ideal of R. By Lemma 2.22, we have $(Grad(N) :_R M) = Grad((N :_R M))$. Thus, $(Grad(N) :_R M)$ is a graded S-prime submodule of M. Now, the result follows from Theorem 2.20.

3. Behaviour of graded S-strongly prime submodules

In this section, we investigate the behaviour of graded S-strongly prime submodules under graded module homomorphisms, localizations, quotient graded modules and Cartesian product.

Proposition 3.1 Let $f: M \to M'$ be a graded *R*-homomorphism. Then the following statements hold:

- (i) If N' is a graded S-strongly prime submodule of M' such that $(f^{-1}(N'):_R M) \cap S = \emptyset$, then $f^{-1}(N')$ is a graded S-strongly prime submodule of M.
- (ii) If f is a graded epimorphism and N is a graded S-strongly prime submodule of M containing Ker(f), then f(N) is a graded S-strongly prime submodule of M'.

Proof. (i) Let $((f^{-1}(N') + Rx_g) :_R M)y_h \subseteq f^{-1}(N')$ for some $x_g, y_h \in h(M)$. Thus, $f(((f^{-1}(N') + Rx_g) :_R M)y_h) \subseteq f(f^{-1}(N')) \subseteq N'$. Since f is a graded R-homomorphism, $((f^{-1}(N') + Rx_g) :_R M)f(y_h) \subseteq N'$. Now, we show that $((N' + Rf(x_g)) :_R M') \subseteq ((f^{-1}(N') + Rx_g) :_R M)$. Take $r \in ((N' + Rf(x_g)) :_R M')$. Then $rM' \subseteq N' + Rf(x_g)$. Since $f(M) \subseteq M'$, we have $f(rM) = rf(M) \subseteq rM' \subseteq N' + Rf(x_g)$. This implies that $rM \subseteq f^{-1}(N' + f(Rx_g))$. It is clear that $f^{-1}(N' + f(Rx_g)) \subseteq f^{-1}(N') + Rx_g$. Thus, $r \in ((N' + Rx_g) :_R M)$ and so $((N' + Rf(x_g)) :_R M')f(y_h) \subseteq N'$. Since N' is a graded S-strongly prime submodule of M', there exists $s \in S$ such that $sf(x_g) \in N'$ or $sf(y_h) \in N'$. Therefore, $sx_g \in f^{-1}(N')$ or $sy_h \in f^{-1}(N')$ as needed.

(ii) First note that $(f(N):_R M') \cap S = \emptyset$. Otherwise, there exists $s \in (f(N):_R M') \cap S$. Hence, $sM' \subseteq f(N)$ and then $f(sM) = sf(M) = sM' \subseteq f(N)$ and $sM \subseteq N + Ker(f) = N$. That means $s \in (N:_R M)$, which is a contradiction. Let $((f(N) + Rx'_g):_R M')y'_h \subseteq f(N)$ where $x'_g, y'_h \in h(M')$. Since f is a graded epimorphism, $f(x_g) = x'_g$ and $f(y_h) = y'_h$ for some $x_g, y_h \in h(M)$. Thus $(f(N + Rx_g):_R M')f(y_h) \subseteq f(N)$. It is easy to see that $((N + Rx_g):_R M) \subseteq (f(N + Rx_g):_R M')$. Hence $f(((N + Rx_g):_R M)y_h) \subseteq f(N)$ and $((N + Rx_g):_R M)y_h \subseteq N + Ker(f) \subseteq N$. Thus, there exists $s \in S$ such that $sx_g \in N$ or $sy_h \in N$ since N is a graded S-strongly prime submodule of M. Therefore,

 $sf(x_g) \in f(N)$ or $sf(y_h) \in f(N)$, and so f(N) is a graded S-strongly prime submodule of M'.

Proposition 3.2 Let N and K be graded submodules of M with $K \subseteq N$. Then the following assertions hold:

- (i) If N' is a graded S-strongly prime submodule of M with $(N' :_R K) \cap S = \emptyset$, then $K \cap N'$ is a graded S-strongly prime submodule of K.
- (ii) N is a graded S-strongly prime submodule of M if and only if N/K is a graded S-strongly prime submodule of M/K.

Proof. (i) Consider the injection $i: K \to M$ defined by i(x) = x for all $x \in K$. Then $i^{-1}(N') = K \cap N'$. By $(N':_R K) \cap S = \emptyset$, we give $(i^{-1}(N'):_R K) \cap S = \emptyset$. Thus, the rest follows from Proposition 3.1(i).

(*ii*) Let N be a graded S-strongly prime submodule of M. Then consider the canonical homomorphism $\pi : M \to M/K$ defined by $\pi(m) = m + K$ for all $m \in M$. Then note that π is a graded epimorphism and $Ker(\pi) = K \subseteq N$. Thus by Proposition 3.1(*ii*), N/K is a graded S-strongly prime submodule of M/K. Conversely, assume that N/K is a graded S-strongly prime submodule of M/K. Let $((N+Rx_g):_R M)y_h \subseteq N$ where $x_g, y_h \in h(M)$. We have $((N+Rx_g)/K:_R M/K) = (R(x_g+K) + N/K:_R M/K) = ((N+Rx_g):_R M)$. Thus, $((R(x_g+K) + N/K):_R M/K)(y_h+K) \subseteq N/K$. Since N/K is a graded S-strongly prime submodule of M/K, there exists $s \in S$ such that $s(x_g+K) \in N/K$ or $s(y_h+K) \in N/K$. Thus, $sx_g \in N$ or $sy_h \in N$, and so N is a graded S-strongly prime submodule of M.

Let $S \subseteq h(R)$ be a multiplicatively closed subset of R. The saturation S^* of S is defined as $S^* = \{x \in h(R) \mid \frac{x}{1} \text{ is a homogeneous unit of } S^{-1}R\}$. Note that $S^* \subseteq h(R)$ is a multiplicatively closed subset of R containing S.

Proposition 3.3

- (i) Let $S_1 \subseteq S_2 \subseteq h(R)$ be multiplicatively closed subsets of R. If N is a graded S_1 -strongly prime submodule and $(N :_R M) \cap S_2 = \emptyset$, then N is a graded S_2 -strongly prime submodule.
- (ii) A graded submodule N of M is a graded S-strongly prime submodule if and only if it is a graded S^* -strongly prime submodule.
- (iii) If N is a graded S-strongly prime submodule of M, then $S^{-1}N$ is a graded strongly prime submodule of graded $S^{-1}R$ -module $S^{-1}M$.

Proof. (i) It is clear.

(ii) Let N be a graded S-strongly prime submodule. Assume that $(N :_R M) \cap S^* \neq \emptyset$ and $r \in (N :_R M) \cap S^*$. Let $r = \sum_{g \in G} r_g$ where $r_g \in R_g$ for all $g \in G$. Hence, $\frac{r_g}{1}$ is a homogeneous unit of $S^{-1}R$, that is, $\frac{r_g}{1}\frac{a}{s} = \frac{1}{1}$ for some $a \in h(R)$ and $s \in S$. Thus, $us = ur_g a \in S$ for some $u \in S$. Then $us = ur_g a \in (N :_R M) \cap S$, which is a contradiction. Thus, $(N :_R M) \cap S^* = \emptyset$. Since $S \subseteq S^*$, by (i), N is a graded S*-strongly prime submodule of M. Conversely, assume that N is a graded S*-strongly prime submodule. Let $((N + Rx_g) :_R M)y_h \subseteq N$ for some $x_g, y_h \in h(M)$. Since N is a graded S*-strongly prime submodule, there exists $s' \in S^*$ so that $s'x_g \in N$ or $s'y_h \in N$. As $\frac{s'}{1}$ is a unit of $S^{-1}R$, there exist $u, s \in S$ and $a \in h(R)$ such that su = us'a. Put $us' = s'' \in S$. Then note that $s''x_g \in N$ or $s''y_h \in N$. Therefore, N is a graded S-strongly prime submodule of M.

(*iii*) Let N be a graded S-strongly prime submodule. Thus, we have $(N:_R M) \cap S = \emptyset$

and there exists $s \in S$ such that whenever $((N + Rx_g) : M)y_h \subseteq N$, then $sx_g \in N$ or $sy_h \in N$ for all $x_g, y_h \in h(M)$. Let

$$\left((S^{-1}N + S^{-1}R(\frac{x_g}{u})) :_{S^{-1}R} S^{-1}M \right) \frac{y_h}{v} \subseteq S^{-1}N$$

where $\frac{x_g}{u}, \frac{y_h}{v} \in S^{-1}M$. We show that $((N + Rx_g) :_R M)(sy_h) \subseteq N$. If $r \in ((N + Rx_g) :_R M)$, then we can write $r = \sum_{k \in G} r_k$ where $r_k \in R_k$ for any $k \in G$. Hence, for any $k \in G$, $r_k M \subseteq N + Rx_g$ and $(\frac{r_k}{1})S^{-1}M \subseteq S^{-1}N + S^{-1}R(\frac{x_g}{1}) = S^{-1}N + S^{-1}R(\frac{x_g}{u})$ and so $(\frac{r_k}{1})(\frac{y_h}{v}) \in S^{-1}N$. Hence, there exist $n \in N$ and $t_1, t_2 \in S$ such that $t_2(t_1r_ky_h - vn) = 0$. Thus, $(t_2t_1)r_ky_h \in N$, and since N is a graded S-prime submodule, we get $st_1t_2 \in (N :_R M)$ or $sr_ky_h \in N$. As $(N :_R M) \cap S = \emptyset$, we have $sr_ky_h \in N$ for every $k \in G$ and so $sry_h \in N$. Hence, $((N + Rx_g) :_R M)(sy_h) \subseteq N$. It follows that $sx_g \in N$ or $s^2y_h \in N$ since N is a graded S-strongly prime submodule. Therefore, $\frac{x_g}{u} = \frac{sx_g}{su} \in S^{-1}N$.

The following example shows that the converse of part (iii) of Proposition 3.3 is not true in general.

Example 3.4 Consider $R = \mathbb{Z}$ and $G = \mathbb{Z}_2$. Then R is trivially G-graded by $R_0 = \mathbb{Z}$ and $R_1 = \{0\}$. Consider the R-module $U = \mathbb{Q}[i]$. Then U is G-graded by $U_0 = Q$ and $U_1 = i\mathbb{Q}$. Thus $M = U \times U$ is a G-graded R-module with $M_0 = U_0 \times U_0$ and $M_1 = U_1 \times U_1$. Take the graded submodule $N = \mathbb{Z} \times \{0\}$ and the multiplicatively closed subset $S = \mathbb{Z} - \{0\}$ of \mathbb{Z} . Then $((N + R(x, y)) :_R M) = 0$ for any $(x, y) \in M$. Let s be an arbitrary element of S. Choose prime numbers p, q of \mathbb{Z} . Then note that $((N + R(\frac{1}{p}, 0)) :_R M)(0, \frac{1}{q}) \subseteq N$. But $(\frac{s}{p}, 0) \notin N$ and $(0, \frac{s}{q}) \notin N$, it follows that N is not a graded S-strongly prime submodule of M. Since $S^{-1}\mathbb{Z} = \mathbb{Q}$, $S^{-1}N$ is a graded strongly prime submodule of $S^{-1}M$.

Proposition 3.5 Let M be a graded finitely generated R-module and N be a graded submodule of M satisfying $(N :_R M) \cap S = \emptyset$. Then the following statements are equivalent:

- (i) N is a graded S-strongly prime submodule of M.
- (ii) $S^{-1}N$ is a graded strongly prime submodule of $S^{-1}M$ and there is an $s \in S$ satisfying $(N:_M s') \subseteq (N:_M s)$ for all $s' \in S$.

Proof. $(i) \Rightarrow (ii)$ It follows from Proposition 3.3 and Lemma 2.16.

 $(ii) \Rightarrow (i)$ Let $((N + Rx_g) :_R M)y_h \subseteq N$ for some $x_g, y_h \in h(M)$. We have $((S^{-1}N + S^{-1}R(\frac{x_g}{1})) :_{S^{-1}R} S^{-1}M)\frac{y_h}{1} \subseteq S^{-1}N$. Then $\frac{x_g}{1} \in S^{-1}N$ or $\frac{y_h}{1} \in S^{-1}N$ since $S^{-1}N$ is a graded strongly prime submodule of $S^{-1}M$. Thus, $ux_g \in N$ or $ty_h \in N$ for some $u, t \in S$. By assumption, there exists $s \in S$ so that $(N :_M u) \subseteq (N :_M s)$ and $(N :_M t) \subseteq (N :_M s)$. Thus, $sx_g \in N$ or $sy_h \in N$ and so N is a graded S-strongly prime submodule of M.

Lemma 3.6 Let $R = R_1 \times R_2$ and $S = (S_1 \times S_2) \cap h(R)$ where $S_i \subseteq h(R_i)$ is a multiplicatively closed subset of R_i for each i = 1, 2. Suppose that $P = P_1 \times P_2$ is a graded ideal of R. If P is a graded S-prime ideal of R, then P_1 is a graded S_1 -prime ideal of R_1 and $P_2 \cap S_2 \neq \emptyset$ or P_2 is a graded S_2 -prime ideal of R_2 and $P_1 \cap S_1 \neq \emptyset$.

Proof. Suppose P is a graded S-prime ideal of R. Since $(1,0)(0,1) = (0,0) \in P$, there exists $s = (s_1, s_2) \in S$ so that $s(1,0) = (s_1,0) \in P$ or $s(0,1) = (0,s_2) \in P$ and thus, $P_1 \cap S_1 \neq \emptyset$ or $P_2 \cap S_2 \neq \emptyset$. We may assume that $P_1 \cap S_1 \neq \emptyset$. As $P \cap S = \emptyset$, we have $P_2 \cap S_2 = \emptyset$. Let $x_g y_h \in P_2$ for some $x_g, y_h \in R_2$. Since $(0, x_g)(0, y_h) \in P$ and P is a graded S-prime ideal, we get either $s(0, x_g) = (0, s_2 x_g) \in P$ or $s(0, y) = (0, s_2 y) \in P$ and

this yields $s_2x_g \in P_2$ or $s_2y_h \in P_2$. Therefore, P_2 is a graded S_2 -prime ideal of R_2 . In the other case, one can easily show that P_1 is a graded S_1 -prime ideal of R_1 .

Theorem 3.7 Let $M = M_1 \times M_2$ be a graded $R = R_1 \times R_2$ -module and $S = (S_1 \times S_2) \cap h(R)$ be a multiplicatively closed subset of R where M_i is a graded R_i -module and $S_i \subseteq h(R_i)$ is a multiplicatively closed subset of R_i for each i = 1, 2. Suppose that N_1 is a graded submodule of M_1 and N_2 is a graded submodule of M_2 and $N = N_1 \times N_2$. If N is a graded S-strongly prime submodule of M, then N_1 is a graded S_1 -strongly prime submodule of M_1 and $(N_2 :_{R_2} M_2) \cap S_2 \neq \emptyset$ or N_2 is a graded S_2 -strongly prime submodule of M_2 and $(N_1 :_{R_1} M_1) \cap S_1 \neq \emptyset$.

Proof. Assume that N is a graded S-strongly prime submodule of M. First, note that $(N :_R M) = (N_1 :_{R_1} M_1) \times (N_2 :_{R_2} M_2)$ is a graded S-prime ideal of R by Theorem 2.14. Hence, by Lemma 3.6, $(N_1 :_R M_1) \cap S_1 \neq \emptyset$ or $(N_2 :_R M_2) \cap S_2 \neq \emptyset$. We may assume that $(N_1 :_R M_1) \cap S_1 \neq \emptyset$. We will show that N_2 is a graded S-strongly prime submodule of M_2 . Let $((N_2 + R_2(x_2)_g) :_{R_2} M_2)(y_2)_h \subseteq N_2$ for some $(x_2)_g, (y_2)_h \in h(M_2)$. We have $((N_1 \times N_2 + R(0, (x_2)_g)) :_R M_1 \times M_2)(0, (y_2)_h) \subseteq N_1 \times N_2$ because if $(r_1, r_2) \in ((N_1 \times N_2 + R(0, (x_2)_g)) :_R M_1 \times M_2)$, then $(r_1, r_2)(M_1 \times M_2) \subseteq N_1 \times N_2 + R(0, (x_2)_g)$. We get $r_2M_2 \subseteq N_2 + R(x_2)_g$. Thus, $(r_1, r_2)(0, (y_2)_h) = (0, r_2(y_2)_h) \in N_1 \times N_2$ and so $((N_1 \times N_2 + R(0, (x_2)_g)) :_R M_1 \times M_2)(0, (y_2)_h) \subseteq N_1 \times N_2$. Then there exists $s = (s_1, s_2) \in S$ such that $(s_1, s_2)(0, (x_2)_g) \in N_1 \times N_2$ or $(s_1, s_2)(0, (y_2)_h) \in N_1 \times N_2$ since $N_1 \times N_2$ is a graded S-strongly prime submodule of M, hence $s_2(x_2)_g \in N_2$ or $s_2(y_2)_h \in N_2$. Therefore, N_2 is a graded S-strongly prime submodule of M_2. In the other case, it can be similarly shown that N_1 is a graded S_1 -strongly prime submodule of M_1 .

Corollary 3.8 Let $M = M_1 \times M_2 \times \cdots \times M_n$ be a graded $R = R_1 \times R_2 \times \cdots \times R_n$ module and $S = S_1 \times S_2 \times \cdots \times S_n \cap h(R)$ be a multiplicatively closed subset of R where M_i is a graded R_i -module and $S_i \subseteq h(R_i)$ is a multiplicatively closed subset of R_i for each $i = 1, 2, \ldots, n$. Suppose that $N = N_1 \times N_2 \times \cdots \times N_n$ is a graded submodule of M. If N is a graded S-strongly prime submodule of M, then N_i is a graded S_i -strongly prime submodule of M_i for some $i \in \{1, 2, \ldots, n\}$ and $(N_j :_{R_j} M_j) \cap S_j \neq \emptyset$ for all $j \in \{1, 2, \ldots, n\} - \{i\}$.

Proof. We apply induction on n. For n = 1, the result is true. If n = 2, then it follows from Theorem 3.7. Let it hold when k < n. Now, we will prove if k = n. Let $N = N_1 \times N_2 \times \cdots \times N_n$. Put $N' = N_1 \times N_2 \times \cdots \times N_{n-1}$ and $S' = S_1 \times S_2 \times \cdots \times S_{n-1} \cap h(R_1 \times R_2 \times \cdots \times R_{n-1})$. Then, by Theorem 3.7, for $N = N' \times N_n$ is a graded S-strongly prime submodule of M that N' is a graded S'-strongly prime submodule of M and $(N_n :_{R_n} M_n) \cap S_n \neq \emptyset$ or N_n is a graded S_n -strongly prime submodule of M_n and $(N' :_{R'} M') \cap S' \neq \emptyset$ where $M' = M_1 \times M_2 \times \cdots \times M_{n-1}$ and $R' = R_1 \times R_2 \times \cdots \times R_{n-1}$. The rest follows from the induction hypothesis.

4. Conclusions

In this article, we introduced the concept of graded S-strongly prime submodules of a graded module over a commutative graded ring. In fact, the concept of graded S-strongly prime submodules is different from the concept of graded strongly prime submodules and many results for graded strongly prime submodules do not apply to graded S-strongly prime submodules. Several properties, examples and characterizations of graded S-strongly prime submodules, especially in graded multiplication modules, have been investigated. Moreover, we explored the behaviour of graded S-strongly prime submodules under graded module homomorphisms, localizations, quotient graded modules, Cartesian product.

Acknowledgments

The author is deeply grateful to the referee(s) for careful reading of the manuscript and helpful comments and for her/his valuable suggestions which led to some improvements in the quality of this paper.

References

- R. Abu-Dawwas, M. Bataineh, Graded prime submodules over non-commutative rings, Vietnam J. Math. 46 (3) (2018), 681-692.
- [2] S. Ebrahimi Atani, F. Farzalipour, On graded secondary modules, Turkish J. Math. 31 (2007), 371-378.
- J. Escoriza, B. Torrecillas, Multiplication objects in commutative grothendieck categories, Comm. Algebra. 26 (6) (1998), 1867-1883.
- [4] F. Farzalipour, P. Ghiasvand, A generalization of graded prime submodules over non-commutative graded rings, J. Algebra. Related Topics. 8 (1) (2020), 39-50.
- [5] F. Farzalipour, P. Ghiasvand, Graded S-1-absorbing prime submodules in graded multiplication modules, Int. Electronic J. Algebra. 32 (2022), 62-79.
- [6] F. Farzalipour, P. Ghiasvand, On graded weak multiplication modules, Tamkang J. Math. 43 (2) (2012), 171-177.
- [7] F. Farzalipour, P. Ghiasvand, On the union of graded prime submodules, Thai. J. Math. 9 (1) (2011), 49-55.
 [8] P. Ghiasvand, F. Farzalipour, Generalization of graded second submodules, Acta Universitatis Sapientiae, Mathematica. 13 (1) (2021), 164-181.
- P. Ghiasvand, F. Farzalipour, Graded semiprime submodules over non-commutative graded rings, J. Algebraic Sys. 10 (1) (2022), 95-110.
- [10] K. Hakan Oral, Ü. Tekir, A. G. Ağargün, On graded prime and primary submodules, Turkish J. Math. 35 (2011), 159-167.
- [11] R. McCasland, M. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull. 29 (1) (1986), 36-39.
- [12] N. Nastasescu, F. Van Oystaeyen, Graded Rings Theory, Mathematical Library 28, North Holland, Amsterdam, 1982.
- [13] N. Nastasescu, F. Van Oystaeyen, Methods of Graded Rings, Lecture Notes in Mathematics, Springer, Berlin, 2004.
- [14] M. Refai, K. Al-Zoubi, On graded primary ideals, Turkish J. Math. 28 (2004), 217-229.
- [15] H. Saber, T. Alraqad, R. Abu-Dawwas, On graded S-prime submodules, AIMS Math. 6 (3) (2020), 2510-2524.