Hybrid extragradient-type algorithm for zeros and fixed point problems in Banach spaces

B. $\mathrm{Ali}^{\mathrm{a}, *}$, A. A. Alasan ${ }^{\mathrm{a}, \mathrm{b}}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Bayero University, Kano, Nigeria.
${ }^{\mathrm{b}}$ Department of Basic Studies, Kano State Polytechnic, Kano, Nigeria.
Received 18 October 2023; Revised 29 January 2024, Accepted 30 January 2024.
Communicated by Vasile Berinde

Abstract

In this paper, we introduce a new hybrid extragradient-type algorithm for approximating an element in the set of common solutions of equilibrium problems and common fixed points of family of Bregman demigeneralized mappings which is also a common zero of the sum of maximal monotone and Bregman inverse strongly monotone operators in the setting of reflexie Banach space. Strong convergence of the proposed algorithm to a solutions of the said problems is established which improves and generalizes many recently announced results in the literature.

Keywords: Equilibrium problem, maximal monotone operator, Bregman inverse strongly monotone operator, Bregman demigeneralized mapping.
2010 AMS Subject Classification: $47 \mathrm{H} 09,47 \mathrm{~J} 25$.

1. Introduction

Let E be a reflexive real Banach space and E^{*} be its dual space. An operator $A: E \rightarrow$ $2^{E^{*}}$ is called α-inverse strongly monotone if there exists a positive real number α such that for any $x, y \in E, u \in A x, v \in A y$ we have

$$
\begin{equation*}
\langle u-v, x-y\rangle \geqslant \alpha\|u-v\|^{2} \tag{1}
\end{equation*}
$$

For $\alpha=0$ in ($\mathbb{M})$ then the operator A is known to be monotone. Let $G(A):=\{(x, u) \in$ $\left.E \times E^{*}: u \in E^{*}\right\}$ be the graph of a monotone operator A, then A is maximal monotone

[^0]if we can not find any other monotone operator say \hat{A} such that $G(A) \subset G(\hat{A})$. Monotone operator theory which was originally studied independently by Kačurovsk \tilde{i} [14]], Minty [[18] and Zarantonello [32] plays a vital role in such areas as semigroup theory, optimization and variational inequality problems among others.
The problem of finding the zeros of the sum of two monotone operators say A and B is to find $x \in E$ such that
\[

$$
\begin{equation*}
0 \in(A+B) x \tag{2}
\end{equation*}
$$

\]

We denote by $(A+B)^{-1}(0)$ the solution set of (Z). This inclusion problem, which includes other important problems such as minimization problems, equilibrium problems, variational inequality problems, fixed point problems as special cases, has recently received the attention of many authors due to its several applications. Indeed, many nonlinear problems arising in such areas as signal processing, machine learning, and image recovery can be mathematically modeled as problem (\mathbb{Z}) (see for example [[3]) and the references therein. Notable efforts have been recorded, by several authors, to approximation methods of solution for a sum of two monotone mappings, see [2T].

One of the well known method for solving problem (\#) is the forward-backward splitting method due to Passty [2T] in the setting of Hilbert space which is presented as for $x_{1} \in E$,

$$
\begin{equation*}
x_{n+1}=(I+\gamma B)^{-1}\left(x_{n}-\gamma A x_{n}\right) \quad(n \geqslant 1), \tag{3}
\end{equation*}
$$

where $\gamma>0$. Other method includes Douglas-Rachford splitting algorithm [[6] presented as $x_{1} \in E$ and

$$
\begin{equation*}
x_{n+1}=2 J_{\gamma A}\left(2 J_{\gamma B}-I\right) x_{n}+\left(I-2 J_{\gamma B}\right) x_{n} \quad(n \geqslant 1), \tag{4}
\end{equation*}
$$

where A and B are two maximal monotone operators.
We remark here that algorithms ($\mathbf{B l}^{(1)}$) and ($\mathbb{1}$) mentioned above do not guarantee strong convergence to the solution of problem (Z)

Let $h: C \times C \rightarrow \mathbb{R}$ be a bifunction with C a nonempty closed convex subset of a real Banach space E. Then the equilibrium problem (EP) for a bifunction h is to find a point

$$
\begin{equation*}
z \in C \text { for which } h(z, y) \geqslant 0, \forall y \in C \text { is satisfied. } \tag{5}
\end{equation*}
$$

Problem ($\mathbf{5}^{(5)}$) was originally studied by Bluem and Otli [7] in the setting of Hilbert space. It includes, as a special cases, many other important problems such as variational inequality problem, minimization problem, fixed point problem to mention but a few. Various techniques have been used to study the problems, one of such techniques is the so-called extragradient method which was introduced in [23] by Quoc et al. in the frame work of Hilbert spaces. They studied the following iterative scheme:

$$
\left\{\begin{array}{l}
z_{n} \in \operatorname{Argmin}_{z \in C}\left\{h\left(x_{n}, z\right)+\frac{1}{2 \lambda_{n}}\left\|z-x_{n}\right\|^{2}\right\}, \tag{6}\\
x_{n+1} \in \operatorname{Argmin}_{z \in C}\left\{h\left(z_{n}, z\right)+\frac{1}{2 \lambda_{n}}\left\|z-x_{n}\right\|^{2}\right\} .
\end{array}\right.
$$

Under some certain assumptions, the sequence $\left\{x_{n}\right\}$ generated by (国) was shown to converge weakly to a solution of problem (四).

Let $\operatorname{dom}(f)$ denote the domain of a proper, convex and lower semicontinuous function $f: E \rightarrow(-\infty,+\infty]$. Then $\operatorname{dom}(f):=\{x \in E: f(x)<+\infty\}$. Now, for any $u \in \operatorname{int}(\operatorname{dom} f)$
and $y \in E$, we denote by $f^{\prime}(u, y)$ the right-hand derivative of f at u in the direction of y, which is defined as

$$
\begin{equation*}
f^{\prime}(u, y)=\lim _{t \rightarrow 0} \frac{f(u+t y)-f(u)}{t} . \tag{7}
\end{equation*}
$$

The function f is known to be Gâteaux differentiable at u if, for each y, the limit in (II) exists. In this regard, the gradient of f at u is a function $\nabla f(u): E \rightarrow(-\infty,+\infty]$ given by $\langle\nabla f(u), y\rangle=f^{\prime}(u, y)$ for all $y \in E$. The function f is said to be Gâteaux differentiable on $\operatorname{int}(\operatorname{domf})$ if it is Gâteaux differentiable at every point $u \in \operatorname{int}(\operatorname{domf})$. In addition, f is said to be Fréchet differentiable at u provided the limit in ($\mathbb{\square})$ is attained uniformly for any $y \in E$ with $\|y\|=1$ and it is uniformly Fréchet differentiable on a subset Ω of E if the limit in $(\mathbb{\square})$ is attained uniformly for $u \in E$ and $\|y\|=1$. Let $u \in \operatorname{int}(\operatorname{domf})$, the subdifferential of f at $u, \partial f(u)$, is a convex set defined as

$$
\partial f(u)=\left\{u^{*} \in E^{*}: f(u)+\left\langle u^{*}, y-u\right\rangle \leqslant f(y), \forall y \in E\right\},
$$

and the Fenchel conjugate of f is the function $f^{*}: E^{*} \rightarrow(-\infty,+\infty]$ defined by

$$
\begin{equation*}
f^{*}\left(u^{*}\right)=\sup \left\{\left\langle u^{*}, u\right\rangle-f(u): u \in E\right\}, \forall u^{*} \in E^{*} \tag{8}
\end{equation*}
$$

Observe that f^{*} defined by ($(\mathbb{\Delta})$ above is proper, convex and lower semicontinuous as f is. In addition, $\left(u, u^{*}\right) \in \partial f$ if and only if $f(u)+f^{*}\left(u^{*}\right)=\left\langle u^{*}, u\right\rangle$, see [15$]$.
Definition 1.1 [3] The function $f: E \rightarrow(-\infty,+\infty]$ is known to be:
(1) Essentially smooth if ∂f is locally bounded and single-valued on its domain;
(2) Essentially strictly convex if $(\partial f)^{-1}$ is locally bounded on its domain and f is strictly convex on every subset of domf;
(3) Legendre when it is both essentially smooth and essentially strictly convex.

For a Legendre function f, we have the following properties:
(i) f is Legendre if and only if f^{*} is Legendre (see [5, Corollary 5.5]);
(ii) $(\partial f)^{-1}=\partial f^{*}$ (see [5, p.83]);
(iii) ∇f is a bijection and it satisfies

$$
\begin{aligned}
& \nabla f=\left(\nabla f^{*}\right)^{-1}, \operatorname{ran} \nabla f=\operatorname{dom} \nabla f^{*}=\operatorname{int}\left(\operatorname{dom} f^{*}\right) \text { and } \\
& \nabla f^{*}=\operatorname{dom} \nabla f=\operatorname{int}(\operatorname{dom} f) .
\end{aligned}
$$

Let $f: E \rightarrow(-\infty,+\infty]$ be convex and Gâteaux differentiable function. The function $D_{f}: \operatorname{domf} \times \operatorname{int}(\operatorname{domf}) \rightarrow[0,+\infty)$ defined as

$$
\begin{equation*}
D_{f}(x, y)=f(x)-f(y)-\langle\nabla f(y), x-y\rangle, \forall x \in \operatorname{dom} f, y \in \operatorname{int}(\operatorname{dom} f) \tag{9}
\end{equation*}
$$

is called the Bregman distance with respect to f [畐].
Observe that D_{f} here is not a distance function in the usual sense. In general, D_{f} neither satisfies symmetric nor triangular inequality. However, for all $x \in \operatorname{domf}$ and $y, z \in \operatorname{int}(\operatorname{domf}), D_{f}$ satisfies the so-called three point identity

$$
D_{f}(x, y)+D_{f}(y, z)-D_{f}(x, z)=\langle x-y, \nabla f(z)-\nabla f(y)\rangle .
$$

Let $T: C \rightarrow C$ be a map with C a nonempty subset of a Banach space E. A point $\hat{x} \in C$ is called a fixed point of T if $T \hat{x}=\hat{x}$. The set of fixed point of T is denoted by $\operatorname{Fix}(T)$. If C contains a sequence $\left\{x_{n}\right\}$ which converges weakly to \hat{x} and $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$, then \hat{x} is called an asymptotic fixed point of the map T [24]. The set of asymptotic fixed point of T is denoted by $\hat{F}(T)$.
Definition 1.2 [2] Let C be a nonempty closed convex subset of E. A mapping $T: C \rightarrow$ $\operatorname{int}(\operatorname{domf})$ is called
(i) Bregman firmly nonexpansive if

$$
\langle\nabla f(T x)-\nabla f(T y), T x-T y\rangle \leqslant\langle\nabla f(x)-\nabla f(y), T x-T y\rangle, \forall x, y \in C .
$$

(ii) Bregman strongly nonexpansive with respect to a nonempty $\hat{F}(T)$ if $D_{f}(p, T x) \leqslant$ $D_{f}(p, x)$ for all $p \in \hat{F}(T)$.
(iii) Bregman quasi-nonexpansive if $D_{f}(p, T x) \leqslant D_{f}(p, x)$ for all $x \in C$ and for all $p \in$ Fix (T).
Let $B: E \rightarrow 2^{E^{*}}$ be a maximal monotone operator and $\lambda>0$. An operator $\operatorname{Res}_{\lambda B}^{f}$: $E \rightarrow 2^{E}$ defined by Res $_{\lambda B}^{f}:=(\nabla f+\lambda B)^{-1} \circ \nabla f$ is called the resolvent operator of B. It is known that $\operatorname{Res}_{\lambda B}^{f}$ is a Bregman firmly nonexpansive operator, it is also single-valued and $\operatorname{Fix}\left(\operatorname{Res}_{\lambda B}^{f}\right)=B^{-1}(0)$ [[27]. Also, if $f: E \rightarrow \mathbb{R}$ is a Legendre function which is bounded and uniformly Fréchet differentiable on bounded subsets of E, then $\operatorname{Res}_{\lambda B}^{f}$ is Bregman strongly nonexpansive and $\hat{F}\left(\operatorname{Res}_{\lambda B}^{f}\right)=F\left(\right.$ Res $\left._{\lambda B}^{f}\right)$ [26]].

A multivalued operator $A: E \rightarrow 2^{E^{*}}$ is called Bregman inverse strongly monotone [20]] if for any $x, y \in \operatorname{int}(\operatorname{domf})$, we have

$$
\left\langle u-v, \nabla f^{*}(\nabla f(x)-u)-\nabla f^{*}(\nabla f(y)-v)\right\rangle \geqslant 0, \forall u \in A x, v \in A y .
$$

Define $A^{f}: E \rightarrow 2^{E}$ by $A^{f}:=\nabla f^{*} \circ(\nabla f-A)$. Then A^{f} here is called the antiresolvent operator of A. It was shown in [8] that A is Bregman inverse strongly monotone if and only if A^{f} is single-valued Bregman firmly nonexpansive and $F\left(A^{f}\right)=A^{-1}(0)$.

In [20], the problem of finding zero of sum of maximal monotone and Bregman inverse strongly monotone operators involving fixed point of Bregman nonspreading mapping have been studied. Tuyen, Promkam and Sunthrayuth [30] also studied the following iterative algorithm for approximating common zero of the sum of maximal monotone and Bregman inverse strongly monotone operators in the setting of reflexive Banach space:

$$
\left\{\begin{array}{l}
x_{1}, u \in C, \tag{10}\\
y_{n}=\nabla f^{*}\left(\beta_{0} \nabla f\left(x_{n}\right)+\sum_{i=1}^{N} \beta_{i} \nabla f\left(\operatorname{Res}_{\lambda B_{i}}^{f} \circ A_{i}^{f}\right) x_{n}\right), \\
x_{n+1}=\nabla f^{*}\left(\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(y_{n}\right)\right), n \geqslant 1 .
\end{array}\right.
$$

They proved strong convergence theorem of the sequence $\left\{x_{n}\right\}$ generated by Algorithm (피).

In [I], on the other hand, a class of map called Bregman demigenerelized mapping was studied.

Definition 1.3 [I] Let E be a reflexive Banach space, C be a nonempty closed convex subset of E and $\eta \in(-\infty, 1)$. Then a map $T: C \rightarrow E$ with $F(T) \neq \emptyset$ is called
$(\eta, 0)$-Bregman demigeneralized map if for any $x \in C$ and $q \in F(T)$

$$
\begin{equation*}
\langle x-q, \nabla f(x)-\nabla f(T x)\rangle \geqslant(1-\eta) D_{f}(x, T x) \tag{11}
\end{equation*}
$$

Ali et al. [T], using Bregman distance, proposed and studied an iterative scheme for finding a common element in the set of common fixed points for finite families of Bregman demigenerelized mappings and the set of solutions of generalized mixed equilibrium problems. They proved strong convergence theorem of the sequence generated by the following algorithm:

$$
\left\{\begin{array}{l}
u_{0}, x_{1} \in X \text { chosen arbitrarily, } \\
y_{n}=\nabla f^{*}\left(\lambda_{n} \nabla f\left(x_{n}\right)+\left(1-\lambda_{n}\right) \nabla f\left(T_{i} x_{n}\right)\right), \\
z_{n}=\operatorname{Res}_{\varphi_{\varphi_{m}}, \phi_{m}, \Phi_{m}}^{f} \circ \cdots \circ \operatorname{Res}_{\varphi_{2}, \phi_{2}, \Phi_{2}}^{f} \circ \operatorname{Res}_{\varphi_{1}, \phi_{1}, \Phi_{1}}^{f}\left(y_{n}\right), \\
w_{n}=\nabla f^{*}\left(\alpha_{n} \nabla f\left(x_{n}\right)+\beta_{n} \nabla f\left(z_{n}\right)+\gamma_{n} \nabla f\left(y_{n}\right)\right), \\
x_{n+1}=P_{C}^{f}\left(\nabla f^{*}\left(\sigma_{n} \nabla f\left(u_{0}\right)+\left(1-\sigma_{n}\right) \nabla f\left(w_{n}\right)\right)\right), n \geqslant 1 .
\end{array}\right.
$$

In this paper, motivated by the above mentioned researches, we propose and study a new hybrid extragradient-type iterative algorithm for finding a common solution in the set of common fixed point of finite families of Bregman demigeneralized mappings and a set of solution of equilibrium problems which is a common zero of the sum of maximal monotone and Bregman inverse strongly monotone operators in the setting of reflexive Banach spaces. Our results complement and extends some results announced recently by some authors in the literature.

2. Preliminaries

We shall, throughout this paper, use " \rightharpoonup and $" \rightarrow$ " for weak and strong convergence respectively. The following concepts and Lemmas are also very essential in the proof of our main results.

Lemma 2.1 [29$]$ Let C be a nonempty convex subset of a reflexive Banach space E and $f: C \rightarrow \mathbb{R}$ be a convex and subdifferentiable function. Then f attains its minimum at $x \in C$ if and only if $0 \in \partial f(x)+N_{C}(x)$, where $N_{C}(x)$ is a normal cone of C at x; that is,

$$
N_{C}(x):=\left\{x^{*} \in E^{*}:\left\langle x-z, x^{*}\right\rangle \geqslant 0, \forall z \in C\right\} .
$$

Lemma 2.2 [II] Let E be a reflexive Banach space. Suppose $f: E \rightarrow \mathbb{R}$ and $g: E \rightarrow \mathbb{R}$ are two convex functions such that $\operatorname{dom} f \cap \operatorname{domg} \neq \emptyset$ and f is continuous. Then, for all $x \in E, \partial(f+g)=\partial f(x)+\partial g(x)$.

Lemma 2.3 [T] Let E be a reflexive Banach space and C be a nonempty, closed and convex subset of E. Let $f: E \rightarrow \mathbb{R}$ be a strongly coercive and Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on bounded subset of E. Suppose η is a real number satisfying $\eta \in(-\infty, 1)$ and T is an $(\eta, 0)-$ Bregman demigeneralized mapping of C onto E. Then $F(T)$ is closed and convex.

Lemma 2.4 [$[$] Let C be a nonempty closed convex subset of a reflexive Banach space E and $f: E \rightarrow \mathbb{R}$ be a Fréchet differentiable convex function. For $\eta \in(-\infty, 0]$, let
$T: C \rightarrow E$ be $(\eta, 0)$-Bregman demigeneralized map with $F(T) \neq \emptyset$. Let α be real number in $[0,1)$ and let $S=\nabla f^{*}(\alpha \nabla f+(1-\alpha) \nabla f(T))$. Then $S: C \rightarrow E$ is quasiBregman nonexpansive map.

Lemma 2.5 [30] Let $A: E \rightarrow E^{*}$ be bregman inverse strongly monotone map and $B: E \rightarrow 2^{E^{*}}$ be maximal monotone operator. Let $T_{\lambda} x:=\operatorname{Res}_{\lambda B}^{f} \circ A^{f}(x)$ for $x \in E$ and $\lambda>0$. Then $F\left(T_{\lambda}\right)=(A+B)^{-1}(0)$.

Lemma 2.6 [30] Let $f: E \rightarrow \mathbb{R}$ be a strongly coercive Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let $A: E \rightarrow E^{*}$ be a Bregman inverse strongly monotone mapping and $B: E \rightarrow 2^{E^{*}}$ be a maximal monotone operator. Then the following hold:

$$
D_{f}\left(z, \operatorname{Res}_{\lambda B}^{f} \circ A^{f}(x)\right)+D_{f}\left(\operatorname{Res}_{\lambda B}^{f} \circ A^{f}(x), x\right) \leqslant D_{f}(z, x)
$$

for all $z \in(A+B)^{-1}(0), x \in E$ and $\lambda>0$.
Lemma 2.7 [26] Let $f: E \rightarrow \mathbb{R}$ be a Legendre function and C be a nonempty closed convex subset of E. If $T: C \rightarrow E$ is Bregman quasi-nonexpansive operator, then $F(T)$ is closed and convex.

Lemma 2.8 [3]] Suppose f is convex and bounded on bounded subset of E. Then f^{*} is Fréchet differentiable and ∇f^{*} is uniformly norm-to-norm continuous on bounded subset of E^{*}.

Let $f: E \rightarrow(-\infty,+\infty]$ be a Gâteaux differentiable function. The modulus of total convexity of f at $x \in \operatorname{dom} f$ is the function $v_{f}(x,):.[0,+\infty] \rightarrow[0,+\infty]$ such that $v_{f}(x, t):=\inf \left\{D_{f}(x, y): y \in \operatorname{int}(\operatorname{domf}),\|y-x\|=t\right\}$.
The function f is called totally convex at x if $v_{f}(x, t)>0$ whenever $t>0$. It is convex if it is totally convex at any point $x \in \operatorname{int}(\operatorname{domf})$. This notion was first studied by Butnariu and Iusem [r]]. Let B be a nonempty bounded subset of E. The modulus of total convexity of f on the set B is the function $v_{f}: \operatorname{int}(\operatorname{dom} f) \times[0,+\infty) \rightarrow[0,+\infty)$ defined by $v_{f}(B, t):=\inf \left\{v_{f}(x, t): x \in B \cap \operatorname{dom} f\right\}$.

The function f is called totally convex on bounded subset if $v_{f}(B, t)>0$ for any nonempty and bounded subset B of E and for any $t>0$.

Lemma 2.9 [25] If $f: E \rightarrow \mathbb{R}$ is uniformly Fréchet differentiable and bounded on bounded subsets of E, then ∇f is uniformly continuous on bounded subsets of E from the strong topology of E to the strong topology of E^{*}.

Lemma 2.10 [28] Let $f: E \rightarrow \mathbb{R}$ be Gâteaux differentiable and totally convex function. If $x_{0} \in E$ and the sequence $\left\{D_{f}\left(x_{n}, x_{0}\right)\right\}$ is bounded, then the sequence $\left\{x_{n}\right\}$ is also bounded.
A function $f: E \rightarrow \mathbb{R}$ is called sequentially consistent [G] if for any two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in E so that one is bounded and $\lim _{n \rightarrow \infty} D_{f}\left(y_{n}, x_{n}\right)=0$ implies $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.
Lemma $2.11[7]$ If $\operatorname{dom} f$ contains at least two points, then the function f is totally convex on bounded sets if and only if the function f is sequentially consistent.
Recall that the Bregman projection [G] with respect to $f, P_{C}^{f}: \operatorname{int}(\operatorname{domf}) \rightarrow C$, of $x \in \operatorname{int}(\operatorname{domf})$ onto nonempty closed convex set $C \subset \operatorname{domf}$ is defined as a unique vector $P_{C}^{f}(x) \in C$ satisfying $D_{f}\left(P_{C}^{f}(x), x\right)=\inf \left\{D_{f}(y, x): y \in C\right\}$.
The following properties concerning the Bregman projection were studied in [g].

Lemma 2.12 [g] Let C be a nonempty closed convex subset of a reflexive Banach space $E, f: E \rightarrow \mathbb{R}$ be a Gâteaux differentiable and totally convex function and $x \in E$. Then
(i) $z=P_{C}^{f}(x)$ if and only if $\langle\nabla f(x)-\nabla f(z), y-z\rangle \leqslant 0, \forall y \in C$;
(ii) $D_{f}\left(y, P_{C}^{f}(x)\right)+D_{f}\left(P_{C}^{f}(x), x\right) \leqslant D_{f}(y, x), \forall x \in E, y \in C$.

Lemma $2.13[9]$ Let E be a reflexive Banach space, $f: E \rightarrow \mathbb{R}$ be a strongly coercive Bregman function and $V_{f}: E \times E^{*} \rightarrow[0,+\infty]$ be defined by $V_{f}\left(x, x^{*}\right)=f(x)-\left\langle x, x^{*}\right\rangle+$ $f^{*}\left(x^{*}\right)$ for all $x \in E$ and $x^{*} \in E^{*}$. Then the following hold true

$$
\begin{equation*}
D_{f}\left(x, \nabla f^{*}\left(x^{*}\right)\right)=V_{f}\left(x, x^{*}\right), \forall x \in E, x^{*} \in E^{*} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{f}\left(x, x^{*}\right)+\left\langle\nabla f^{*}\left(x^{*}\right)-x, y^{*}\right\rangle \leqslant V_{f}\left(x, x^{*}+y^{*}\right), \forall x \in E, \forall x^{*}, y^{*} \in E^{*} \tag{13}
\end{equation*}
$$

Lemma 2.14 [22] Let E be a reflexive Banach space, $f: E \rightarrow(-\infty,+\infty$] be a proper lower semicontinuous function, then $f^{*}: E^{*} \rightarrow(-\infty,+\infty]$ is a proper weak k^{*} lower semicontinuous and convex function. Thus, for all $z \in E$, we have

$$
D_{f}\left(z, \nabla f^{*}\left(\sum_{i=1}^{N} t_{i} \nabla f\left(x_{i}\right)\right)\right) \leqslant \sum_{i=1}^{N} t_{i} D_{f}\left(z, x_{i}\right),
$$

where $\left\{t_{i}\right\} \subset(0,1)$ with $\sum_{i=1}^{N} t_{i}=1$.
Let E be Banach space, and B and S be a closed unit ball and a unit sphere of E, respectively. Let $r B=\{z \in E:\|z\| \leqslant r\}$ for all $r>0$. Then the function $f: E \rightarrow \mathbb{R}$ is said to be uniformly convex on bounded subset (see [3T]) if $\rho_{r}(t)>0$ for all $r, t>0$, where $\rho_{r}:[0, \infty) \rightarrow[0, \infty]$ is defined by

$$
\rho_{r}(t):=\inf _{x, y \in r B,\|x-y\|=t, \alpha \in(0,1)} \frac{\alpha f(x)+(1-\alpha) f(y)-f(\alpha x+(1-\alpha) y)}{\alpha(1-\alpha)}, \forall t \geqslant 0 .
$$

The function ρ_{r} here is called the gauge function of uniform convexity of f which is known to be nondecreasing. However, if f is uniformly convex then the following result is well known.

Lemma 2.15 [[\mathbb{P}] Let E be a Banach space, $r>0$ be a constant and $f: E \rightarrow \mathbb{R}$ be a uniformly convex function on bounded subsets of E. Then

$$
f\left(\sum_{k=0}^{n} \alpha_{k} x_{k}\right) \leqslant \sum_{k=0}^{n} \alpha_{k} f\left(x_{k}\right)-\alpha_{i} \alpha_{j} \rho_{r}\left(\left\|x_{i}-x_{j}\right\|\right), \forall i, j \in\{0,1,2, \cdots, n\}
$$

where $x_{k} \in r B, \alpha_{k} \in(0,1)$ and $k=0,1,2, \cdots, n$ with $\sum_{k=0}^{n}=1$ and ρ_{r} a gauge function of uniform convexity of f.

The function f is also said to be uniformly smooth on bounded subsets [3T] if
$\lim _{t \rightarrow 0^{-}} \frac{\rho_{r}(t)}{t}=0$ for all $r>0$, where $\rho_{r}:[0, \infty) \rightarrow[0, \infty]$ here is defined by

$$
\rho_{r}(t)=\sup _{x \in r B, y \in S, \alpha \in(0,1)} \frac{\alpha f(x+(1-\alpha) t y)+(1-\alpha) f(x-\alpha t y)-f(x)}{\alpha(1-\alpha)}, \forall t \geqslant 0
$$

A function f is called strongly coercive if $\lim _{\|x\| \rightarrow \infty} \frac{f(x)}{\|x\|}=+\infty$.
Definition 2.16 [12] Let C be a nonempty closed convex subset of a Banach space E.
A bifunction $h: C \times C \rightarrow \mathbb{R}$ is called

- Monotone if $h(x, y)+h(y, x) \leqslant 0$ for all $x, y \in C$,
- Pseudomonotone if $h(x, y) \geqslant 0$ implies $h(y, x) \leqslant 0$.

Observe that every monotone bifunction is pseudomonotone but not the converse. We require, in this paper, the bifunction h satisfies the following properties:
$C 1 . h$ is Pseudomonotone,
$C 2 . h$ is Bregman-Lipschitz type continuous, i.e. $h(x, y)+h(y, z) \geqslant h(x, z)-$ $c_{1} D_{f}(y, x)-c_{2} D_{f}(z, y), \forall z \in C, x, y \in \operatorname{intdom}(f)$ and for some $c_{1}, c_{2}>0$, where $f: E \rightarrow(-\infty,+\infty]$ is a Legendre function,
$C 3$. h is weakly continuous on $C \times C$, i.e. if $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are two sequences in C converging weakly to x and $y \in C$ respectively, then $h\left(x_{n}, y_{n}\right) \rightarrow h(x, y)$,
$C 4$. $h(x,):. C \rightarrow \mathbb{R}$ is convex, lower semicontinuous and subdifferentiable,
$C 5$. $\limsup _{t \rightarrow 0^{-}} h(t x+(1-t) y, w) \leqslant h(y, w)$ for each $x, y, w \in C$.
Lemma 2.17 [[2] Let h be a bifunction satisfying $(C 1),(C 3)-(C 5)$. Then $E P(h, C)$ is closed and convex.

Lemma 2.18 [17] Let $\left\{r_{n}\right\}$ be a sequence of real numbers such that there exists a subsequence $\left\{r_{n_{j}}\right\}$ of $\left\{r_{n}\right\}$ satisfying $r_{n_{j}}<r_{n_{j}+1} \forall j \geqslant 0$. Let $\left\{m_{k}\right\} \subset \mathbb{N}$ be defined by $m_{k}=\max \left\{i \leqslant k: r_{i}<r_{i+1}\right\}$. Then $\left\{m_{k}\right\}$ is a nondecreasing sequence satisfying $\lim _{k \rightarrow \infty} m_{k}=\infty$ and for all $k \geqslant n_{0}$, the following two estimates hold:

$$
r_{m_{k}} \leqslant r_{m_{k}+1} \text { and } r_{k} \leqslant r_{m_{k}+1}
$$

Lemma 2.19 [26] Let $\left\{r_{n}\right\}$ be a sequence of nonnegative real numbers satisfying

$$
\begin{equation*}
r_{n+1} \leqslant\left(1-\mu_{n}\right) r_{n}+\mu_{n} \gamma_{n}, n \geqslant 0 \tag{14}
\end{equation*}
$$

with $\left\{\mu_{n}\right\} \subset[0,1]$ such that $\sum_{n=0}^{\infty} \mu_{n}=\infty$ and $\limsup _{n \rightarrow \infty} \gamma_{n} \leqslant 0$. Then $\lim _{n \rightarrow \infty} r_{n}=0$.

3. Main results

We construct, in this section, an extragradient-type algorithm for approximation of a common element in the set of common fixed point of Bregman demigeneralized mappings, set of Bregman inverse strongly monotone and maximal monotone operators in the setting
of reflexive Banach space as follows.

$$
\left\{\begin{array}{l}
v, x_{1} \in E \text { chosen arbitrarily, } \tag{15}\\
z_{n}^{i}=\underset{y \in C}{\operatorname{argmin}}\left\{\lambda_{n} h_{i}\left(x_{n}, y\right)+D_{f}\left(y, x_{n}\right), i=1,2,3, \cdots, N\right\}, \\
y_{n}^{i}=\underset{y \in C}{\operatorname{argmin}}\left\{\lambda_{n} h_{i}\left(z_{n}^{i}, y\right)+D_{f}\left(y, x_{n}\right), i=1,2,3, \cdots, N\right\}, \\
i_{n}=\operatorname{argmax}\left\{D_{f}\left(y_{n}^{i}, x_{n}\right), i=1,2,3, \cdots, N\right\}, \bar{y}_{n}=y_{n}^{i_{n}}, \\
w_{n}=\nabla f^{*}\left(\beta_{n} \nabla f\left(\bar{y}_{n}\right)+\left(1-\beta_{n}\right) \nabla f\left(U_{j} \bar{y}_{n}\right)\right), j=1,2, \cdots, m, \\
u_{n}=\nabla f^{*}\left(\alpha_{n} \nabla f\left(\bar{y}_{n}\right)+\gamma_{n} \nabla f\left(x_{n}\right)+\eta_{n} \nabla f\left(w_{n}\right)\right. \\
\left.\quad \quad \quad \sum_{s=1}^{N} \delta_{n, s} \nabla f\left(\operatorname{Res}_{\lambda B_{s}}^{f} \circ A_{s}^{f}\left(w_{n}\right)\right)\right), \\
x_{n+1}=\nabla f^{*}\left(\mu_{n} \nabla f(v)+\left(1-\mu_{n}\right) \nabla f\left(u_{n}\right)\right), n \geqslant 1,
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\gamma_{n}\right\},\left\{\eta_{n}\right\},\left\{\delta_{n, s}\right\},\left\{\beta_{n}\right\}$ and $\left\{\mu_{n}\right\}$ are sequences satisfying the following conditions:
$A 1:\left\{\mu_{n}\right\} \subset(0,1)$ such that $\lim _{n \rightarrow \infty} \mu_{n}=0$ and $\sum_{n=0}^{\infty} \mu_{n}=\infty$,
$A 2: 0<\gamma \leqslant \alpha_{n}, \gamma_{n}, \eta_{n}, \delta_{n, s} \leqslant \beta<1$ and $\alpha_{n}+\gamma_{n}+\eta_{n}+\sum_{s=1}^{\bar{N}} \delta_{n, s}=1, \forall n \in \mathbb{N}$,
$A 3: 0<\gamma \leqslant \lambda_{n} \leqslant \beta<\min \left\{\frac{1}{c_{1}} \frac{1}{c_{2}}\right\}$, with $c_{1}=\max _{1 \leqslant i \leqslant N} c_{1, i}, c_{2}=\max _{1 \leqslant i \leqslant N} c_{2, i}$ such that
$c_{1, i}$ and $c_{2, i}$ are Bregman Lipschitz coefficients of h_{i} for all $i=1,2, \cdots, N$,
$A 4: 0<a \leqslant \beta_{n} \leqslant \min \left\{1-k_{1}, 1-k_{2}, \cdots, 1-k_{m}\right\} \forall n$.
Lemma 3.1 Let C be a nonempty closed convex subset of a reflexive Banach space E, and let $f: E \rightarrow \mathbb{R}$ be a strongly coercive Legendre function. For $i=1,2,3, \cdots, N$, let $h_{i}: C \times C \rightarrow \mathbb{R}$ be bifunction satisfying assumptions (C1)-(C5). For $\left\{\lambda_{n}\right\} \subset(0,+\infty)$, let $\left\{x_{n}\right\}$ be a sequence generated by Algorithm (N․). Then for any $q \in \Omega=\left\{x^{*} \in\right.$ $\left.\cap_{s=1}^{\bar{N}}\left(A_{s}+B_{s}\right)^{-1}(0) \cap\left(\cap_{j=1}^{m} F\left(U_{j}\right)\right) \cap\left(\cap_{i=1}^{N} E P\left(h_{i}, C\right)\right)\right\}$

$$
\begin{equation*}
D_{f}\left(q, \bar{y}_{n}\right) \leqslant D_{f}\left(q, x_{n}\right)-\left(1-c_{1, i} \lambda_{n}\right) D_{f}\left(z_{n}^{i}, x_{n}\right)-\left(1-c_{2, i} \lambda_{n}\right) D_{f}\left(\bar{y}_{n}, z_{n}^{i}\right) . \tag{16}
\end{equation*}
$$

Proof. Let $q \in \Omega$. Then it follows from Algorithm ([5]), Lemma [2.], Lemma [2.2] that for each $i=1,2,3, \cdots, N, y_{n}^{i}=\underset{y \in C}{\operatorname{argmin}}\left\{\lambda_{n} h_{i}\left(z_{n}^{i}, y\right)+D_{f}\left(y, x_{n}\right)\right\}$ if and only if

$$
0 \in \lambda_{n} \partial_{2} h_{i}\left(z_{n}^{i}, y_{n}^{i}\right)+\nabla_{1} D_{f}\left(y_{n}^{i}, x_{n}\right)+N_{C}\left(y_{n}^{i}\right) .
$$

Therefore, there exist $z \in \partial_{2} h_{i}\left(z_{n}^{i}, y_{n}^{i}\right)$ and $\bar{z} \in N_{C}\left(y_{n}^{i}\right)$ such that

$$
\begin{equation*}
0=\lambda_{n} z+\nabla f\left(y_{n}^{i}\right)-\nabla f\left(x_{n}\right)+\bar{z} . \tag{17}
\end{equation*}
$$

Since $z \in \partial_{2} h_{i}\left(z_{n}^{i}, y_{n}^{i}\right)$ for each $i \in\{1,2, \cdots, N\}$, we obtain $h_{i}\left(z_{n}^{i}, y\right)-h_{i}\left(z_{n}^{i}, y_{n}^{i}\right) \geqslant$ $\left\langle y-y_{n}^{i}, z\right\rangle$ for all $y \in C$. Replacing y by q in the above inequality, we have

$$
\begin{equation*}
h_{i}\left(z_{n}^{i}, q\right)-h_{i}\left(z_{n}^{i}, y_{n}^{i}\right) \geqslant\left\langle q-y_{n}^{i}, z\right\rangle, \forall i=1,2,3, \cdots, N . \tag{18}
\end{equation*}
$$

Using (마) and definition of $N_{C}\left(y_{n}^{i}\right)$, we also have $\left\langle y-y_{n}^{i},-\lambda_{n} z-\nabla f\left(y_{n}^{i}\right)+\nabla f\left(x_{n}\right)\right\rangle \leqslant 0$ so that

$$
\begin{equation*}
\left\langle y-y_{n}^{i}, \nabla f\left(y_{n}^{i}\right)-\nabla f\left(x_{n}\right)\right\rangle \geqslant \lambda_{n}\left\langle y_{n}^{i}-y, z\right\rangle, \forall y \in C . \tag{19}
\end{equation*}
$$

Replacing y by q in (ㄸTM), we have

$$
\begin{equation*}
\left\langle q-y_{n}^{i}, \nabla f\left(y_{n}^{i}\right)-\nabla f\left(x_{n}\right)\right\rangle \geqslant \lambda_{n}\left\langle y_{n}^{i}-q, z\right\rangle, \forall i=1,2,3, \cdots, N . \tag{20}
\end{equation*}
$$

Using ([®)), ([区]) and pseudomonotonicity of $h_{i}^{\prime s}$, we obtain $\forall i=1,2, \cdots, N$ that

$$
\begin{equation*}
\left\langle q-y_{n}^{i}, \nabla f\left(y_{n}^{i}\right)-\nabla f\left(x_{n}\right)\right\rangle \geqslant \lambda_{n}\left(h_{i}\left(z_{n}^{i}, y_{n}^{i}\right)-h_{i}\left(z_{n}^{i}, q\right)\right) \geqslant \lambda_{n} h_{i}\left(z_{n}^{i}, y_{n}^{i}\right) . \tag{21}
\end{equation*}
$$

On the other hand, using ($C 2$) with $x=x_{n}, y=z_{n}^{i}$ and $z=y_{n}^{i}$, we get

$$
\begin{equation*}
h_{i}\left(z_{n}^{i}, y_{n}^{i}\right) \geqslant h_{i}\left(x_{n}, y_{n}^{i}\right)-h_{i}\left(x_{n}, z_{n}^{i}\right)-c_{1} D_{f}\left(z_{n}^{i}, x_{n}\right)-c_{2} D_{f}\left(y_{n}^{i}, z_{n}^{i}\right) . \tag{22}
\end{equation*}
$$

Inequality (2D) together with (E22) give

$$
\begin{equation*}
\left\langle q-y_{n}^{i}, \nabla f\left(y_{n}^{i}\right)-\nabla f\left(x_{n}\right)\right\rangle \geqslant \lambda_{n}\left(h_{i}\left(x_{n}, y_{n}^{i}\right)-h_{i}\left(x_{n}, z_{n}^{i}\right)-c_{1} D_{f}\left(z_{n}^{i}, x_{n}\right)-c_{2} D_{f}\left(y_{n}^{i}, z_{n}^{i}\right)\right) . \tag{23}
\end{equation*}
$$

In a similar manner, since $z_{n}^{i}=\underset{y \in C}{\operatorname{argmin}}\left\{\lambda_{n} h_{i}\left(x_{n}, y\right)+D_{f}\left(y, x_{n}\right), i=1,2,3, \cdots, N\right\}$, it follows as in (27) that

$$
\left\langle z_{n}^{i}-y, \nabla f\left(z_{n}^{i}\right)-\nabla f\left(x_{n}\right)\right\rangle \leqslant \lambda_{n}\left(h_{i}\left(x_{n}, y\right)-h_{i}\left(x_{n}, z_{n}^{i}\right)\right), \forall y \in C
$$

so that for $y=y_{n}^{i}$, we have

$$
\begin{equation*}
\left\langle z_{n}^{i}-y_{n}^{i}, \nabla f\left(z_{n}^{i}\right)-\nabla f\left(x_{n}\right)\right\rangle \leqslant \lambda_{n}\left(h_{i}\left(x_{n}, y_{n}^{i}\right)-h_{i}\left(x_{n}, z_{n}^{i}\right)\right) . \tag{24}
\end{equation*}
$$

Using (23I) and (24]), we obtain

$$
\begin{aligned}
\left\langle q-y_{n}^{i}, \nabla f\left(y_{n}^{i}\right)-\nabla f\left(x_{n}\right)\right\rangle & \geqslant\left\langle z_{n}^{i}-y_{n}^{i}, \nabla f\left(z_{n}^{i}\right)-\nabla f\left(x_{n}\right)\right\rangle-\lambda_{n} c_{1} D_{f}\left(z_{n}^{i}, x_{n}\right) \\
& \left.-\lambda_{n} c_{2} D_{f}\left(y_{n}^{i}, z_{n}^{i}\right)\right) .
\end{aligned}
$$

Using the three point identity, this implies that

$$
\begin{aligned}
0 \geqslant & \left\langle y_{n}^{i}-z_{n}^{i}, \nabla f\left(x_{n}\right)-\nabla f\left(z_{n}^{i}\right)\right\rangle+\left\langle q-y_{n}^{i}, \nabla f\left(x_{n}\right)-\nabla f\left(y_{n}^{i}\right)\right\rangle \\
& \left.-\lambda_{n} c_{1} D_{f}\left(z_{n}^{i}, x_{n}\right)-\lambda_{n} c_{2} D_{f}\left(y_{n}^{i}, z_{n}^{i}\right)\right) \\
\geqslant & D_{f}\left(q, y_{n}^{i}\right)-D_{f}\left(q, x_{n}\right)+\left(1-\lambda_{n} c_{1}\right) D_{f}\left(z_{n}^{i}, x_{n}\right)+\left(1-\lambda_{n} c_{2}\right) D_{f}\left(y_{n}^{i}, z_{n}^{i}\right)
\end{aligned}
$$

from which we obtain

$$
D_{f}\left(q, y_{n}^{i}\right) \leqslant D_{f}\left(q, x_{n}\right)-\left(1-\lambda_{n} c_{1}\right) D_{f}\left(z_{n}^{i}, x_{n}\right)-\left(1-\lambda_{n} c_{2}\right) D_{f}\left(y_{n}^{i}, z_{n}^{i}\right)
$$

for each $i \in\{1,2, \cdots, N\}$. Thus,

$$
\begin{equation*}
D_{f}\left(q, \bar{y}_{n}\right) \leqslant D_{f}\left(q, x_{n}\right)-\left(1-\lambda_{n} c_{1}\right) D_{f}\left(z_{n}^{i}, x_{n}\right)-\left(1-\lambda_{n} c_{2}\right) D_{f}\left(y_{n}^{i}, z_{n}^{i}\right) \tag{25}
\end{equation*}
$$

for each $i \in\{1,2, \cdots, N\}$.

Theorem 3.2 Let C be a nonempty closed convex subset of a reflexive Banach space E, and let $f: E \rightarrow \mathbb{R}$ be a strongly coercive Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E. For $\bar{N} \in \mathbb{N}$, $s \in\{1,2, \cdots, \bar{N}\}$, let $A_{s}: E \rightarrow 2^{E^{*}}$ and $B_{s}: E \rightarrow 2^{E^{*}}$ be finite families of Bregman inverse strongly monotone and maximal monotone operators respectively. Suppose U_{j} : $C \rightarrow C, j=1,2, \cdots, m$, is finite family of ($k_{j}, 0$)-Bregman demigeneralized mappings such that $\left(I-U_{j}\right)$ is demiclosed at origin and $k_{j} \in(-\infty, 0)$ for each $j=1,2,3, \cdots, m$. For $i=1,2,3, \cdots, N$, let $h_{i}: C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying assumptions (C1) - (C5), such that $\Omega:=\left(\cap_{s=1}^{\bar{N}} F\left(\operatorname{Res}_{\lambda B_{s}}^{f} \circ A_{s}^{f}\right)\right) \cap\left(\cap_{j=1}^{m} F\left(U_{j}\right)\right) \cap\left(\cap_{i=1}^{N} E P\left(h_{i}, C\right)\right) \neq \emptyset$. Then the sequence $\left\{x_{n}\right\}$ generated by Algorithm ((\mathbb{T}) converges strongly to some $q \in \Omega$.

Proof. Set $T_{s}^{\lambda}:=\operatorname{Res}_{\lambda B_{s}}^{f} \circ A_{s}^{f}$, then for each $s \in\{1,2, \cdots, \bar{N}\}$, it follows from Lemma [2.6] that T_{s}^{λ} is Bregman quasi nonexpansive operator. Thus, from Lemma [2.3], Lemma 2.7 and Lemma [.J. we obtain that Ω is closed and convex. Let $q \in \Omega$. Then, from Algorithm ([5]), Lemma [2.4] and Lemma [3.D], we have

$$
\begin{align*}
D_{f}\left(q, w_{n}\right) & =D_{f}\left(q, \nabla f^{*}\left(\beta_{n} \nabla f\left(\bar{y}_{n}\right)+\left(1-\beta_{n}\right) \nabla f\left(U_{j} \bar{y}_{n}\right)\right)\right) \\
& =D_{f}\left(q, S \bar{y}_{n}\right) \\
& \leqslant D_{f}\left(q, \bar{y}_{n}\right) \\
& \leqslant D_{f}\left(q, x_{n}\right) . \tag{26}
\end{align*}
$$

Using (266), Lemma 2.14 and Lemma [2.6], we get

$$
\begin{aligned}
D_{f}\left(q, u_{n}\right)= & D_{f}\left(q, \nabla f^{*}\left(\alpha_{n} \nabla f\left(\bar{y}_{n}\right)+\gamma_{n} \nabla f\left(x_{n}\right)+\eta_{n} \nabla f\left(w_{n}\right)\right.\right. \\
& \left.\left.+\sum_{s=1}^{\bar{N}} \delta_{n, s} \nabla f\left(\operatorname{Res}_{\lambda B_{s}}^{f} \circ A_{s}^{f}\left(w_{n}\right)\right)\right)\right) \\
\leqslant & \alpha_{n} D_{f}\left(q, \bar{y}_{n}\right)+\gamma_{n} D_{f}\left(q, x_{n}\right)+\eta_{n} D_{f}\left(q, w_{n}\right)+\sum_{s=1}^{\bar{N}} \delta_{n, s} D_{f}\left(q, T_{s}^{\lambda} w_{n}\right) \\
\leqslant & D_{f}\left(q, x_{n}\right) .
\end{aligned}
$$

Now, it follows from Algorithm (ㄴ5) and Lemma 2.14 that

$$
\begin{aligned}
D_{f}\left(q, x_{n+1}\right) & =D_{f}\left(q, \nabla f^{*}\left(\mu_{n} \nabla f(v)+\left(1-\mu_{n}\right) \nabla f\left(u_{n}\right)\right)\right) \\
& \leqslant \mu_{n} D_{f}(q, v)+\left(1-\mu_{n}\right) D_{f}\left(q, u_{n}\right) \\
& \leqslant \mu_{n} D_{f}(q, v)+\left(1-\mu_{n}\right) D_{f}\left(q, x_{n}\right) \\
& \leqslant \operatorname{Max}\left\{D_{f}(q, v), D_{f}\left(q, x_{n}\right)\right\} \\
& \vdots \\
& \leqslant \operatorname{Max}\left\{D_{f}(q, v), D_{f}\left(q, x_{1}\right)\right\} .
\end{aligned}
$$

Thus, the sequence $\left\{D_{f}\left(q, x_{n+1}\right)\right\}$ is bounded. Hence, by Lemma is also bounded. Consequently, $\left\{w_{n}\right\},\left\{u_{n}\right\},\left\{\bar{y}_{n}\right\},\left\{T_{s}^{\lambda} w_{n}\right\}$ and $\left\{U_{j} \bar{y}_{n}\right\}$ for $j=1,2, \cdots, m$ are all bounded. Also, since f is bounded on bounded subset of E we have that ∇f
is bounded on bounded subset of E^{*} which implies $\left\{\nabla f\left(x_{n}\right)\right\},\left\{\nabla f\left(w_{n}\right)\right\},\left\{\nabla f\left(u_{n}\right)\right\}$, $\left\{\nabla f\left(\bar{y}_{n}\right)\right\},\left\{\nabla T_{s}^{\lambda} w_{n}\right\}$ and $\left\{\nabla f\left(U_{j} \bar{y}_{n}\right)\right\}$ are all bounded, too.

In what follow, we shall show that $x_{n} \rightarrow q$ as $n \rightarrow \infty$. Now, let $\rho_{r}^{*}: E^{*} \rightarrow \mathbb{R}$ be a gauge function of uniform convexity of the conjugate function f^{*} with r := $\sup _{n}\left\{\left\|\bar{y}_{n}\right\|,\left\|\nabla f\left(x_{n}\right)\right\|\right\}$. We then have by Lemma [2.J3] and Lemma [2.1.] that

$$
\begin{aligned}
D_{f}\left(q, u_{n}\right)= & D_{f}\left(q, \nabla f^{*}\left(\alpha_{n} \nabla f\left(\bar{y}_{n}\right)+\gamma_{n} \nabla f\left(x_{n}\right)+\eta_{n} \nabla f\left(w_{n}\right)+\sum_{s=1}^{\bar{N}} \delta_{n, s} \nabla f\left(\operatorname{Res}_{\lambda B_{s}}^{f} \circ A_{s}^{f}\left(w_{n}\right)\right)\right)\right) \\
= & V_{f}\left(q, \alpha_{n} \nabla f\left(\bar{y}_{n}\right)+\gamma_{n} \nabla f\left(x_{n}\right)+\eta_{n} \nabla f\left(w_{n}\right)+\sum_{s=1}^{\bar{N}} \delta_{n, s} \nabla f\left(\operatorname{Res}_{\lambda B_{s}}^{f} \circ A_{s}^{f}\left(w_{n}\right)\right)\right) \\
= & f(q)-\left\langle q, \alpha_{n} \nabla f\left(\bar{y}_{n}\right)+\gamma_{n} \nabla f\left(x_{n}\right)+\eta_{n} \nabla f\left(w_{n}\right)+\sum_{s=1}^{\bar{N}} \delta_{n, s} \nabla f\left(\operatorname{Res}_{\lambda \lambda_{s}}^{f} \circ A_{s}^{f}\left(w_{n}\right)\right)\right\rangle \\
& +f^{*}\left(\alpha_{n} \nabla f\left(\bar{y}_{n}\right)+\gamma_{n} \nabla f\left(x_{n}\right)+\eta_{n} \nabla f\left(w_{n}\right)+\sum_{s=1}^{\bar{N}} \delta_{n, s} \nabla f\left(\operatorname{Res}_{\lambda B_{s}}^{f} \circ A_{s}^{f}\left(w_{n}\right)\right)\right) \\
\leqslant & \alpha_{n}\left(f(q)-\left\langle q, \nabla f\left(\bar{y}_{n}\right)\right\rangle+f^{*}\left(\nabla f\left(\bar{y}_{n}\right)\right)\right)+\gamma_{n}\left(f(q)-\left\langle q, \nabla f\left(x_{n}\right)\right\rangle+f^{*}\left(\nabla f\left(x_{n}\right)\right)\right) \\
& +\eta_{n}\left(f(q)-\left\langle q, \nabla f\left(w_{n}\right)\right\rangle+f^{*}\left(\nabla f\left(w_{n}\right)\right)\right)+\sum_{s=1}^{\bar{N}} \delta_{n, s}\left(f(q)-\left\langle q, \nabla f\left(\operatorname{Res}_{\lambda B_{s}}^{f} \circ A_{s}^{f}\left(w_{n}\right)\right)\right\rangle\right. \\
& \left.+f^{*}\left(\nabla f\left(\operatorname{Res}_{\lambda B_{s}}^{f} \circ A_{s}^{f}\left(w_{n}\right)\right)\right)\right)-\alpha_{n} \eta_{n} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(w_{n}\right)\right\|\right) \\
= & \alpha_{n} D_{f}\left(q, \bar{y}_{n}\right)+\gamma_{n} D_{f}\left(q, x_{n}\right)+\eta_{n} D_{f}\left(q, w_{n}\right)+\sum_{s=1}^{\bar{N}} \delta_{n, s} D_{f}\left(q, T_{s}^{\lambda} w_{n}\right) \\
& -\alpha_{n} \eta_{n} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(w_{n}\right)\right\|\right) \\
\leqslant & D_{f}\left(q, x_{n}\right)-\alpha_{n} \eta_{n} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(w_{n}\right)\right\|\right) ;
\end{aligned}
$$

that is,

$$
\begin{equation*}
D_{f}\left(q, u_{n}\right) \leqslant D_{f}\left(q, x_{n}\right)-\alpha_{n} \eta_{n} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(w_{n}\right)\right\|\right) . \tag{27}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
D_{f}\left(q, u_{n}\right) \leqslant D_{f}\left(q, x_{n}\right)-\alpha_{n} \gamma_{n} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(x_{n}\right)\right\|\right) \tag{28}
\end{equation*}
$$

and

$$
\begin{align*}
D_{f}\left(q, u_{n}\right) & \leqslant D_{f}\left(q, x_{n}\right)-\sum_{s=1}^{\bar{N}} \alpha_{n} \delta_{n, s} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(T_{s}^{\lambda} w_{n}\right)\right\|\right) \\
& \leqslant D_{f}\left(q, x_{n}\right)-\alpha_{n} \delta_{n} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(T_{s}^{\lambda} w_{n}\right)\right\|\right) \tag{29}
\end{align*}
$$

where $\delta_{n}:=\min _{1 \leqslant s \leqslant \bar{N}} \delta_{n, s}$.

Using ([27), (28) and (241), we respectively obtain

$$
\begin{align*}
D_{f}\left(q, x_{n+1}\right) & \leqslant \mu_{n} D_{f}(q, v)+\left(1-\mu_{n}\right) D_{f}\left(q, u_{n}\right) \tag{30}\\
& \leqslant D_{f}\left(q, x_{n}\right)-\alpha_{n} \eta_{n} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(w_{n}\right)\right\|\right)-\mu_{n}\left[D_{f}\left(q, x_{n}\right)\right. \\
& \left.-D_{f}(q, v)-\alpha_{n} \eta_{n} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(w_{n}\right)\right\|\right)\right]
\end{align*}
$$

and

$$
\begin{align*}
D_{f}\left(q, x_{n+1}\right) & \leqslant D_{f}\left(q, x_{n}\right)-\alpha_{n} \gamma_{n} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(x_{n}\right)\right\|\right)-\mu_{n}\left[D_{f}\left(q, x_{n}\right)\right. \tag{31}\\
& \left.-D_{f}(q, v)-\alpha_{n} \gamma_{n} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(x_{n}\right)\right\|\right)\right]
\end{align*}
$$

and

$$
\begin{align*}
& D_{f}\left(q, x_{n+1}\right) \leqslant D_{f}\left(q, x_{n}\right)-\alpha_{n} \delta_{n} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(T_{s}^{\lambda} w_{n}\right)\right\|\right) \tag{32}\\
& \left.\quad-\mu_{n}\left[D_{f}\left(q, x_{n}\right)-D_{f}(q, v)-\alpha_{n} \delta_{n} \rho_{r}^{*}\left(\| \nabla f\left(\bar{y}_{n}\right)-\nabla f\left(T_{s}^{\lambda} w_{n}\right)\right) \|\right)\right]
\end{align*}
$$

Also, (301), (30) and (32) imply

$$
\begin{align*}
\alpha_{n} \eta_{n} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(w_{n}\right)\right\|\right) & \leqslant D_{f}\left(q, x_{n}\right)-D_{f}\left(q, x_{n+1}\right)-\mu_{n}\left[D_{f}\left(q, x_{n}\right)\right. \tag{33}\\
& \left.-D_{f}(q, v)-\alpha_{n} \eta_{n} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(w_{n}\right)\right\|\right)\right]
\end{align*}
$$

and

$$
\begin{align*}
\alpha_{n} \gamma_{n} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(x_{n}\right)\right\|\right) & \leqslant D_{f}\left(q, x_{n}\right)-D_{f}\left(q, x_{n+1}\right)-\mu_{n}\left[D_{f}\left(q, x_{n}\right)\right. \tag{34}\\
& \left.-D_{f}(q, v)-\alpha_{n} \gamma_{n} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(x_{n}\right)\right\|\right)\right]
\end{align*}
$$

and

$$
\begin{align*}
& \alpha_{n} \delta_{n} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(T_{s}^{\lambda} w_{n}\right)\right\|\right) \leqslant D_{f}\left(q, x_{n}\right)-D_{f}\left(q, x_{n+1}\right) \tag{35}\\
& \quad-\mu_{n}\left[D_{f}\left(q, x_{n}\right)-D_{f}(q, v)-\alpha_{n} \delta_{n} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(T_{s}^{\lambda} w_{n}\right)\right\|\right)\right]
\end{align*}
$$

respectively. Set $t_{n}=\nabla f^{*}\left(\mu_{n} \nabla f(v)+\left(1-\mu_{n}\right) \nabla f\left(u_{n}\right)\right)$. Then, using Lemma [2.]3, we have

$$
\begin{align*}
D_{f}\left(q, x_{n+1}\right) & =D_{f}\left(q, \nabla f^{*}\left(\mu_{n} \nabla f(v)+\left(1-\mu_{n}\right) \nabla f\left(u_{n}\right)\right)\right) \\
& =V_{f}\left(q, \mu_{n} \nabla f(v)+\left(1-\mu_{n}\right) \nabla f\left(u_{n}\right)\right) \\
& \leqslant V_{f}\left(q, \mu_{n} \nabla f(v)+\left(1-\mu_{n}\right) \nabla f\left(u_{n}\right)-\mu_{n}(\nabla f(v)-\nabla f(q))\right) \\
& +\mu_{n}\left\langle t_{n}-q, \nabla f(v)-\nabla f(q)\right\rangle \\
& =V_{f}\left(q, \mu_{n} \nabla f(q)+\left(1-\mu_{n}\right) \nabla f\left(u_{n}\right)\right)+\mu_{n}\left\langle t_{n}-q, \nabla f(v)-\nabla f(q)\right\rangle \\
& =\mu_{n} V_{f}(q, \nabla f(q))+\left(1-\mu_{n}\right) V_{f}\left(q, \nabla f\left(u_{n}\right)\right)+\mu_{n}\left\langle t_{n}-q, \nabla f(v)-\nabla f(q)\right\rangle \\
& =\mu_{n} D_{f}(q, q)+\left(1-\mu_{n}\right) D_{f}\left(q, u_{n}\right)+\mu_{n}\left\langle t_{n}-q, \nabla f(v)-\nabla f(q)\right\rangle \\
& \leqslant\left(1-\mu_{n}\right) D_{f}\left(q, x_{n}\right)+\mu_{n}\left\langle t_{n}-q, \nabla f(v)-\nabla f(q)\right\rangle . \tag{36}
\end{align*}
$$

Now, as $\left\{D_{f}\left(q, x_{n+1}\right)\right\}$ is bounded from Lemma [3.D, we proceed by the following two cases.

Case 1: Suppose $\left\{D_{f}\left(q, x_{n}\right)\right\}$ is monotone decreasing sequence, then $\lim _{n \rightarrow \infty} D_{f}\left(q, x_{n}\right)$ exists. Therefore, using this and the conditions on $\alpha_{n}, \gamma_{n}, \eta_{n}, \delta_{n}$, it follows from (333), (34) and (35) that

$$
\begin{align*}
\lim _{n \rightarrow \infty} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(w_{n}\right)\right\|\right) & =0, \tag{37}\\
\lim _{n \rightarrow \infty} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(x_{n}\right)\right\|\right) & =0, \tag{38}\\
\lim _{n \rightarrow \infty} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(T_{s}^{\lambda} w_{n}\right)\right\|\right) & =0 . \tag{39}
\end{align*}
$$

Hence, by the property of ρ_{r}^{*}, we obtain from (37), (38) and (39) that

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(w_{n}\right)\right\|=0, \lim _{n \rightarrow \infty}\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(x_{n}\right)\right\|=0 \text { and } \tag{40}\\
& \lim _{n \rightarrow \infty}\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(T_{s}^{\lambda} w_{n}\right)\right\|=\lim _{n \rightarrow \infty}\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(\operatorname{Res}_{\lambda B_{s}}^{f} \circ A_{s}^{f}\left(w_{n}\right)\right)\right\|=0 .
\end{align*}
$$

As ∇f^{*} is norm-to-norm uniformly continuous on bounded subset of E^{*}, we have from (4II) that

$$
\left\{\begin{array}{l}
(i) \lim _{n \rightarrow \infty}\left\|\bar{y}_{n}-w_{n}\right\|=0 \tag{41}\\
\text { (ii) } \lim _{n \rightarrow \infty}\left\|\bar{y}_{n}-x_{n}\right\|=0, \\
(i i i) \lim _{n \rightarrow \infty}\left\|\bar{y}_{n}-T_{s}^{\lambda} w_{n}\right\|=\lim _{n \rightarrow \infty}\left\|\bar{y}_{n}-\operatorname{Res}_{\lambda B_{s}}^{f} \circ A_{s}^{f}\left(w_{n}\right)\right\|=0 .
\end{array}\right.
$$

Also,

$$
\left\|w_{n}-\operatorname{Res}_{\lambda B_{s}}^{f} \circ A_{s}^{f}\left(w_{n}\right)\right\| \leqslant\left\|w_{n}-\bar{y}_{n}\right\|+\left\|\bar{y}_{n}-\operatorname{Res}_{\lambda B_{s}}^{f} \circ A_{s}^{f}\left(w_{n}\right)\right\|
$$

from which it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|w_{n}-T_{s}^{\lambda} w_{n}\right\|=0, \forall s \in\{1,2, \cdots, \bar{N}\} \tag{42}
\end{equation*}
$$

Now, let $k=\underset{1 \leqslant j \leqslant m}{\operatorname{Max}} k_{j}$. Then, by inequality (띠), we obtain

$$
\begin{aligned}
\left\langle\bar{y}_{n}-q, \nabla f\left(\bar{y}_{n}\right)-\nabla f\left(w_{n}\right)\right\rangle & =\left\langle\bar{y}_{n}-q, \nabla f\left(\bar{y}_{n}\right)-\beta_{n} \nabla f\left(\bar{y}_{n}\right)-\left(1-\beta_{n}\right) \nabla f\left(U_{j} \bar{y}_{n}\right)\right\rangle \\
& =\left\langle\bar{y}_{n}-q,\left(1-\beta_{n}\right) \nabla f\left(\bar{y}_{n}\right)-\left(1-\beta_{n}\right) \nabla f\left(U_{j} \bar{y}_{n}\right)\right\rangle \\
& =\left(1-\beta_{n}\right)\left\langle\bar{y}_{n}-q, \nabla f\left(\bar{y}_{n}\right)-\nabla f\left(U_{j} \bar{y}_{n}\right)\right\rangle \\
& \geqslant\left(1-\beta_{n}\right)(1-k) D_{f}\left(\bar{y}_{n}, U_{j} \bar{y}_{n}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
\left(1-\beta_{n}\right)(1-k) D_{f}\left(\bar{y}_{n}, U_{j} \bar{y}_{n}\right) & \leqslant\left\langle\bar{y}_{n}-q, \nabla f\left(\bar{y}_{n}\right)-\nabla f\left(w_{n}\right)\right\rangle \\
& \leqslant\left\|\bar{y}_{n}-q\right\|\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(w_{n}\right)\right\|
\end{aligned}
$$

and hence,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} D_{f}\left(\bar{y}_{n}, U_{j} \bar{y}_{n}\right)=0, \forall j \in\{1,2, \cdots, m\} . \tag{43}
\end{equation*}
$$

Since f is totally convex, we have that f is sequentially consistent. Therefore, it follows from (4.3) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\bar{y}_{n}-U_{j} \bar{y}_{n}\right\|=0, \forall j \in\{1,2, \cdots, m\} \tag{44}
\end{equation*}
$$

Since $\left\{\bar{y}_{n}\right\} \subseteq E$ is bounded and E is a reflexive Banach space, then there exists a subsequence $\left\{\bar{y}_{n_{l}}\right\}$ of $\left\{\bar{y}_{n}\right\}$ such that $\bar{y}_{n_{l}} \rightharpoonup p$ as $l \rightarrow \infty$. This together with (47I) and the fact that $\left(I-U_{j}\right)$ is demiclosed at zero give $p \in \cap_{j=1}^{m} F\left(U_{j}\right)$. From (田)(i), we obtain $w_{n_{l}} \rightharpoonup p$ as $l \rightarrow \infty$ which also together with ([72) give $p \in F\left(T_{s}^{\lambda} w_{n}\right)$) for each $s \in$ $\{1,2, \cdots, \bar{N}\}$ and hence,

$$
p \in\left(\cap_{j=1}^{m} F\left(U_{j}\right)\right) \cap\left(\cap_{s=1}^{\bar{N}} F\left(T_{s}^{\lambda} w_{n}\right)\right) .
$$

Next, we show that $p \in \cap_{i=1}^{N} E P\left(h_{i}, p\right)$. From Lemma B.D and the three point identity, we have

$$
\begin{aligned}
\left(1-c_{1, i} \lambda_{n}\right) D_{f}\left(z_{n}^{i}, x_{n}\right) & \leqslant D_{f}\left(q, x_{n}\right)-D_{f}\left(q, \bar{y}_{n}\right) \\
& \leqslant D_{f}\left(q, x_{n}\right)-D_{f}\left(q, \bar{y}_{n}\right)+D_{f}\left(x_{n}, \bar{y}_{n}\right) \\
& =\left\langle q-x_{n}, \nabla f\left(\bar{y}_{n}\right)-\nabla f\left(x_{n}\right)\right\rangle \\
& \leqslant\left\|q-x_{n}\right\|\left\|\nabla f\left(\bar{y}_{n}\right)-\nabla f\left(x_{n}\right)\right\|
\end{aligned}
$$

from which we obtain using (A3) and ((10) $^{(1)}$ that $\lim _{n \rightarrow \infty} D_{f}\left(z_{n}^{i}, x_{n}\right)=0$ and hence,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}^{i}-x_{n}\right\|=0 \tag{45}
\end{equation*}
$$

On the other hand, since $z_{n}^{i}=\underset{y \in C}{\operatorname{argmin}}\left\{\lambda_{n} h_{i}\left(x_{n}, y\right)+D_{f}\left(y, x_{n}\right)\right\}$ for each $i=1,2,3, \cdots, N$, we have from Lemma [2.1], Lemma [2.2 and assumption $C 4$ that

$$
0 \in \lambda_{n} \partial_{2} h_{i}\left(x_{n}, z_{n}^{i}\right)+\nabla_{1} D_{f}\left(z_{n}^{i}, x_{n}\right)+N_{C}\left(z_{n}^{i}\right) .
$$

Therefore, for each $i \in\{1,2, \cdots, N\}$, there exist $\sigma_{n}^{i} \in \partial_{2} h_{i}\left(x_{n}, z_{n}^{i}\right)$ and $\bar{\sigma}_{n}^{i} \in N_{C}\left(z_{n}^{i}\right)$ such that

$$
\begin{equation*}
\lambda_{n} \sigma_{n}^{i}+\nabla f\left(z_{n}^{i}\right)-\nabla f\left(x_{n}\right)+\bar{\sigma}_{n}^{i}=0 \tag{46}
\end{equation*}
$$

Also, $\bar{\sigma}_{n}^{i} \in N_{C}\left(z_{n}^{i}\right)$ implies $\left\langle w-z_{n}^{i}, \bar{\sigma}_{n}^{i}\right\rangle \leqslant 0 \forall w \in C$. Combining this with (461), we obtain $\left\langle w-z_{n}^{i},-\lambda_{n} \sigma_{n}^{i}-\nabla f\left(z_{n}^{i}\right)+\nabla f\left(x_{n}\right)\right\rangle \leqslant 0$ from which we get

$$
\begin{equation*}
\lambda_{n}\left\langle w-z_{n}^{i}, \sigma_{n}^{i}\right\rangle \geqslant\left\langle z_{n}^{i}-w, \nabla f\left(z_{n}^{i}\right)-\nabla f\left(x_{n}\right)\right\rangle . \tag{47}
\end{equation*}
$$

Also, since $\sigma_{n}^{i} \in \partial_{2} h_{i}\left(x_{n}, z_{n}^{i}\right)$, we have

$$
\begin{equation*}
h_{i}\left(x_{n}, w\right)-h_{i}\left(x_{n}, z_{n}^{i}\right) \geqslant\left\langle w-z_{n}^{i}, \sigma_{n}^{i}\right\rangle . \tag{48}
\end{equation*}
$$

From (47) and (48), it follows that

$$
\lambda_{n}\left(h_{i}\left(x_{n}, w\right)-h_{i}\left(x_{n}, z_{n}^{i}\right)\right) \geqslant\left\langle z_{n}^{i}-w, \nabla f\left(z_{n}^{i}\right)-\nabla f\left(x_{n}\right)\right\rangle, \forall w \in C .
$$

From the above inequality, we obtain

$$
\begin{equation*}
\left(h_{i}\left(x_{n_{l}}, w\right)-h_{i}\left(x_{n_{l}}, z_{n_{l}}^{i}\right)\right) \geqslant \frac{1}{\lambda_{n_{l}}}\left\langle z_{n_{l}}^{i}-w, \nabla f\left(z_{n_{l}}^{i}\right)-\nabla f\left(x_{n_{l}}\right)\right\rangle, \quad \forall w \in C . \tag{49}
\end{equation*}
$$

From (45)) and the fact that $x_{n_{l}} \rightharpoonup p$ as $l \rightarrow \infty$, we get that $z_{n_{l}}^{i} \rightharpoonup p$ as $l \rightarrow \infty$. Allowing $l \rightarrow \infty$ in ($4 \mathbb{T}$), we get by ($C 3$) and (A3) that $h_{i}(p, w) \geqslant 0, \forall w \in C$ and so

$$
p \in \cap_{i=1}^{N} E P\left(h_{i}, C\right) .
$$

Hence, $p \in \Omega$.
Claim 1: $\limsup _{n \rightarrow \infty}\left\langle t_{n}-q, \nabla f(v)-\nabla f(q)\right\rangle \leqslant 0$. Let $\left\{x_{n_{k}}\right\}$ be a subsequence of $\left\{x_{n}\right\}$ such that

$$
\limsup _{n \rightarrow \infty}\left\langle x_{n}-q, \nabla f(v)-\nabla f(q)\right\rangle=\lim _{k \rightarrow \infty}\left\langle x_{n_{k}}-q, \nabla f(v)-\nabla f(q)\right\rangle .
$$

Since $\left\{x_{n_{k}}\right\}$ is a bounded sequence we have that there exist $\left\{x_{n_{k_{j}}}\right\}$, a subsequence of $\left\{x_{n_{k}}\right\}$, such that $x_{n_{k_{j}}} \rightharpoonup \hat{v} \in \Omega$ as $j \rightarrow \infty$. Assume w.l.o.g. $x_{n_{k}} \rightarrow \hat{v}$ as $k \rightarrow \infty$. Then it follows from Lemma [2.T2 (i) that

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\langle x_{n}-q, \nabla f(v)-\nabla f(q)\right\rangle & =\lim _{k \rightarrow \infty}\left\langle x_{n_{k}}-q, \nabla f(v)-\nabla f(q)\right\rangle \\
& =\langle\hat{v}-q, \nabla f(v)-\nabla f(q)\rangle \leqslant 0 . \tag{50}
\end{align*}
$$

On the other hand, from Algorithm ([50), we have

$$
\begin{aligned}
\| \nabla f\left(u_{n}\right) & -\nabla f\left(\bar{y}_{n}\right)\left\|\leqslant \alpha_{n}\right\| \nabla f\left(\bar{y}_{n}\right)-\nabla f\left(\bar{y}_{n}\right)\left\|+\gamma_{n}\right\| \nabla f\left(x_{n}\right)-\nabla f\left(\bar{y}_{n}\right) \| \\
& +\eta_{n}\left\|\nabla f\left(w_{n}\right)-\nabla f\left(\bar{y}_{n}\right)\right\|+\sum_{s=1}^{\bar{N}} \delta_{n, s} \| \nabla f\left(\operatorname{Res}_{B_{s}}^{f} \circ A_{s}^{f}\left(w_{n)}\right)-\nabla f\left(\bar{y}_{n}\right) \|\right.
\end{aligned}
$$

which by ([\#I) implies that $\lim _{n \rightarrow \infty}\left\|\nabla f\left(u_{n}\right)-\nabla f\left(\bar{y}_{n}\right)\right\|=0$. Since ∇f^{*} is norm to norm uniformly continuous on bounded subset of E^{*}, we get that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-\bar{y}_{n}\right\|=0 . \tag{51}
\end{equation*}
$$

By definition of t_{n}, we have

$$
D_{f}\left(u_{n}, t_{n}\right) \leqslant \mu_{n} D_{f}\left(u_{n}, v\right)+\left(1-\mu_{n}\right) D_{f}\left(u_{n}, u_{n}\right)
$$

from which it follows by $(A 1)$ that $\lim _{n \rightarrow \infty} D_{f}\left(u_{n}, t_{n}\right)=0$. Since f is totally convex on bounded subset of E, it implies f is sequentially consistent and hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-t_{n}\right\|=0 \tag{52}
\end{equation*}
$$

Also, $\left\|t_{n}-\bar{y}_{n}\right\| \leqslant\left\|t_{n}-u_{n}\right\|+\left\|u_{n}-\bar{y}_{n}\right\|$. Thus, by (51) and (521), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|t_{n}-\bar{y}_{n}\right\|=0 \tag{53}
\end{equation*}
$$

Similarly, $\left\|t_{n}-x_{n}\right\| \leqslant\left\|t_{n}-\bar{y}_{n}\right\|+\left\|\bar{y}_{n}-x_{n}\right\|$, which implies by (455) and (533) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|t_{n}-x_{n}\right\|=0 \tag{54}
\end{equation*}
$$

From (50) and (54), we obtain

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle t_{n}-q, \nabla f(v)-\nabla f(q)\right\rangle=\underset{n \rightarrow \infty}{\limsup }\left\langle x_{n}-q, \nabla f(v)-\nabla f(q)\right\rangle \leqslant 0, \tag{55}
\end{equation*}
$$

proving claim 1. Thus, using (36) and (55) we conclude from Lemma 2.19 that $x_{n} \rightarrow q$ as $n \rightarrow \infty$, completing the proof of Case 1 .

Case 2: Suppose $\left\{D_{f}\left(q, x_{n}\right)\right\}$ is not monotone decreasing sequence, then there exists a subsequence $\left\{D_{f}\left(q, x_{n_{j}}\right)\right\}$ of $\left\{D_{f}\left(q, x_{n}\right)\right\}$ such that $D_{f}\left(q, x_{n_{j}}\right) \leqslant D_{f}\left(q, x_{n_{j+1}}\right) \forall j \geqslant 1$. Also, for a large N satisfying $k \geqslant N$, define $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
\alpha(k)=\max \left\{j \leqslant k: D_{f}\left(q, x_{j}\right) \leqslant D_{f}\left(q, x_{j+1}\right)\right\} .
$$

Then, by Lemma [2.]. $\{\alpha(k)\}$ is nondecreasing sequence satisfying $\alpha(k) \rightarrow \infty$ as $k \rightarrow \infty$ and

$$
D_{f}\left(q, x_{\alpha(k)}\right) \leqslant D_{f}\left(q, x_{\alpha(k)+1}\right) \text { and } D_{f}\left(q, x_{k}\right) \leqslant D_{f}\left(q, x_{\alpha(k)+1}\right), \forall k \in N
$$

This together with (331), (34), (35)) give as in Case 1 that

$$
\begin{align*}
\alpha_{\alpha(k)} \eta_{\alpha(k)} \rho_{r}^{*}\left(\| \nabla f\left(\bar{y}_{\alpha(k)}\right)\right. & \left.-\nabla f\left(w_{\alpha(k)}\right) \|\right) \leqslant-u_{\alpha(k)}\left[D_{f}\left(q, x_{\alpha(k)}\right)-D_{f}(q, v)\right. \tag{56}\\
& \left.-\alpha_{\alpha(k)} \eta_{\alpha(k)} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{\alpha(k)}\right)-\nabla f\left(w_{\alpha(k)}\right)\right\|\right)\right]
\end{align*}
$$

and

$$
\begin{align*}
\alpha_{\alpha(k)} \gamma_{\alpha(k)} \rho_{r}^{*}\left(\| \nabla f\left(\bar{y}_{\alpha(k)}\right)\right. & \left.-\nabla f\left(x_{\alpha(k)}\right) \|\right) \leqslant-u_{\alpha(k)}\left[D_{f}\left(q, x_{\alpha(k)}\right)-D_{f}(q, v)\right. \tag{57}\\
& \left.-\alpha_{\alpha(k)} \gamma_{\alpha(k)} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{\alpha(k)}\right)-\nabla f\left(x_{\alpha(k)}\right)\right\|\right)\right]
\end{align*}
$$

and

$$
\begin{align*}
& \alpha_{\alpha(k)} \delta_{\alpha(k)} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{\alpha(k)}\right)-\nabla f\left(T_{s}^{\lambda} w_{\alpha(k)}\right)\right\|\right) \leqslant-u_{\alpha(k)}\left[D_{f}\left(q, x_{\alpha(k)}\right)\right. \tag{58}\\
& \left.\quad-D_{f}(q, v)-\alpha_{\alpha(k)} \delta_{\alpha(k)} \rho_{r}^{*}\left(\left\|\nabla f\left(\bar{y}_{\alpha(k)}\right)-\nabla f\left(T_{s}^{\lambda} w_{\alpha(k)}\right)\right\|\right)\right],
\end{align*}
$$

respectively.

Utilizing the property of ρ_{r}^{*}, conditions (A1), (A2) and the fact that ∇f^{*} is norm-tonorm uniformly continuous on bounded subset of E^{*} we obtain in a similar way as in Case 1 that

$$
\lim _{k \rightarrow \infty}\left\|\bar{y}_{\alpha(k)}-w_{\alpha(k)}\right\|=0, \lim _{k \rightarrow \infty}\left\|\bar{y}_{\alpha(k)}-x_{\alpha(k)}\right\|=0, \text { and } \lim _{k \rightarrow \infty}\left\|\bar{y}_{\alpha(k)}-T_{s}^{\lambda} w_{\alpha(k)}\right\|=0 .
$$

We also get by the same argument as in Case 1 that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\langle t_{\alpha(k)}-q, \nabla f(v)-\nabla f(q)\right\rangle \leqslant 0 \tag{59}
\end{equation*}
$$

Thus, from (36), we get

$$
\begin{equation*}
D_{f}\left(q, x_{\alpha(k)+1}\right) \leqslant\left(1-\mu_{\alpha(k)}\right) D_{f}\left(q, x_{\alpha(k)}\right)+\mu_{\alpha(k)}\left\langle t_{\alpha(k)}-q, \nabla f(v)-\nabla f(q)\right\rangle . \tag{60}
\end{equation*}
$$

Since $D_{f}\left(x_{\alpha(k)}, q\right) \leqslant D_{f}\left(x_{\alpha(k)+1}, q\right)$, we obtain from ((GII) that

$$
D_{f}\left(q, x_{\alpha(k)}\right) \leqslant\left\langle t_{\alpha(k)}-q, \nabla f(v)-\nabla f(q)\right\rangle .
$$

This together with (59) give

$$
\begin{equation*}
\lim _{k \rightarrow \infty} D_{f}\left(q, x_{\alpha(k)}\right)=0 \tag{61}
\end{equation*}
$$

Furthermore, since $D_{f}\left(q, x_{k}\right) \leqslant D_{f}\left(q, x_{\alpha(k)+1}\right)$ for all $k \in \mathbb{N}$, it follows from (G]) that $\lim _{k \rightarrow \infty} D_{f}\left(q, x_{k}\right)=0$, which complete the proof of Case 2 .

It is therefore concluded from the two cases, Case 1 and Case 2, that $x_{n} \rightarrow q$ as $n \rightarrow \infty$. This completes the proof.

As a consequences to our results we have from the following under-listed setting that:
(i) Setting in our scheme ([IV) for each $i, h_{i}(z, y)=0 \forall z \in E, U_{j}=I$ for each j, $\gamma_{n}+\eta_{n}=\delta_{n, 0}$ and $\alpha_{n}=0$ we deduced the following result which is clearly the result of Tuyen, Promkan and Sunthrayuth [30].
Corollary 3.3 Let $E, f: E \rightarrow \mathbb{R}, A_{s}: E \rightarrow 2^{E^{*}}$ and $B_{s}: E \rightarrow 2^{E^{*}}$ be as in Theorem (3.2). Suppose $\Omega:=\left(\left(\cap_{s=1}^{\bar{N}}\left(A_{s}+B_{s}\right)^{-1}(0)\right) \neq \emptyset\right.$. Then the sequence $\left\{x_{n}\right\}$ generated by

$$
\left\{\begin{array}{l}
v, x_{1} \in E \text { chosen arbitrarily, } \tag{62}\\
u_{n}=\nabla f^{*}\left(\delta_{n, 0} \nabla f\left(x_{n}\right)+\sum_{s=1}^{\bar{N}} \delta_{n, s} \nabla f\left(\operatorname{Res}_{\lambda B_{s}}^{f} \circ A_{s}^{f}\left(x_{n}\right)\right)\right), \\
x_{n+1}=\nabla f^{*}\left(\mu_{n} \nabla f(v)+\left(1-\mu_{n}\right) \nabla f\left(u_{n}\right)\right), n \geqslant 1,
\end{array}\right.
$$

where $\left\{\delta_{n, s}\right\}$ and $\left\{\mu_{n}\right\}$ are sequences satisfying the following conditions:
$D 1:\left\{\mu_{n}\right\} \subset(0,1)$ such that $\lim _{n \rightarrow \infty} \mu_{n}=0$ and $\sum_{n=0}^{\infty} \mu_{n}=\infty$,
$D 2: 0<\gamma \leqslant \delta_{n, s} \leqslant \beta<1$ and $\delta_{n, 0}+\sum_{s=1}^{\bar{N}} \delta_{n, s}=1, \forall n \in \mathbb{N}$,
converges strongly to some $q \in \Omega$.
(ii) Setting $\bar{N}=m=1$ in theorem (ङ:2) we equally obtain the following result.

Corollary 3.4 Assume Theorem (B2) with $\bar{N}=m=1$ such that $\Omega:=\left(F\left(\operatorname{Res}_{\lambda B}^{f} \circ\right.\right.$ $\left.\left.A^{f}\right)\right) \cap(F(U)) \cap\left(\cap_{i=1}^{N} E P\left(h_{i}, C\right)\right) \neq \emptyset$. Then the sequence $\left\{x_{n}\right\}$ generated by the following
algorithm converges strongly to $q \in \Omega$.

$$
\left\{\begin{array}{l}
v, x_{1} \in E \text { chosen arbitrarily, } \tag{63}\\
z_{n}^{i}=\underset{y \in C}{\operatorname{argmin}}\left\{\lambda_{n} h_{i}\left(x_{n}, y\right)+D_{f}\left(y, x_{n}\right), i=1,2,3, \cdots, N\right\}, \\
y_{n}^{i}=\underset{y \in C}{\operatorname{argmin}}\left\{\lambda_{n} h_{i}\left(z_{n}^{i}, y\right)+D_{f}\left(y, x_{n}\right), i=1,2,3, \cdots, N\right\}, \\
i_{n}=\operatorname{argmax}\left\{D_{f}\left(y_{n}^{i}, x_{n}\right), i=1,2,3, \cdots, N\right\}, \bar{y}_{n}=y_{n}^{i_{n}}, \\
w_{n}=\nabla f^{*}\left(\beta_{n} \nabla f\left(\bar{y}_{n}\right)+\left(1-\beta_{n}\right) \nabla f\left(U \bar{y}_{n}\right)\right), \\
u_{n}=\nabla f^{*}\left(\alpha_{n} \nabla f\left(\bar{y}_{n}\right)+\gamma_{n} \nabla f\left(x_{n}\right)+\eta_{n} \nabla f\left(w_{n}\right)+\delta_{n} \nabla f\left(\operatorname{Res}_{\lambda B}^{f} \circ A^{f}\left(w_{n}\right)\right)\right), \\
x_{n+1}=\nabla f^{*}\left(\mu_{n} \nabla f(v)+\left(1-\mu_{n}\right) \nabla f\left(u_{n}\right)\right), n \geqslant 1,
\end{array}\right.
$$

where $0<a \leqslant \beta_{n} \leqslant k,\left\{\alpha_{n}\right\},\left\{\gamma_{n}\right\},\left\{\eta_{n}\right\},\left\{\delta_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\mu_{n}\right\}$ are sequences as in Theorem (3.2).
Remark 1 Theorem 5.9 improve some recent results in the literature. In particular, Theorem 3.1 of [30] is a corollary of Theorem [.2. as indicated above. Also Theorem [. 2 complement Theorem 3.1 of [I].

4. Example

Numerical example validating Theorem 3.2 Z of this paper is presented in this section.
Example 4.1 Let $E=\mathbb{R}$ with $\|\cdot\|=||,. C=\left[\begin{array}{ll}0 & 1\end{array}\right]$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{1}{3} x^{2}, \forall x \in \mathbb{R}$. Then C is a closed convex subset of a reflexive Banach space \mathbb{R} and that f satisfies all the requirement of Theorem [3.2. Following (\mathbb{B}), we have that $f^{*}\left(x^{*}\right):=\sup _{x \in \mathbb{R}}\left\{x^{*} x-f(x)\right\} \forall x^{*} \in \mathbb{R}$, thus $f^{*}(w)=\frac{2}{3} w^{2}$ and $\nabla f^{*}(w)=\frac{4}{3} w$. For $s \in\{1,2\}$, let $A_{s}, B_{s}: \mathbb{R} \rightarrow \mathbb{R}$ be defined respectively by $A_{s}(x)=2 x$ and $B_{s}(x)=\frac{1}{2} x \forall x \in \mathbb{R}$. Then, for each $s=1,2, A_{s}$ is maximal monotone and B_{s} is Bregman inverse strongly monotone with respective resolvent associated with f obtained as follows:

$$
\begin{aligned}
z=\operatorname{Res}_{\lambda A_{1}}^{f}(x) & \Leftrightarrow z=\left(\nabla f+\lambda A_{1}\right)^{-1} \circ \nabla f(x) \\
& \Leftrightarrow\left(\nabla f+\lambda A_{1}\right) z=\nabla f(x) \\
& \Leftrightarrow 2 \lambda z=\nabla f(x)-\nabla f(z) \\
& \Leftrightarrow z=\frac{2 x}{6 \lambda+2}
\end{aligned}
$$

for each $x \in \mathbb{R}$; that is, $\operatorname{Res}_{\lambda A_{1}}^{f}(x)=\frac{2 x}{6 \lambda+2}$, which is the resolvent of A_{1}. Also,

$$
\begin{aligned}
\hat{z}=B_{1}^{f}(x) & \Leftrightarrow \hat{z}=\left(\nabla f^{*} \circ\left(\nabla f-B_{1}\right)\right) x \\
& \Leftrightarrow \hat{z}=\nabla f^{*}\left(\left(\nabla f-B_{1}\right)(x)\right) \\
& \Leftrightarrow \hat{z}=\nabla f^{*}\left(\nabla f(x)-B_{1}(x)\right) \\
& \Leftrightarrow \hat{z}=\nabla f^{*}\left(\frac{1}{6} x\right) \\
& \Leftrightarrow \hat{z}=\frac{2}{9} x ;
\end{aligned}
$$

that is, $B_{1}^{f}(x)=\frac{2}{9} x$, which is the resolvent of B_{1}. Thus,

$$
\operatorname{Res}_{\lambda A_{1}}^{f} \circ B_{1}^{f}(x)=\operatorname{Res}_{\lambda A_{1}}^{f}\left(\frac{2}{9} x\right)=\frac{4 x}{54 \lambda+18} .
$$

Similarly,

$$
\operatorname{Res}_{\lambda A_{2}}^{f} \circ B_{2}^{f}(x)=\operatorname{Res}_{\lambda A_{2}}^{f}\left(\frac{2}{9} x\right)=\frac{4 x}{54 \lambda+18} .
$$

Next, for $i=1,2$, define $h_{i}: C \times C \rightarrow \mathbb{R}$ by $h_{i}(x, y)=2 y^{2}+12 x y-14 x^{2}$. It is then easy to verify that $0 \in \cap_{i=1}^{2} E P\left(h_{i}, C\right)$ and that each h_{i} 's satisfy assumptions ($C 1$), (C3) and (C5). In addition, h_{i} 's satisfy assumptions ($C 2$) and ($C 4$) with $c_{1}=c_{2}=6$ and $\partial_{2} h_{i}(x, y)=4 y+12 x$ respectively. Indeed, for $z \in C, x, y \in \operatorname{int}(\operatorname{domf})$ and $D_{f}(x, y)=$ $(x-y)^{2}$, we have

$$
\begin{aligned}
h_{i}(x, y)+h_{i}(y, z) & =2 y^{2}+12 x y-14 x^{2}+2 z^{2}+12 y z-14 y^{2} \\
& =2 z^{2}+12 x z-14 x^{2}+12 x y+12 y z-12 x z-12 y^{2} \\
& =h_{i}(x, y)-6 D_{f}(y, x)-6 D_{f}(z, y)+6 D_{f}(z, x) \\
& \geqslant h_{i}(x, y)-6 D_{f}(y, x)-6 D_{f}(z, y) .
\end{aligned}
$$

Let $U_{j}: C \rightarrow C$ be define by $U_{j}(x)=\frac{x}{2}$ for all $x \in C$ and $j=1,2$. Obviously, $0 \in \cap_{j=1}^{2} F\left(U_{j}\right)$ and U_{j} is Bregman demigeneralized maps for each $j \in\{1,2\}$. Now,

$$
\Omega:=\left(\cap_{s=1}^{2} F\left(\operatorname{Res}_{\lambda A_{s}}^{f} \circ B_{s}^{f}\right)\right) \cap\left(\cap_{j=1}^{2} F\left(U_{j}\right)\right) \cap\left(\cap_{i=1}^{2} E P\left(h_{i}, C\right)\right)=\{0\} \neq \emptyset .
$$

Thus, our Algorithm ([5]) takes the form

$$
\left\{\begin{array}{l}
z_{n}^{i}=\frac{1-6 \lambda_{n}}{1+2 x_{n}}, i=1,2 \tag{64}\\
y_{n}^{i}=\frac{x_{n}-6 \lambda_{n}}{1+2 \lambda_{n}} z_{n}^{i}, i=1,2 \\
\bar{y}_{n}=y_{n}^{i}, i=1,2 \\
w_{n}=\left(\frac{4}{9}+\frac{2}{9 n}\right) \bar{y}_{n} \\
u_{n}=\frac{8}{45}\left(x_{n}+\bar{y}_{n}+\left(1+\frac{8}{27(3 \lambda+1)}\right) w_{n}\right) \\
x_{n+1}=\frac{4}{9(5 n+2)} v+\frac{40 n+12}{9(5 n+2)} u_{n}, n \in \mathbb{N}
\end{array}\right.
$$

for $\mu_{n}=\frac{1}{2(5 n+2)}, \alpha_{n}=\gamma_{n}=\eta_{n}=\delta_{n, 1}=\delta_{n, 2}=\frac{1}{5}$ and $\beta_{n}=\frac{1}{2 n}$. Consider $\lambda_{n}=\frac{1}{n}$ and let $\left\{x_{n}\right\}$ be a sequence defined by Algorithm (647), then $x_{n} \rightarrow 0 \in \Omega=\{0\}$ as $n \rightarrow \infty$ under the following cases.

Case I: Set $x_{1}=-7.4, v=-7.0$ and $\lambda=100$.
Case II: Set $x_{1}=0.85, v=0.25$ and $\lambda=0.01$.
R2014a MATLAB version is utilized to obtain the graphs of the sequence $\left\{x_{n}\right\}$ against number of iterations for different given initial values as indicated above.

Figure 1. Case I and Case II graphs of a sequence $\left\{x_{n}\right\}$ generated by Algorithm (64) versus number of iterations.

References

[1] B. Ali, G. C. Ugwunnadi, M. S. Lawan, V. Darvish, Solution of generalized mixed equilibrium and common fixed point problems for Bregman demigeneralized mappings, J. Analysis. 31 (2023), 2203-2224.
[2] H. H. Bauschke, J. M. Borwein, P. L. Combettes, Bregman monotone optimization algorithms, SIAM J. Control. Optim. 42 (2003), 596-636.
[3] H. H. Bauschke, P. L. Combettes, J. M. Borwein, Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, Commun. Contemp. Math. 3 (2001), 615-647.
[4] E. Blum, W. Oettli, From optimazation and variational inequalities to equilibrium problems, Math. Stud. 63 (1994), 123-145.
[5] J. F. Bonnans, A. Shapiro, Perturbation Analysis of Optimization Problems, New York, Springer Verlag, 2000.
[6] L. M. Bregman, The relaxation method for finding the common point of convex set and its application to solution of convex programming, USSR Comput. Matt. \& Math. Phys. 7 (1967), 200-217.
[7] D. Butnariu, A. N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic Publishers, Dordrecht, 2000.
[8] D. Butnariu, G. Kassay, A proximal-projection method for finding zeros of set-valued operators, SIAM J. Control. Optim. 47 (2008), 2096-2136.
[9] D. Butnariu, E. Resmerita, Bregman distances, totally convex functions and a method of solving operator equations in Banach spaces, Abstr. Appl. Anal. (2006), 2006:084919.
[10] Y. Censor, A. Lent, An iterative row-action method interval convex programming, J. Optim. Theo. Appl. 34 (1981), 321-353.
[11] I. Cioranescu, Geometry of Banach Spaces: Duality mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990.
[12] G. Z. Eskandani, M. Raeisi, T. M. Rassias, A hybrid extragradient method for solving pseudomonotone equilibrium problems using Bregman distance, J. Fixed Point Theory Appl. 20 (2018), 20:132.
[13] S. Kamimura, W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory. 106 (2) (2000), 226-240.
[14] R. T. Kačurovskéri, Monotone operators and convex functionals, Uspekhi Mat. Nauk. 15 (1960), 213-215.
[15] F. Kohsaka, W. Takahashi, Proximal point algorithms with Bregman functions in Banach spaces, J. Nonlinear Convex Anal. 6 (2005), 505-523.
[16] P. L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal. 16 (1979), 964-979.
[17] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), 899-912.
[18] G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341-346.
[19] E. Naraghirad, J. C. Yao, Bregman weak reletively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl. (2013), 2013:141.
[20] F. U. Ogbuisi, I. O. Jolaoso, F. O. Isiogugu, A Halpern-type iteration method for Bregman nonspreading mappings and monotone operators in reflexive Banach space, J. Math. (2019), 2019: 8059135.
[21] G. B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl. 72 (20) (1979), 383-390.
[22] R. P. Phelps, Convex Functions, Monotone Operators, and Differentiability, Lecture notes in mathematics, Berlin, Springer, 1993.
[23] T. D. Quoc, L. D. Muu, V. H. Nguyen, Extragradient methods extended to equilibrium problems, Optimization. 57 (2008), 749-776.
[24] S. Reich, A Weak Convergence Theorem for the Alternating Method with Bregman Distances, CRC Press, Boca Raton, FL, USA, 1996.
[25] S. Reich, S. Sabach, A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal. 10 (2009), 471-485.
[26] S. Reich, S. Sabach, Existence and Approximation of Fixed Points of Bregman Firmly Nonexpansive Mappings in Reflexive Banach Spaces Springer, 2011.
[27] S. Reich, S. Sabach, Two strong convergence theorems for Bregman strongly nonexpansive operator in reflexive Banach space, Nonlinear Anal. 13 (2010), 122-135.
[28] S. Reich, S. Sabach, Two strong convergence theorems for proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim. 31 (2010), 22-44.
[29] J. V. Tiel, Convex Analysis: An Introductory Text, Wiley, New York, 1984.
[30] T. M. Tuyen, R. Promkam, P. Sunthrayuth, Strong convergence of a generalized forward-backward splitting method in reflexive Banach spaces, Optimization. 71 (6) (2022), 1483-1508.
[31] C. Zâlinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing, Singapore, 2002.
[32] E. H. Zarantonello, Solving Functional Equations by Contractive Averaging, Mathematical Research Center Technical Summary Report, University of Wisconsin, Madison, 160, 1960.

[^0]: *Corresponding author.
 E-mail address: bashiralik@yahoo.com (B. Ali); auwalumanladan@gmail.com (A. A. Alasan).

