Journal of Linear and Topological Algebra Vol. 13*, No.* 02*,* 2024*,* 93*-* 100 *DOR: DOI: 10.71483/JLTA.2024.1080982*

The Minkowski's and Young type determinantal inequalities for certain accretive-dissipative matrices

H. Qasemi^a, H. Larki^{a,*}, M. Dehghani-Madiseh^a

^a*Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, P.O. Box. 83151-61357, Ahvaz, Iran.*

> Received 6 February 2024; Revised 16 May 2024; Accepted 8 August 2024. Communicated by Mohammad Sadegh Asgari

Abstract. In this note, we investigate the Minkowski's and Young type determinantal inequalities for accretive-dissipative matrices $S = A + iB$ satisfying $0 < B < A$. Our results improve some recent ones in the literature.

Keywords: Complex matrix, Accretive-dissipative matrix, Minkowski's determinantal inequality, Young type determinantal inequality.

2010 AMS Subject Classification: 15A15, 15A45.

1. Introduction and preliminaries

For fixed $n \geq 1$, let $\mathbb{M}_n(\mathbb{C})$ be the set of all complex $n \times n$ matrices. We denote by I_n the identity of $\mathbb{M}_n(\mathbb{C})$. For any $S \in \mathbb{M}_n(\mathbb{C})$, S^* stands for the conjugate transpose of S. We say *S* is positive definite (positive semidefinite) if $S = S^*$ and $x^*Ax > 0$ ($x^*Ax \ge 0$, respectively) for all nonzero $x \in \mathbb{C}^n$. It is known that every $S \in M_n(\mathbb{C})$ has a unique Toeplitz decomposition of the form $S = A + iB$ with $A = A^*$ and $B = B^*$. In case A and *B* are both positive definite, *S* is called accretive-dissipative.

For each $A \in M_n(\mathbb{C})$, let $\{s_j(A)\}_{j=1}^n$ be the decreasing sequence of singular values of $|A| = (AA^*)^{\frac{1}{2}}$. Given any $A, B \in M_n(\mathbb{C})$, Garg and Aujla [1] showed that

$$
\prod_{j=1}^{k} s_j(|A+B|^r) \le \prod_{j=1}^{k} s_j(I_n + |A|^r) \prod_{j=1}^{k} s_j(I_n + |B|^r)
$$

Print ISSN: 2252-0201 \bigodot 2024 IAUCTB.
Online ISSN: 2345-5934 http://jlta.ctb.

http://jlta.ctb.iau.ir

*[∗]*Corresponding author.

E-mail address: hoseinghbh@gmail.com (H. Qasemi); h.larki@scu.ac.ir (H. Larki); m.dehghani@scu.ac.ir (M. Dehghani-Madiseh).

and

$$
\prod_{j=1}^k s_j(I_n + f(|A + B|)) \le \prod_{j=1}^k s_j(I_n + f(|A|)) \prod_{j=1}^k s_j(I_n + f(|B|))
$$

for every $1 \leq r \leq 2$, $1 \leq k \leq n$ and operator concave function $f : [0, \infty) \to [0, \infty)$. If *A* and *B* are positive semidefinite, $r = 1$ and $f(X) = X$ for any $X \in M_n(\mathbb{C})$, these inequalities imply

$$
\prod_{j=1}^{k} s_j(A+B) \le \prod_{j=1}^{k} s_j(I_n+A) \prod_{j=1}^{k} s_j(I_n+B)
$$

and

$$
\prod_{j=1}^{k} s_j(I_n + A + B) \le \prod_{j=1}^{k} s_j(I_n + A) \prod_{j=1}^{k} s_j(I_n + B).
$$

In particular, in the case $k = n$, we get

$$
\det(A+B) \le \det(I_n + A)\det(I_n + B)
$$
\n(1)

and

$$
\det(I_n + A + B) \le \det(I_n + A)\det(I_n + B). \tag{2}
$$

Given any accretive-dissipative matrices $S, T \in M_n(\mathbb{C})$, Kittaneh and Sakkijha [5] computed

$$
|\det S|^{\frac{1}{n}} + |\det T|^{\frac{1}{n}} \le \sqrt{2} |\det(S+T)|^{\frac{1}{n}} \tag{3}
$$

and for any $0 < \alpha < 1$,

$$
|\det S|^{\alpha}|\det T|^{1-\alpha} \le 2^{\frac{n}{2}}|\det (\alpha S + (1-\alpha)T)|. \tag{4}
$$

Proposition 1.1 [4, Lemma 6] Let $A, B \in M_n(\mathbb{C})$ be positive semidefinite. Then

$$
|\det(A+iB)| \le \det(A+B) \le 2^{\frac{n}{2}} |\det(A+iB)|.
$$

The following res[u](#page-7-0)lts are also proved in [6].

Proposition 1.2 [6, Theorem 2.11] Let $S, T \in M_n(\mathbb{C})$ be accretive-dissipative. Then

$$
|\det S|^{\frac{1}{n}} + |\det T|^{\frac{1}{n}} \le 2\sqrt{2} |\det(I_n + S)|^{\frac{1}{n}} |\det(I_n + T)|^{\frac{1}{n}} \tag{5}
$$

and

$$
|\det(\alpha I_n + S)|^{\frac{1}{n}} + |\det((1 - \alpha)I_n + T)|^{\frac{1}{n}} \le 2\sqrt{2}|\det(I_n + S)|^{\frac{1}{n}}|\det(I_n + T)|^{\frac{1}{n}} \quad (6)
$$

for every $0 \leq \alpha \leq 1$.

Proposition 1.3 [6, Theorem 2.12] Let $S, T \in M_n(\mathbb{C})$ be accretive-dissipative. Then, for every $0 < \alpha < 1$,

$$
|\det S|^{\alpha}|\det T|^{1-\alpha} \le 2^{\frac{3n}{2}}|\det(I_n+\alpha S)||\det(I_n+(1-\alpha)T)|\tag{7}
$$

and

$$
\left| \det(I_n + S) \right|^\alpha \left| \det(I_n + T) \right|^{1-\alpha} \le 2^{\frac{3n}{2}} \left| \det(I_n + \alpha S) \right| \left| \det(I_n + (1 - \alpha)T) \right|.
$$
 (8)

Proposition 1.4 [2, property 2] Let $A \in M_n(\mathbb{C})$ be accretive-dissipative. Then, there exists a unique square root *R* of *A* that belongs to accretive-dissipative. If $R = S + iT$ is the Toeplitz decomposition of *R*, then $0 < T < R$.

Throughout the [pa](#page-7-2)per, we consider specific accretive-dissipative matrices $S = A + iB$ with $0 < B < A$. We denote by \mathcal{R}_n^{++} the set of such matrices, that is,

$$
\mathcal{R}_n^{++} = \{ S \in \mathbb{M}_n(\mathbb{C}) : S = A + iB \text{ with } 0 < B < A \}.
$$

Our initial motivation for considering \mathcal{R}_n^{++} comes from Proposition 1.4 which says every accretive-dissipative matrix $T \in M_n(\mathbb{C})$ has a unique square root $S = T^{\frac{1}{2}} = A + iB$ with $0 < B < A$. Note that the converse of this simply holds: if $S = A + iB$ is accretivedissipative with $0 < B < A$, then S^2 is accretive-dissipative. Consequently, \mathcal{R}_n^{++} coincides with the set of all matrices $S \in M_n(\mathbb{C})$ such that both S and S^2 are [accr](#page-2-0)etive-dissipative.

The aim of this paper is to investigate some known determinantal inequalities for elements of \mathcal{R}_n^{++} . We obtain specific Minkowski's and Young type determinantal inequalities in Sections 2 and 3 for such matrices. Moreover, we show by some easy examples that Theorem 2.2 (Theorem 3.2) substaintially improve the upper bounds of (3) and (6) (of (4) and (8) , respectively).

[2.](#page-1-0) Th[e](#page-2-2) [M](#page-2-1)inkowski['s d](#page-5-0)eterminantal inequalities

In this section, we investigate the Minkowski's determinantal inequality for elements of \mathcal{R}_n^{++} . Let us first recall a known results.

Lemma 2.1 [3, Corollary 7.8.21] Let $A, B \in M_n(\mathbb{C})$ be positive definite. Then

$$
(\det A)^{\frac{1}{n}} + (\det B)^{\frac{1}{n}} \le (\det(A + B))^{\frac{1}{n}}.
$$
\n(9)

Remark 1 Let A and B be two positive definite and Hermition matrices. Then, by [3, Theorem 7.7.3], $B < A$ implies $(A^{-\frac{1}{2}})^*BA^{-\frac{1}{2}} < (A^{-\frac{1}{2}})^*AA^{-\frac{1}{2}}$ and so, $A^{-\frac{1}{2}}BA^{-\frac{1}{2}} <$ *I*^{*n*}. Therefore, all eigenvalues of $A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$ are positive and less than 1. We will use this *fact in the proof of Theorem 2.2 below.*

Theorem 2.2 Let $S, T \in \mathcal{R}_n^{++}$ with the Toeplitz decompositions $S = A + iB$ and $T = C + iD$. Suppose that $\{\beta_j\}_{j=1}^n$ and $\{\gamma_j\}_{j=1}^n$ are the sets of eigenvalues of $A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$

and $C^{-\frac{1}{2}}DC^{-\frac{1}{2}}$, respectively. Then

$$
|\det S|^{\frac{1}{n}} + |\det T|^{\frac{1}{n}} \le \sqrt{1+p^2} (\det(A+C))^{\frac{1}{n}},
$$

where $p := \max$ 1*≤j≤n {β^j , γj}*.

Proof. We may compute

$$
|\det S|^{\frac{1}{n}} = |\det(A + iB)|^{\frac{1}{n}}
$$

\n
$$
= |\det(A^{\frac{1}{2}}(I_n + iA^{-\frac{1}{2}}BA^{-\frac{1}{2}})A^{\frac{1}{2}})|^{\frac{1}{n}}
$$

\n
$$
= |(\det A)^{\frac{1}{2}} \det(I_n + iA^{-\frac{1}{2}}BA^{-\frac{1}{2}})(\det A)^{\frac{1}{2}}|^{\frac{1}{n}}
$$

\n
$$
= |\det(I_n + iA^{-\frac{1}{2}}BA^{-\frac{1}{2}}) \det A|^{\frac{1}{n}}
$$

\n
$$
= |\det(I_n + iA^{-\frac{1}{2}}BA^{-\frac{1}{2}})|^{\frac{1}{n}}(\det A)^{\frac{1}{n}}
$$

\n
$$
= (\prod_{j=1}^n |1 + i\beta_j|)^{\frac{1}{n}}(\det A)^{\frac{1}{n}}
$$

\n
$$
= (\prod_{j=1}^n \sqrt{1 + \beta_j^2})^{\frac{1}{n}}(\det A)^{\frac{1}{n}}.
$$

So, for $\beta_{\text{max}} := \max_{1 \leq i \leq k}$ 1*≤j≤n {βj}*, we get

$$
|\det S|^{\frac{1}{n}} \le \sqrt{1 + \beta_{\max}^2} (\det A)^{\frac{1}{n}}.
$$
 (10)

An analogous computation also gives

$$
|\det T|^{\frac{1}{n}} \le \sqrt{1 + \gamma_{\max}^2} (\det C)^{\frac{1}{n}},\tag{11}
$$

where $\gamma_{\text{max}} := \max$ 1*≤j≤n {γj}.* Now, (10) and (11) imply

$$
|\det S|^{\frac{1}{n}} + |\det T|^{\frac{1}{n}} \le \sqrt{1 + \beta_{\max}^2} (\det A)^{\frac{1}{n}} + \sqrt{1 + \gamma_{\max}^2} (\det C)^{\frac{1}{n}}
$$

$$
\le \sqrt{1 + p^2} \left((\det A)^{\frac{1}{n}} + (\det C)^{\frac{1}{n}} \right)
$$

$$
\le \sqrt{1 + p^2} \left(\det(A + C) \right)^{\frac{1}{n}} \quad \text{(by Lemma 2.1)},
$$

where $(p = \max)$ 1*≤j≤n* ${\beta_j, \gamma_j}$. This completes the proof.

Proposition 2.3 Let $S = A + iB \in M_n(\mathbb{C})$ be an accretive-dissipative. [Th](#page-2-3)en

$$
|\det S| \ge \left(1 + \beta_{\min}^2\right)^{\frac{n}{2}} \det A,\tag{12}
$$

where $\{\beta_j\}_{j=1}^n$ is the set of eigenvalues of $A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$ and $\beta_{\min} := \min_{1 \le i \le n}$ 1*≤j≤n {βj}*. In particular, we have $|\det S| > \det A$.

Proof. We can write

$$
|\det S| = |\det(A + iB)|
$$

= $|\det (A^{\frac{1}{2}}(I_n + iA^{-\frac{1}{2}}BA^{-\frac{1}{2}})A^{\frac{1}{2}})|$
= $|\det (I_n + iA^{-\frac{1}{2}}BA^{-\frac{1}{2}})| \det A$
= $\prod_{j=1}^{n} |1 + i\beta_j| \det A$
 $\geq (\prod_{j=1}^{n} \sqrt{1 + \beta_{\min}^2}) \det A$
= $(1 + \beta_{\min}^2)^{\frac{n}{2}} \det A$,

completing the proof.

Note that we have always $p < 1$ in Theorem 2.2. Indeed, since $B < A$ and $D < C$, Remark *1* impleis $\beta_j < 1$ and $\gamma_j < 1$ for all $1 \leq j \leq n$, and hence $p < 1$. Moreover, Proposition 2.3 implies $\det(A+C) < \det(S+T)$, and thus Theorem 2.2 is an improvement of (3). Furthermore, Theorem 2.2 implies immediately the following generalization of (5).

Corolla[ry](#page-2-4) 2.4 Let $S, T \in \mathbb{R}_n^{++}$. Under the condition of Theorem 2.2, we have

$$
|\det S|^{\frac{1}{n}} + |\det T|^{\frac{1}{n}} \le \sqrt{1+p^2} \left(\det(I_n + A) \right)^{\frac{1}{n}} \left(\det(I_n + C) \right)^{\frac{1}{n}},
$$

where $p := \max$ 1*≤j≤n {β^j , γj}*.

Proof. Theorem 2.2 yields

$$
|\det S|^{\frac{1}{n}} + |\det T|^{\frac{1}{n}} \le \sqrt{1 + p^2} \left(\det(A + C) \right)^{\frac{1}{n}}
$$

$$
\le \sqrt{1 + p^2} \left(\det(I_n + A) \right)^{\frac{1}{n}} \left(\det(I_n + C) \right)^{\frac{1}{n}} \text{ (by (1))},
$$

as desired.

Corollary 2.5 (See (6)) Let $S, T \in \mathcal{R}_n^{++}$ be an in Theorem 2.2. For given $0 \leq \alpha \leq 1$, suppose that $\{\beta_j\}_{j=1}^n$ and $\{\gamma_j\}_{j=1}^n$ are the sets of eigenvalues of $(\alpha I_n + A)^{-\frac{1}{2}}B(\alpha I_n + A)^{-\frac{1}{2}}$ and $((1 - \alpha)I_n + C)^{-\frac{1}{2}}D((1 - \alpha)I_n + C)^{-\frac{1}{2}}$, respectively. Then

$$
\left| \det \left(\alpha I_n + S \right) \right|^{\frac{1}{n}} + \left| \det \left((1 - \alpha) I_n + T \right) \right|^{\frac{1}{n}} \le \sqrt{1 + p^2} \left(\det(I_n + A) \right)^{\frac{1}{n}} \left(\det(I_n + C) \right)^{\frac{1}{n}},
$$

where $p := \max_{1 \le j \le n} {\beta_j, \gamma_j}$.

Proof. Note that by replacing *S* and *T* with $\alpha I_n + S$ and $(1 - \alpha)I_n + T$ respectively, Theorem 2.2 implies

$$
|\det(\alpha I_n+S)|^{\frac{1}{n}}+|\det((1-\alpha)I_n+T)|^{\frac{1}{n}}\leq \sqrt{1+p^2} \left(\det(I_n+A+C)\right)^{\frac{1}{n}}.
$$

So, we get

$$
\left| \det \left(\alpha I_n + S \right) \right|^{\frac{1}{n}} + \left| \det \left((1 - \alpha) I_n + T \right) \right|^{\frac{1}{n}}
$$

\n
$$
\leq \sqrt{1 + p^2} \left(\det(I_n + A + C) \right)^{\frac{1}{n}}
$$

\n
$$
\leq \sqrt{1 + p^2} \left(\det(I_n + A) \right)^{\frac{1}{n}} \left(\det(I_n + C) \right)^{\frac{1}{n}} \text{ (by (2))}.
$$

We now examine Theorem 2.2 by a small square matrix and compare it [wi](#page-1-2)th (3) .

Example 2.6 Let $S = A + iB$ and $T = C + iD$ be of the forms

$$
S = \begin{bmatrix} 7 & 3 \\ 3 & 7 \end{bmatrix} + i \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix} \quad \text{and} \quad T = \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix} + i \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.
$$

It is easy to verify that $S, T \in \mathcal{R}_n^{++}$. Then we have $|\det S| = 46.0977223, |\det T| = 15$, $|det(S + T)| = 113.137085$ and $|det(A + C)| = 96$. Also, $\{0.25, 0.5\}$ and $\{0.5\}$ are the sets of eigenvalues of $A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$ and $C^{-\frac{1}{2}}DC^{-\frac{1}{2}}$, respectively. So, (3) says that

$$
|\det S|^{\frac{1}{2}} + |\det T|^{\frac{1}{2}} \le 15.0424124,\tag{13}
$$

■

while Theorem 2.2 with $p = 0.5$, for example, gives

$$
|\det S|^{\frac{1}{2}} + |\det T|^{\frac{1}{2}} \le \sqrt{1 + (0.5)^2} \times (96)^{\frac{1}{2}} = 10.9544512. \tag{14}
$$

Since $|\det S|^{\frac{1}{2}} + |\det T|^{\frac{1}{2}}$ $|\det S|^{\frac{1}{2}} + |\det T|^{\frac{1}{2}}$ $|\det S|^{\frac{1}{2}} + |\det T|^{\frac{1}{2}}$ equals 10.6624769 exactly, we see that our approximation is better than that obtained by (3).

3. The Young type det[er](#page-1-3)minantal inequalities for \mathcal{R}_n^{++}

In this section, we prove a Young type determinantal inequality for elements of \mathcal{R}_n^{++} , which improves (4) , (7) and (8) .

Lemma 3.1 [3, Corollary 7.6.8] Let $A, B \in M_n(\mathbb{C})$ be positive definite and $0 < \alpha < 1$. Then,

$$
(\det A)^{\alpha} (\det B)^{1-\alpha} \leq \det (\alpha A + (1-\alpha)B).
$$

Theorem 3.2 Let $S, T \in \mathcal{R}_n^{++}$ with the Toeplitz decompositions $S = A + iB$ and $T = C + iD$. Let $\{\beta_j\}_{j=1}^n$ and $\{\gamma_j\}_{j=1}^n$ be the sets of eigenvalues of $A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$ and $C^{-\frac{1}{2}}DC^{-\frac{1}{2}}$, respectively. Then, for any $0 < \alpha < 1$,

$$
|\det S|^{\alpha}|\det T|^{1-\alpha}\leq (1+p^2)^{\frac{n}{2}}\det (\alpha A+(1-\alpha)C),
$$

where $p := \max$ 1*≤j≤n {β^j , γj}*.

Proof. We can write

$$
|\det S| = |\det(A + iB)|
$$

= $|\det (A^{\frac{1}{2}}(I_n + iA^{-\frac{1}{2}}BA^{-\frac{1}{2}})A^{\frac{1}{2}})|$
= $|(\det A)^{\frac{1}{2}} \det (I_n + iA^{-\frac{1}{2}}BA^{-\frac{1}{2}})(\det A)^{\frac{1}{2}}|$
= $|\det (I_n + iA^{-\frac{1}{2}}BA^{-\frac{1}{2}})| \det A$
= $(\prod_{j=1}^n |1 + i\beta_j|) \det A$
= $(\prod_{j=1}^n \sqrt{1 + \beta_j^2}) \det A$.

Similarly, we get $|\det T| = (\prod_{i=1}^{n}$ *j*=1 $\sqrt{1 + \gamma_j^2}$) det *C*. Therefore, defining $p = \max_{1 \leq i \leq j}$ 1*≤j≤n {β^j , γj}*, we conclude that

$$
|\det S|^{\alpha}|\det T|^{1-\alpha} = \left(\prod_{j=1}^{n} \sqrt{1+\beta_j^2}\right)^{\alpha} (\det A)^{\alpha} \left(\prod_{j=1}^{n} \sqrt{1+\gamma_j^2}\right)^{1-\alpha} (\det C)^{1-\alpha}
$$

$$
\leq \left(\prod_{j=1}^{n} \sqrt{1+p^2}\right) (\det A)^{\alpha} (\det C)^{1-\alpha}
$$

$$
\leq (1+p^2)^{\frac{n}{2}} \det (\alpha A + (1-\alpha)C) \quad \text{(by Lemma 3.1)},
$$

completing the proof.

Corollary 3.3 Let $S, T \in \mathcal{R}_n^{++}$ with the Toeplitz decompositions $S = A + iB$ $S = A + iB$ $S = A + iB$ and $T = C + iD$. If $\{\beta_j\}_{j=1}^n$ and $\{\gamma_j\}_{j=1}^n$ are the sets of eigenvalues of $(I_n + A)^{-\frac{1}{2}}B(I_n + A)^{-\frac{1}{2}}$ and $(I_n + C)^{-\frac{1}{2}}D(I_n + C)^{-\frac{1}{2}}$, respectively, then

$$
|\det(I_n + S)|^{\alpha} |\det(I_n + T)|^{1-\alpha} \le (1+p^2)^{\frac{n}{2}} \det(I_n + \alpha A + (1-\alpha)C),
$$

where $p := \max$ 1*≤j≤n {β^j , γj}*.

Proof. Statement follows immediately from Theorem 3.2 by replacing *S* and *T* with $I_n + S$ and $I_n + T$, respectively.

Observe that using Proposition 2.3 and the fact *p <* 1 (Remark *1*), we see that Theorem 3.2 generalizes (4). Moreover, by (1) and (2), we have

$$
\det (\alpha A + (1 - \alpha)C) \le \det(I_n + \alpha A) \det (I_n + (1 - \alpha)C)
$$

[and](#page-5-0)

$$
\det(I_n + \alpha A + (1 - \alpha)C) \le \det(I_n + \alpha A) \det(I_n + (1 - \alpha)C)
$$

for $0 < \alpha < 1$, and hence, Theorem 3.2 and Corollary 3.3 improve (7) and (8), respectively.

Example **3.4** Consider the matrices *S* and *T* of Example 2.6 and let $\alpha = 0.6$. We may compute $|\det(\alpha A + (1 - \alpha)C)| = 26.88$ $|\det(\alpha A + (1 - \alpha)C)| = 26.88$ and $|\det(\alpha S + (1 - \alpha)T)| = 31.4859969$ $|\det(\alpha S + (1 - \alpha)T)| = 31.4859969$. Then (4) gives $|\det S|^{\alpha}|\det T|^{1-\alpha} \leq 62.9719938$, while Theorem 3.2 for $p = 0.5$ implies

$$
|\det S|^{\alpha}|\det T|^{1-\alpha} \le (1 + (0.5)^2) \times 26.88 = 33.6.
$$

[Sin](#page-1-0)ce $|\det S|^{\alpha}|\det T|^{1-\alpha} = 29.4199115$ exactly, Theorem [3.2](#page-5-0) gives a much more better upper bound comparing with that obtained by (4).

Acknowledgments

This work was partially supported by Shahid Chamran University of Ahvaz under grant number SCU.MM1401.279.

References

- [1] I. Garg, J. Aujla, Some singular value inequalities, Linear Multilinear Algebra. 66 (2018), 776-784.
- [2] A. George, Kh. D. Ikramov, On the properties of accertive-dissipative matrices, Math. Notes. 77 (2005), 767-776.
- [3] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge Press, 2013.
- [4] M. Lin, Fischer type determinantal inequalities for accretive-dissipative matrices, Linear Algebra Appl. 438 (2013), 2808-2812.
- [5] F. Kittaneh, M. Sakkijha, Inequalities for accretive-dissipative matrices, Linear Multilinear Algebra. 67 (2019), 1037-1042.
- [6] J. Xue, X. Hu, Singular value inequalities for sector matrices, Filomat. 33 (16) (2019), 5231-5236.