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Abstract. In this note, we investigate the Minkowski’s and Young type determinantal in-
equalities for accretive-dissipative matrices S = A + iB satisfying 0 < B < A. Our results
improve some recent ones in the literature.
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1. Introduction and preliminaries

For fixed n ≥ 1, let Mn(C) be the set of all complex n× n matrices. We denote by In
the identity of Mn(C). For any S ∈ Mn(C), S∗ stands for the conjugate transpose of S.
We say S is positive definite (positive semidefinite) if S = S∗ and x∗Ax > 0 (x∗Ax ≥ 0,
respectively) for all nonzero x ∈ Cn. It is known that every S ∈ Mn(C) has a unique
Toeplitz decomposition of the form S = A + iB with A = A∗ and B = B∗. In case A
and B are both positive definite, S is called accretive-dissipative.

For each A ∈ Mn(C), let {sj(A)}nj=1 be the decreasing sequence of singular values of

|A| = (AA∗)
1

2 . Given any A,B ∈ Mn(C), Garg and Aujla [1] showed that

k∏
j=1

sj(|A+B|r) ≤
k∏

j=1

sj(In + |A|r)
k∏

j=1

sj(In + |B|r)
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and

k∏
j=1

sj
(
In + f(|A+B|)

)
≤

k∏
j=1

sj
(
In + f(|A|)

) k∏
j=1

sj
(
In + f(|B|)

)
for every 1 ≤ r ≤ 2, 1 ≤ k ≤ n and operator concave function f : [0,∞) → [0,∞).
If A and B are positive semidefinite, r = 1 and f(X) = X for any X ∈ Mn(C), these
inequalities imply

k∏
j=1

sj(A+B) ≤
k∏

j=1

sj(In +A)

k∏
j=1

sj(In +B)

and

k∏
j=1

sj(In +A+B) ≤
k∏

j=1

sj(In +A)

k∏
j=1

sj(In +B).

In particular, in the case k = n, we get

det(A+B) ≤ det(In +A) det(In +B) (1)

and

det(In +A+B) ≤ det(In +A) det(In +B). (2)

Given any accretive-dissipative matrices S, T ∈ Mn(C), Kittaneh and Sakkijha [5]
computed

|detS|
1

n + | detT |
1

n ≤
√
2| det(S + T )|

1

n (3)

and for any 0 < α < 1,

| detS|α|detT |1−α ≤ 2
n

2

∣∣ det (αS + (1− α)T
)∣∣. (4)

Proposition 1.1 [4, Lemma 6] Let A,B ∈ Mn(C) be positive semidefinite. Then

| det(A+ iB)| ≤ det(A+B) ≤ 2
n

2 | det(A+ iB)|.

The following results are also proved in [6].

Proposition 1.2 [6, Theorem 2.11] Let S, T ∈ Mn(C) be accretive-dissipative. Then

|detS|
1

n + | detT |
1

n ≤ 2
√
2| det(In + S)|

1

n | det(In + T )|
1

n (5)

and

|det(αIn + S)|
1

n +
∣∣ det ((1− α)In + T

)∣∣ 1

n ≤ 2
√
2|det(In + S)|

1

n |det(In + T )|
1

n (6)
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for every 0 ≤ α ≤ 1.

Proposition 1.3 [6, Theorem 2.12] Let S, T ∈ Mn(C) be accretive-dissipative. Then,
for every 0 < α < 1,

|detS|α| detT |1−α ≤ 2
3n

2 | det(In + αS)||det(In + (1− α)T )| (7)

and ∣∣ det(In + S)
∣∣α∣∣ det(In + T )

∣∣1−α ≤ 2
3n

2

∣∣ det(In + αS)
∣∣∣∣ det (In + (1− α)T

)∣∣. (8)

Proposition 1.4 [2, property 2] Let A ∈ Mn(C) be accretive-dissipative. Then, there
exists a unique square root R of A that belongs to accretive-dissipative. If R = S+ iT is
the Toeplitz decomposition of R, then 0 < T < R.

Throughout the paper, we consider specific accretive-dissipative matrices S = A+ iB
with 0 < B < A. We denote by R++

n the set of such matrices, that is,

R++
n = {S ∈ Mn(C) : S = A+ iB with 0 < B < A}.

Our initial motivation for considering R++
n comes from Proposition 1.4 which says every

accretive-dissipative matrix T ∈ Mn(C) has a unique square root S = T
1

2 = A + iB
with 0 < B < A. Note that the converse of this simply holds: if S = A+ iB is accretive-
dissipative with 0 < B < A, then S2 is accretive-dissipative. Consequently,R++

n coincides
with the set of all matrices S ∈ Mn(C) such that both S and S2 are accretive-dissipative.

The aim of this paper is to investigate some known determinantal inequalities for ele-
ments ofR++

n . We obtain specific Minkowski’s and Young type determinantal inequalities
in Sections 2 and 3 for such matrices. Moreover, we show by some easy examples that
Theorem 2.2 (Theorem 3.2) substaintially improve the upper bounds of (3) and (6) (of
(4) and (8), respectively).

2. The Minkowski’s determinantal inequalities

In this section, we investigate the Minkowski’s determinantal inequality for elements
of R++

n . Let us first recall a known results.

Lemma 2.1 [3, Corollary 7.8.21] Let A,B ∈ Mn(C) be positive definite. Then

(detA)
1

n + (detB)
1

n ≤
(
det(A+B)

) 1

n . (9)

Remark 1 Let A and B be two positive definite and Hermition matrices. Then, by [3,

Theorem 7.7.3], B < A implies
(
A− 1

2

)∗
BA− 1

2 <
(
A− 1

2

)∗
AA− 1

2 and so, A− 1

2BA− 1

2 <

In. Therefore, all eigenvalues of A
− 1

2BA− 1

2 are positive and less than 1. We will use this
fact in the proof of Theorem 2.2 below.

Theorem 2.2 Let S, T ∈ R++
n with the Toeplitz decompositions S = A + iB and

T = C + iD. Suppose that {βj}nj=1 and {γj}nj=1 are the sets of eigenvalues of A− 1

2BA− 1

2
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and C− 1

2DC− 1

2 , respectively. Then

| detS|
1

n + |detT |
1

n ≤
√

1 + p2
(
det(A+ C)

) 1

n ,

where p := max
1≤j≤n

{βj , γj}.

Proof. We may compute

| detS|
1

n = | det(A+ iB)|
1

n

=
∣∣ det (A 1

2 (In + iA− 1

2BA− 1

2 )A
1

2

)∣∣ 1

n

= |(detA)
1

2 det(In + iA− 1

2BA− 1

2 )(detA)
1

2 |
1

n

= | det(In + iA− 1

2BA− 1

2 ) detA|
1

n

= | det(In + iA− 1

2BA− 1

2 )|
1

n (detA)
1

n

=
( n∏
j=1

|1 + iβj |
) 1

n (detA)
1

n

=
( n∏
j=1

√
1 + β2

j

) 1

n (detA)
1

n .

So, for βmax := max
1≤j≤n

{βj}, we get

|detS|
1

n ≤
√

1 + β2
max(detA)

1

n . (10)

An analogous computation also gives

| detT |
1

n ≤
√

1 + γ2max(detC)
1

n , (11)

where γmax := max
1≤j≤n

{γj}. Now, (10) and (11) imply

| detS|
1

n + |detT |
1

n ≤
√

1 + β2
max(detA)

1

n +
√

1 + γ2max(detC)
1

n

≤
√

1 + p2
(
(detA)

1

n + (detC)
1

n

)
≤

√
1 + p2

(
det(A+ C)

) 1

n (by Lemma 2.1),

where (p = max
1≤j≤n

{βj , γj}). This completes the proof. ■

Proposition 2.3 Let S = A+ iB ∈ Mn(C) be an accretive-dissipative. Then

| detS| ≥
(
1 + β2

min

)n

2 detA, (12)

where {βj}nj=1 is the set of eigenvalues of A
− 1

2BA− 1

2 and βmin := min
1≤j≤n

{βj}. In particular,

we have | detS| > detA.
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Proof. We can write

| detS| = |det(A+ iB)|

=
∣∣ det (A 1

2 (In + iA− 1

2BA− 1

2 )A
1

2

)∣∣
=

∣∣ det (In + iA− 1

2BA− 1

2

)∣∣ detA
=

n∏
j=1

|1 + iβj |detA

≥
( n∏
j=1

√
1 + β2

min

)
detA

=
(
1 + β2

min

)n

2 detA,

completing the proof. ■

Note that we have always p < 1 in Theorem 2.2. Indeed, since B < A and D < C,
Remark 1 impleis βj < 1 and γj < 1 for all 1 ≤ j ≤ n, and hence p < 1. Moreover,
Proposition 2.3 implies det(A+C) < det(S+T ), and thus Theorem 2.2 is an improvement
of (3). Furthermore, Theorem 2.2 implies immediately the following generalization of (5).

Corollary 2.4 Let S, T ∈ R++
n . Under the condition of Theorem 2.2, we have

| detS|
1

n + |detT |
1

n ≤
√

1 + p2
(
det(In +A)

) 1

n
(
det(In + C)

) 1

n ,

where p := max
1≤j≤n

{βj , γj}.

Proof. Theorem 2.2 yields

|detS|
1

n + |detT |
1

n ≤
√

1 + p2
(
det(A+ C)

) 1

n

≤
√

1 + p2
(
det(In +A)

) 1

n
(
det(In + C)

) 1

n (by (1)),

as desired. ■

Corollary 2.5 (See (6)) Let S, T ∈ R++
n be an in Theorem 2.2. For given 0 ≤ α ≤ 1,

suppose that {βj}nj=1 and {γj}nj=1 are the sets of eigenvalues of (αIn+A)−
1

2B(αIn+A)−
1

2

and
(
(1− α)In + C

)− 1

2D
(
(1− α)In + C

)− 1

2 , respectively. Then

∣∣ det (αIn + S
)∣∣ 1

n +
∣∣ det ((1− α)In + T

)∣∣ 1

n ≤
√

1 + p2
(
det(In +A)

) 1

n
(
det(In + C)

) 1

n ,

where p := max
1≤j≤n

{βj , γj}.

Proof. Note that by replacing S and T with αIn + S and (1 − α)In + T respectively,
Theorem 2.2 implies

| det(αIn + S)|
1

n +
∣∣ det ((1− α)In + T

)∣∣ 1

n ≤
√

1 + p2
(
det(In +A+ C)

) 1

n .



98 H. Qasemi et al. / J. Linear. Topological. Algebra. 13(02) (2024) 93-100.

So, we get

∣∣ det (αIn + S
)∣∣ 1

n +
∣∣ det ((1− α)In + T

)∣∣ 1

n

≤
√

1 + p2
(
det(In +A+ C)

) 1

n

≤
√

1 + p2
(
det(In +A)

) 1

n
(
det(In + C)

) 1

n (by (2)).

■

We now examine Theorem 2.2 by a small square matrix and compare it with (3).

Example 2.6 Let S = A+ iB and T = C + iD be of the forms

S =

[
7 3
3 7

]
+ i

[
3 2
2 3

]
and T =

[
4 2
2 4

]
+ i

[
2 1
1 2

]
.

It is easy to verify that S, T ∈ R++
n . Then we have |detS| = 46.0977223, |detT | = 15,

| det(S + T )| = 113.137085 and | det(A + C)| = 96. Also, {0.25, 0.5} and {0.5} are the

sets of eigenvalues of A− 1

2BA− 1

2 and C− 1

2DC− 1

2 , respectively. So, (3) says that

|detS|
1

2 + |detT |
1

2 ≤ 15.0424124, (13)

while Theorem 2.2 with p = 0.5, for example, gives

|detS|
1

2 + | detT |
1

2 ≤
√

1 + (0.5)2 × (96)
1

2 = 10.9544512. (14)

Since |detS|
1

2 + | detT |
1

2 equals 10.6624769 exactly, we see that our approximation is
better than that obtained by (3).

3. The Young type determinantal inequalities for R++
n

In this section, we prove a Young type determinantal inequality for elements of R++
n ,

which improves (4), (7) and (8).

Lemma 3.1 [3, Corollary 7.6.8] Let A,B ∈ Mn(C) be positive definite and 0 < α < 1 .
Then,

(detA)α(detB)1−α ≤ det
(
αA+ (1− α)B

)
.

Theorem 3.2 Let S, T ∈ R++
n with the Toeplitz decompositions S = A + iB and

T = C + iD. Let {βj}nj=1 and {γj}nj=1 be the sets of eigenvalues of A− 1

2BA− 1

2 and

C− 1

2DC− 1

2 , respectively. Then, for any 0 < α < 1,

| detS|α| detT |1−α ≤ (1 + p2)
n

2 det
(
αA+ (1− α)C

)
,

where p := max
1≤j≤n

{βj , γj}.
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Proof. We can write

|detS| = |det(A+ iB)|

=
∣∣ det (A 1

2 (In + iA− 1

2BA− 1

2 )A
1

2

)∣∣
= |(detA)

1

2 det
(
In + iA− 1

2BA− 1

2

)
(detA)

1

2 |

= |det
(
In + iA− 1

2BA− 1

2

)
| detA

=
( n∏
j=1

|1 + iβj |
)
detA

=
( n∏
j=1

√
1 + β2

j

)
detA.

Similarly, we get | detT | =
( n∏
j=1

√
1 + γ2j

)
detC. Therefore, defining p = max

1≤j≤n
{βj , γj},

we conclude that

|detS|α| detT |1−α =
( n∏
j=1

√
1 + β2

j

)α
(detA)α

( n∏
j=1

√
1 + γ2j

)1−α
(detC)1−α

≤
( n∏
j=1

√
1 + p2

)
(detA)α(detC)1−α

≤ (1 + p2)
n

2 det
(
αA+ (1− α)C

)
(by Lemma 3.1),

completing the proof. ■

Corollary 3.3 Let S, T ∈ R++
n with the Toeplitz decompositions S = A + iB and

T = C+ iD. If {βj}nj=1 and {γj}nj=1 are the sets of eigenvalues of (In+A)−
1

2B(In+A)−
1

2

and (In + C)−
1

2D(In + C)−
1

2 , respectively, then

|det(In + S)|α|det(In + T )|1−α ≤ (1 + p2)
n

2 det
(
In + αA+ (1− α)C

)
,

where p := max
1≤j≤n

{βj , γj}.

Proof. Statement follows immediately from Theorem 3.2 by replacing S and T with
In + S and In + T , respectively. ■

Observe that using Proposition 2.3 and the fact p < 1 (Remark 1), we see that Theorem
3.2 generalizes (4). Moreover, by (1) and (2), we have

det
(
αA+ (1− α)C

)
≤ det(In + αA) det

(
In + (1− α)C

)
and

det
(
In + αA+ (1− α)C

)
≤ det(In + αA) det

(
In + (1− α)C

)
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for 0 < α < 1, and hence, Theorem 3.2 and Corollary 3.3 improve (7) and (8), respec-
tively.

Example 3.4 Consider the matrices S and T of Example 2.6 and let α = 0.6. We may
compute | det(αA + (1 − α)C)| = 26.88 and | det(αS + (1 − α)T )| = 31.4859969. Then
(4) gives | detS|α|detT |1−α ≤ 62.9719938, while Theorem 3.2 for p = 0.5 implies

|detS|α| detT |1−α ≤ (1 + (0.5)2)× 26.88 = 33.6.

Since | detS|α|detT |1−α = 29.4199115 exactly, Theorem 3.2 gives a much more better
upper bound comparing with that obtained by (4).
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