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Abstract. In this paper, we consider a hypervector space (in the sense of Tallini) V over
a field K. We use the fundamental relation ε∗ over V , as the smallest equivalence relation
on V , to derived the fundamental vector space V/ε∗. In this regards, we prove that if V is
a (resp. quasi) topological hypervector space, then the fundamental vector space V/ε∗ with
the property that each open subset of it is a complete part, then its fundamental vector
space V/ε∗ is a topological vector space. Finally, we prove that for a topological vector space

(V,+, ·,K) and every subspace W of V , the hypervector space (V ,+, ◦,K) is a topological

hypervector space and we will prove V /ε∗ and V/W are homeomorphic, where V = V .

Keywords: Topological hypervector space, fundamental relation, complete part,
homeomorphic.
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1. Introduction and preliminaries

Marty [25] introduced the concept of hypergroups as a generalization of groups and
used it in different contexts like algebraic functions, rational fractions and non commu-
tative groups. In classical algebraic structures, the synthetic result of two elements is an
element, while in the hyper algebraic system, the synthetic result of two elements is a set
of elements, therefore it can be said that the notion of hyperstructures is a generalization
of classical algebraic structures, from this point of view. Hyperstructures have many ap-
plications to several sectors of both pure and applied sciences as geometry, graphs and
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hypergraphs, fuzzy sets and rough sets, automata, cryptography, codes, relation algebras,
C-algebras, artificial intelligence, probabilities, chemistry, physics, especially in atomic
physics and in harmonic analysis (for more detail, see [10, 11]). This subject has been
studied and extended by many researchers. A hypervector space is an special kind of hy-
perstructure, which is a generalization of classical vector spaces. There are various kinds
of hypervector spaces, but in this paper we deal with to hypervector spaces in the sense
of Tallini (for more details, see [31, 32]). The haypervector spaces and one combination
to fuzzy sets appeared by many authors (for examples see [2–8, 15]).

In theory of algebraic hyperstructures many equivalence relations has been studied by
many authors. First the fundamental relation on a hypergroup denoted by β∗ defined and
introduced by Koskas [24] and was mainly studied by Corsini [10] and Vougiouklis [33].
Later on, Freni [16] introduced a relation γ∗ on a hypergroup, as the smallest equivalence
relation on a hypergroup, such that its corresponding quotient structure is an abelain
group. Then, Davvaz et al. [1], Ameri et al. [8] and Hamidi et al. [18] introduced the
ν∗-relation, ξ∗-relation and τ∗-relation, respectively. In [33], Vougiouklis introduced the
fundamental relation ε∗ on Hv-vector space (as a general class of hypervector spaces) and
in [7], Ameri et al. used the fundamental relation ε∗ on a given hypervector space V over
a classical field K (in the sense of Tallini) to study the relationship between dimension
of V over K (dimV ) and the (dimV/ε∗) (for more detail, see [7]).

The notion of a topological (transposition) hypergroup was introduced and studied
by Ameri [2], the notions of a (resp. pseudo, strong pseudo) topological (transposition)
hypergroup was introduced and some basic properties of such topological hypergroups
was studied. Later on, many researchers has been worked in this field (for more details,
see [9, 13, 14, 17, 19–22, 26–30, 34]).

As it is well known a topological hypervector space is a generalization of a topological
vector space. In this paper we follow [2], and use the upper topology over P ∗(V ) (the
family of all nonempty subsets of V ) and introduce the topological hypervector spaces
with respect to this topology. Also, we compare some different properties between a
topological hypervector space to a classical topological vector space. In particular, we
prove if in a topological hypervector space (V,+, ◦,K, T ) every open subset is a complete
part, then quotient space V/ε∗, is a topological vector space. Finally, we consider a
topological vector space (V,+, ·,K, T ) and a subspace W of V , to construct a topological
hypervector space (V ,+, ◦,K, T ), and prove V /ε∗ and V/W are homeomorphic.

We review some definitions and results from [33], which we need in what follows. A
topological group is a group G which is also a topological space such that the multipli-
cation map (g, h) → gh from G × G to G, and the inverse map g → −g from G to G,
are both continuous. Similarly, we can define topological rings and topological fields. A
topological vector space is a vector space X over a topological field K (most often the
real or complex numbers with their standard topologies) that is endowed with a topol-
ogy such that vector addition + : X ×X → X and scalar multiplication. : K ×X → X
are continuous functions with respect to product topologies on X ×X, K ×X and X,
respectively, for then the mapping x 7→ −x = (−1)x, is continuous and the topology of
X is compatible with its additive group structure.

Let G be a nonempty set and P ∗(G) be the family of all nonempty subsets of G
and n ∈ N. Every functions ·i : G × G −→ P ∗(G), where i ∈ {1, 2, . . . , n} are called
hyperoperations and for all x, y of G, ·i(x, y) is called the hyperproduct of x, y. An
algebraic system (G, ·1, ·2, . . . , ·n) is called a hyperstructure and binary structure (G, ·)
endowed with only hyperoperation is called a hypergroupoid. For every two nonempty
subsets A and B of G,A ·B means

∪
a∈A,b∈B a · b.
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Definition 1.1 [31] Let K be a field and (V,+) be an abelian group. A hypervector
space over K is a quadruple (V,+, ◦,K), where “ ◦” is a mapping ◦ : K × V → P ∗(V )
such that for all a, b ∈ K and x, y ∈ V the following conditions hold:

(H1) a ◦ (x+ y) ⊆ a ◦ x+ a ◦ y,
(H2) (a+ b) ◦ x ⊆ a ◦ x+ b ◦ x,
(H3) a ◦ (b ◦ x) = (ab) ◦ x,
(H4) a ◦ (−x) = (−a) ◦ x = −(a ◦ x),
(H5) x ∈ 1 ◦ x,

where for all A,B ∈ P ∗(V ), A+B = {a+ b | a ∈ A, b ∈ B}.
If in (H1) the equality holds, the hypervector space is called strongly right distributive.

If in (H2) the equality holds, the hypervector space is called strongly left distributive.
We will call a hypervector space is a strongly distributive hypervector space if it is both
strongly left and strongly right distributive.

Every classical vector space over the field K is a strongly distributive hypervector
space over K.

A nonempty subset W of V is called a subhyperspace if W is itself a hypervector space
with the external hyperoperation on V , i.e. for all a ∈ K and x, y ∈ W,x − y ∈ Wand
a ◦ x ⊆ W . Let Ω = 0 × 0V where 0V is the zero of (V,+). If V is either strongly
right distributive, or left, then Ω is a subgroup of (V,+). A strongly right distributive
hypervector space is strongly left distributive.

Lemma 1.2 Let X and Y be topological spaces and f : X → Y . Then the following are
equivalent:

(i) f is continuous;
(ii) for all open subset U of Y, f−1(U) is open in X;
(iii) for all x ∈ X and all open subset V of X containig f(x), thetre exists an open subset

U of X containig x such that f(U) ⊆ V .

Lemma 1.3 [2] Let (X, T ) be a topological space. Then the family B consisting of all
SU = {W ∈ P ∗(X) : W ⊆ U, U ∈ T } is a base for a topology on P ∗(X). This topology
is denoted by T ∗.

Lemma 1.4 [2, 12] Let (X, ◦) be a hypergroupoid and T be a topology on X. Then the
following assertions are equivalent:

(i) for any U ∈ T , the set {(x, y) ∈ X ×X : x ◦ y ⊆ U} is open in X ×X;
(ii) for every x, y ∈ X and U ∈ T such that x ◦ y ⊆ U , there exist Ux, Uy ∈ T containing

x, y respectively, such that Ux ◦ Uy ⊆ U ;
(iii) for every x, y ∈ X and U ∈ T such that x ◦ y ⊆ U , there exist Ux, Uy ∈ T containing

x, y respectively, such that a ◦ b ⊆ U for any a ∈ Ux and b ∈ Uy.

Let (V,+, ◦,K) be hypervector space over a topological field K and T be a topology
on V . In the following we use the topology T ∗ on P ∗(V ) and the product topology on
V × V .

2. Topological hypervector spaces

In this section, we introduce topological hypervector spaces as a generalization of
topological vector spaces and study some of their properties and make a comparison
between them.
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Definition 2.1 Let (V,+, ◦,K) be a hypervector space over a topological filed K and
(V, T ) be a topological space. Then (V,+, ◦,K, T ) is said to be a topological hypervector
space (thvs) if the operations + : V × V → V, (x, y) 7→ x+ y, i : V → V, x 7→ −x and
the hyperoperation ◦ : K × V → P ∗(V ), (a, x) 7→ a ◦ x are continuous.

Example 2.2 Every topological vector space (V,+, ·,K, T ) with hyperoperation a◦x =
{a · x} is a topological hypervector space over K.

Example 2.3 Evrey hypervector space (V,+, ◦,K) with trivial topology T is a topo-
logical hypervector space. If we have T = {∅, V }, then T ∗ = {∅, SV } = {∅, P ∗(V )}.

Example 2.4 Let K = Z2 and V = Z2. Then (V,+, ◦,K) is a hypervector space as
follows:

◦ 0 1
0 {0, 1} {0, 1}
1 {0, 1} {0, 1}

Let T = {∅, {0}, {1}, V } be a toplogy on V and on K. We have

T ∗ = {∅, {{0}}, {{1}}, {{0}, {1}}, P ∗(V )}.

It is clear that V is a topological hypervector space.

Example 2.5 By cosidering the external hyperoperation

◦ : R× R2 → P ∗(R2), a ◦ (x, y) = a · x× R,

(R2,+, ◦,R) is a strongly distributive hypervector space. The family B = {(x, y) : a <
x < b, y ∈ R} is a base for a topology on R2 therefore, (R2,+, ◦,R, T ) is a topological
hypervector space.

Example 2.6 Let ◦ : R×R → P ∗(R), a◦x = {a ·x,−a ·x} be a external hyperoperation
on R. Then (R,+, ◦,R) is a hypervector space, but it is neither the right distriutive
nor the left distributive. With standard topology on R, (R,+, ◦,R, T ) is a topological
hypervector space.

Example 2.7 Let ◦ : R×R → P ∗(R), a◦x = {a·x,−a·x, 0} be a external hyperoperation
on R. Then (R,+, ◦,R) is a hypervectorspace, but it is neither the right distributive nor
the left distributive. With standard topology on V = R and discrete topology on K = R,
V is a topological hypervector space.

Topological hypervector spaces are a generaliation of topological vector spaces but
some characteristics of topological vector spaces are not valid in topological hypervector
spaces. If V is a thvs, (V,+) is a topological group.

Lemma 2.8 Let V be a thvs. Then

• for fixed x ∈ V , the map y 7→ x+ y is a homeomorphism of V onto V ;
• if U is open and x ∈ V , then x + U is open; if U is open and A is any subset of V ,

then A+ U is open;
• for fixed a ∈ K, the map x 7→ a ◦ x is continuous, but not necessarily open. In

Example 2.6, U = (2, 3) is open and 2 ◦ (2, 3) = (−6,−4) ∪ (4, 6) is also open, but in
the Example2.7, U = (2, 3) is open and 2 ◦ (2, 3) = (−6,−4) ∪ {0} ∪ (4, 6) is not open
in R.
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The complete parts were introduced for the first time by Koskas [24]. Then, this concept
was studied by many authors. Let (V,+, ◦,K) be a hypervector space over K and A be
a nonempty subset of V. We say that A is a complete part of V if for nonzero natural
number n, for all a1, . . . , an of K, and for all x1, . . . , xn of V , the following implication
holds:

A ∩
n∑

i=1

ai ◦ xi 6= ∅ =⇒
n∑

i=1

ai ◦ xi ⊆ A.

Theorem 2.9 Let V be a thvs,A ⊆ V and U be an open subset of V , such that U is a
complete part of V . Then A ⊆ a−1 ◦ U if and only if a ◦A ⊆ U for all a ∈ K.

Proof. Suppose that A ⊆ a−1 ◦ U and x ∈ A. So x ∈ a−1 ◦ U , and there exists u ∈ U
such that x ∈ a−1 ◦ u thus, a ◦ x ⊆ a ◦ (a−1 ◦ u) = 1 ◦ u. We have u ∈ 1 ◦ u, u ∈ U , which
emplies that 1 ◦ u ⊆ U since U is complete part. Therefore a ◦ x ⊆ U .

Conversely, suppose that a ◦ A ⊆ U and a ∈ K. Then, we have A ⊆ a−1 ◦ (a ◦ A) ⊆
a−1 ◦ U . ■

Theorem 2.10 Let U be an open subset of a thvs, such that U is a complet part. Then

(i) a ◦ U is an open subset of V for every a ∈ K, a 6= 0;
(ii) for any subset A of K such that ∀a ∈ A, a 6= 0, A ◦ U is open.

Proof. (i) The map Pa : V → P ∗(V ), PA : x 7→ a ◦ x is continuous. For a 6= 0, we have

P−1
a−1(SU ) = {x ∈ V : a−1 ◦ x ⊆ U} = a ◦ U.

Thus, a ◦ U is open. (ii) Since the union of open subsets is open, therefore A ◦ U =∪
a∈A a ◦ U is open. ■

3. Topological fundamental vector spaces

In this section, the concept of a topological fundamental vector space derived of a
topological hypervector space is introduced. Let (V,+, ◦,K) be a hypervector space over
K. The fundamental relation ε∗ of V was introduced by T. Vougiouklis in [33] as the
smallest equivalence relation on Hv-vector space, a general class of hypervector spaces,
such that the quotient V/ε∗ is a vector space over K. In the following, we introduce
the fundamental relation on hypervector spaces in the sence of Tallini, and study the
relationship between V and V/ε∗ in the way of [7].

Let U be the set of all finite linear combinations of elements of V with coefficent in
K, that follows

U =

{
n∑

i=1

ai ◦ xi : ai ∈ K,xi ∈ V, n ∈ N

}
.

Now, consider the ε-relation over V by

xεy ⇐⇒ ∃u ∈ U : {x, y} ⊆ u, ∀x, y ∈ V.

Let ε∗ be the transitive closure of ε. We define addition operation and scalar multiplica-
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tion on V/ε∗ by

{
⊕ : V/ε∗ × V/ε∗ → V/ε∗

ε∗(x)⊕ ε∗(y) = {ε∗(t) : t ∈ ε∗(x) + ε∗(y)},

and {
� : K × V/ε∗ → V/ε∗

a� ε∗(x) = {ε∗(z) : z ∈ a ◦ ε∗(x)}.

Theorem 3.1 [7] Let (V,+, ◦,K) be a hypervector space over K. Then,

(i) ε∗(a ◦ x) = ε∗(y) for all y ∈ a ◦ x,∀a ∈ K,∀x ∈ V , where ε∗(a ◦ x) =
∪

b∈a◦x ε
∗(b).

(ii) ε∗(x)⊕ ε∗(y) = ε∗(x+ y).
(iii) ε∗(0) is the identity element of (V/ε∗,⊕).
(iv) (V/ε∗,⊕,�,K) is a vector space over K.

The vector space (V/ε∗,⊕,�,K) is called fundamental vector space of V.

Theorem 3.2 Let (V,+, ◦,K) be a hypervector space over K and (V/ε∗,⊕,�,K) be
the fundamental vector space of V . Then the canonical map π : V → V/ε∗ such that
π(x) = ε∗(x), is an epimorphism.

Proof. Let x, y ∈ V and a ∈ K, we see that π(x+ y) = π(x)⊕ π(y). Now we show that
π(a ◦ x) = a� π(x). We have π(a ◦ x) = ε∗(a ◦ x) = ε∗(y) for all y ∈ a ◦ x.
On the other hand, we have y ∈ a ◦ x, x ∈ ε∗(x) that implies y ∈ a ◦ ε∗(x) thus,
a� π(x) = a� ε∗(x) = {ε∗(z) : z ∈ a ◦ ε∗(x)} = ε∗(y). ■

Let X be a topological space and ∼ be any equivalence relation on X. The quotient
set of all equivalence classes is given by the X/ ∼=

{
[x] : x ∈ X

}
. We have the canonical

map or quotient map π : X → X/ ∼, x 7→ [x], and we define a topology on X/ ∼ by
setting that: U ⊆ X/ ∼ is open iff π−1(U) is open in X. Then it is easy to verify that:

• the canonical map π is continuous.

• the quotient topology on X/ ∼ is the finest topology on X/ ∼ s.t. π is continuous.

• the canonical map π is not neccessarily open or closed.

Theorem 3.3 Let (V,+, ◦,K) be a topological hypervector space over K, such that
every open subset of V is a complete part. Then the canonical map π : V → V/ε∗ is
open.

Proof. Let W be an open subset of V and x ∈ π−1(π(W )), we have π(x) ∈ π(W ) thus
there exists v ∈ W such that π(x) = π(v) and x ∈ ε∗(v). Hence, there exist a1, . . . , an ∈ K
and x1, . . . , xn ∈ V such that {x, v} ⊆

∑n
i=1 ai ◦ xi. Since W is open so there exists an

open subset U of V such that v ∈ U ⊆ W . Hence we have v ∈ U ∩
∑n

i=1 ai ◦ xi and U
is complete part so x ∈

∑n
i=1 ai ◦ xi ⊆ U ⊆ W . Thus, x ∈ U ⊆ π−1(π(W )). Therefore,

π(W ) is open in V/ε∗. ■

Theorem 3.4 Let (V,+, ◦,K, T ) be a topological hypervector space over K such that
every open subset of V is a complete part. Then, (V/ε∗,⊕,�, T ∗) is a topological vector
space over K, where T ∗ is the quotient topology on V/ε∗.
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Proof. By Theorem 3.1, (V/ε∗,⊕,�) is a vector space. We show that the mappings

⊕ : (π(x), π(y)(7→ π(x)⊕ π(y) and � : (a, π(x)) 7→ a� π(x)

are continuous, where ⊕ = ⊕ε∗ and � = �ε∗ .

(i) Let U be an open subset of V/ε∗ and x, y ∈ U , such that π(x)⊕ π(y) ∈ U . So we have
π(x+y) ∈ U or x+y ∈ π−1(U). Since π−1(U) is open in V and V is thvs, it follows that
there exist open subsets U1, U2 of V such that x ∈ U1, y ∈ U2 and U1 + U2 ⊆ π−1(U)
or π(U+U2) ⊆ U , thus π(U1)⊕ π(U2) ⊆ U .

(ii) Let U be an open subset in V/ε∗ and a ∈ K,x ∈ V such that a � π(x) ∈ U . There
exists z ∈ a ◦ π(x) and we have π(z) ∈ U so z ∈ π−1(U). Since a ◦ x ⊆ a ◦ π(x), so
a ◦ x ⊆ π−1(U). Thus there exixt open subsets U1 and U2 containing a and x from K
and V , respectively such that U1 ◦U2 ⊆ π−1(U) hence U1 � π(U2) ⊆ U . Since we have

π(U1 ◦ U2) = π(
∪
a∈U1

a ◦ U2) =
∪
a∈U1

π(a ◦ U2) =
∪
a∈U1

(a� π(U2)) = U1 � π(U2).

■

4. Homeomorphism

A topological vector space (tvs) is a vector space V over a topological field K equipped
with a topology such that the maps (x, y) 7→ x+y and (a, x) 7→ a ·x are continuous from
X ×X → X and K ×X → X, respectively.

Let X,Y be two vector space over K. A mapping f : X → Y is called homomorphism
if we have

f(x+ y) = f(x) + f(y), f(λx) = λf(x),∀x, y ∈ X, ∀λ ∈ K.

A bijective homomorphism between two vector spaces X and Y over K is called algebraic
isomorphism and we say that X and Y are algebraically isomorphic X ∼= Y. Let X and
Y be two tvs on K. A topological isomorphism (homeomorphism) from X to Y is a
algebraic isomorphism which is also continuous and open.

Let V be a tvs and W ⊆ V be a linear subspace of V . The quotient space V/W consists
of cosets x+W = [x] and the quotient map π : V → V/W is defined by π(x) = x+W .

In this section, we construct a topological hypervector space such as V using a classical
topological vector space V and its linear subspace W and prove that V /ε∗ and V/W are
homeomorphic.

Theorem 4.1 For a linear subspace W of a tvs V , the quotient map π : V → V/W is
a continuous and open map, when V/W is equipped with the quotient topology.

Proof. The mapping “π” is continuous by the definition of the quotient topology. Let
U be open in V . Then we have

π−1(π(U)) = U +W =
∪
v∈W

(U + v),

since U + v is open for any v ∈ W , hence π−1(π(U)) is open in V as a union of open
sets. Therefore π(U) is open in V/W . ■
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Theorem 4.2 [23] Let W be a linear subspace of a tvs V . Then the quotient space
V/W equipped with the quotient topology is a tvs.

Let (V,+, ·,K) be a classical vector space and W be a linear subspace of V and V = V.
Then (V ,+, ◦,K) is a strongly distributive hypervector space where

◦ : K × V → P ∗(V ), a ◦ x = a · x+W,

V is said to be the associated hypervector space concerning the vector space V.

Theorem 4.3 Let (V,+, ·,K) be a classical vector space and W be a linear subspace of
V. Then V /ε∗ ∼= V/W.

Proof. We define a mapping f : V /ε∗ → V/W by f(ε∗(x)) = x+W.

• the mapping f is well-defined. Let ε∗(x) = ε∗(y), it follows that xε∗y and we have
x ∈ 1 ◦ x = x+W, y ∈ 1 ◦ y = y +W , since the two sets x+W and y +W are equal
or disjoint subset of V/W , thus x+W = y +W and so f(ε∗(x)) = f(ε∗(y)).

• f is linear. Since,

f(ε∗(x) + ε∗(y)) = f(ε∗(x+ y)) = x+ y+W = x+W + y+W = f(ε∗(x)) + f(ε∗(y)).

and f(a � ε∗(x)) = f(ε∗(z)), z ∈ a ◦ ε∗(x), on the other hand, a · x ∈ 1 ◦ (a · x) =
a ◦ x ⊆ a ◦ ε∗(x) which implies that

f(ε∗(z)) = f(ε∗(a · x)) = a · x+W = a ◦ (x+W ) = a ◦ f(ε∗(x)).

• The mapping f is surjective. For one-to-one property of f , let ε∗(x) ∈ Ker(f). Then
f(ε∗(x)) = x + W = W and thus x ∈ W . Therefore, ε∗(W ) = ε∗(0) = 0V /ε∗ , which

implies that f is one-to-one.

Consequently f is an algebraic isomorphism. ■

Theorem 4.4 Let (V,+, ·,K, T ) be a tvs. Then (V ,+, ◦,K, T ) is a topological hyper-
vector space.

Proof. It is enough to show that the mapping ◦ : K × V → P ∗(V ), a ◦ x = a · x +W
is continuous. Let U be an open subset of V . the mapping “◦” is continuous if and only
if {(a, x) ∈ K × V : a ◦ x ⊆ U} is an open subset of K × V for all U ∈ T . We have
a◦x ⊆ U ⇒ a ·x+W ⊆ U . Since a ·x ∈ a ·x+W ⊆ U and the mapping “·” is continuous,
there exist U1 and U2 containing a and x respectively, such that U1 · U2 ⊆ U. ■

Theorem 4.5 Let (V,+, ·,K, T ) be a tvs and W be a linear subspace of V . Then V /ε∗

and V/W are topologically isomorphic.

Proof. By Theorem 4.3, the map

f : V /ε∗ → V/W, f(ε∗(x)) = x+W

is algebraic isomorphism. It is enough to show that f is contiuous and open. Suppose that
A is open in V/W . We show that π−1(f−1(A)) is open in V/W . Let x ∈ π−1(f−1(A)).
Then π(x) ∈ f−1(A) and so f(π(x)) ∈ A, thus x + W ∈ A. Since the canonical map
q : V → V/W is continuous, there exists an open subset Ux containing x of V such
that Ux ⊆ q−1(A). We show that Ux ⊆ π−1(f−1(A)). If t ∈ Ux, then t+W ∈ A, and so
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t ∈ π−1(f−1(A)). Therefore π−1(f−1(A)) is open in V , and f is continuous. Now suppose
that A is an open subset of V /ε∗. We show that f(A) is an open subset of V/W . Let
x+W ∈ f(A). Then ε∗(x) ∈ A. Since the canonical mapping π : V → V /ε∗ is continuous,
there exists an open subset Ux containing x of V such that Ux ⊆ π−1(A). We show that
{z +W : z ∈ Ux} ⊆ f(A). If z ∈ Ux, then z +W = f(ε∗(x)) ∈ f(A), thus f(A) is open
in V/W . Therefore f is open. ■

5. Conclusion

In this paper, the notion of topological hypervector spaces (in the sense of Tallini)
was introduced and some of the basic properties of these spaces were investigated, and
by useing the fundamental relation ε∗ on a hypervector space, a connection between
topological hypervector spaces and topological vector spaces was established. In fact,
by considering the notion of fundamental relation ε∗ on a hypervector space, its funda-
mental vector space, V/ε∗ has been constructed. In particular it was proved that if in a
topological hypervector space V each open subset is a complete part, then the canonical
map π : V → V/ε∗ is open and the fundamental vector space V/ε∗ is a topological vector
space.

Also,for a topological vector space (V,+, ·,K, T ) on topological field K and its subspace
W , we defined topological hypervector space (V = V,+, ◦,K, T ) on topological field K
and proved V /ε∗ ∼= V/W.

In our future studies, we hope to define the topological Krasner hypervector space (HV -
vector space) V on the topological hyperfield K and use the fundamental relation ε∗ on
V and the fundamental relation γ∗ on K, defined in [33], to investigate the conditions
for topological vector space V/ε∗ on the topological field K/γ∗.
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