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Abstract. X-bar control charts are widely used to monitor and control business and manu-
facturing processes. Design of control charts refers to the selection of parameters, including
sample size, control-limit width, and sampling frequency. Many researchers have worked on
this issue and have also proposed various solutions. However, despite the numerous advan-
tages, the proposed methods also have their own set of problems. The biggest challenge is the
complexity of solving these issues. Due to the fact that optimal design of control charts can
be formulated as a multi objective optimization problem, in this paper to solve this problem,
we used initial solution Spider’s web data envelopment analysis method. In previous methods
used multiple algorithms to resolve the issue. But in the proposed method once using Data
Envelopment Analysis method and without any other algorithm can solve multi objective
problem and this method can yield desirable efficient. Lastly, we compare our method with
others and demonstrate its application in a real industrial context.

Keywords: Data envelopment analysis (DEA), economical control chart design, multi
objective optimization problem (MOOP), Spider’s web initial solution (SWIS).
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1. Introduction

Statistical process control (SPC) is one of the most effective continuous quality im-
provement strategies, which uses different statistical methods to improve quality and
productivity in industrial processes. The primary tool of statistical process control is the
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statistical control chart. Engineering implementation of control charts require a number
of technical and behavioral decision making processes. One important technical decision
is the design of control chart, which refers to the selection of parameters, including sam-
ple size (n), control-limit width (k), and sampling frequency (h). Many researchers have
worked on this issue and also have offered ways. Each method has some advantages and
disadvantages such as complexity in implementation, statistical configurations, and cost
effectiveness.

Duncan [7] developed the first model and applied it to an X-bar control chart. He
proposed a single objective formulation for Shewhart’s original X-bar control chart and
considered a production process with a single assignable cause. Saniga et al.’s design [14]
minimized the economic cost function and considered constraint that included upper and
lower bounded respectively on the average time to signal and the power for some cus-
tomer’s specified shift sizes. Chung et al. [5] suggested an algorithm for computing the
economically optimal X-bar control charts for a process with multi assignable causes.
Chen and Liao [4] considered all possible combination of design parameters as a decision
making unit. It is characterized by three attributes: hourly cost, the average run length
of process being controlled and detection power of the chart designed with the selected
parameters. Data envelopment analysis (DEA) is a method to measure the relative effi-
ciency of decision making units (DMUs) performing similar tasks in a production system
that consumes multiple inputs to produce multiple outputs. Li et al. [11] analyzed the
design of the X-bar control chart problem using a DEA-based multi criteria branch and
bound algorithm. Faraz et al. [9] used genetic algorithm optimized a two-objective eco-
nomical statistical control chart design problem. The efficiency and fast convergence of
the PSO in solving single objective has been extended to solve multiobjective problems
Kennedy et al. [10]. Some extended version the MOPSO algorithm are presented by
Durill et al. [8]. Mobin et al. [12] used the NSGA-II algorithm generated the efficient
frontier an X-bar control chart problem. A new version of NSGA, called NSGAII and de-
veloped by Deb et al. (2000-2002), utilizes fast non-dominated sorting genetic algorithm.
This method is computationally efficient, non-elitism preventing, and less dependent on
a sharing parameter for diversity preservation. Recently, a reference-point based multi-
objective NSGA-II algorithm (called NSGA-III) has been proposed by Deb and Jain [6],
which is more efficient to solve problems with more than two objectives.

In general, it can be said that multi-criteria control chart design, generally divided into
two parts. In first part, it is used most commonly and includes optimization algorithm
to generate the optimal designs. In second part, tools such as DEA are used to find the
efficient solution from of the optimal solutions generated by the optimization algorithm.
To solve this problem, we used initial solution Spider’s web and data envelopment anal-
ysis method introduced by Ranjbar et al. [13]. In the previous methods used multiple
algorithms to resolve the issue, but in the proposed method once using data envelopment
analysis method and without any other algorithm can solve multi objective problem and
also, this method can yield desirable efficient frontier even in problems. Finally, an in-
dustrial application is presented to illustrate the solution procedure and we compare the
proposed method with other methods.

2. Multi criteria X-bar control chart design

In model Duncan assumed one monitored the process to detect the occurrence of a
single assignable causes a fixed shift in the process and define the relevant costs over
a cycle. All notation used in describing the economical X-bar control cart design are
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presented in Table 1.
The components of the cycle he considered are as follows. Assume the process starts in

the in-control state, the time interval that the process remains in control is an exponential
random variable with mean 1

λ hour, which represents the average in-control time. In
other words, as Figure 1, the process going to out-of control state from in-control state
is assumed to be a Poisson process with λ occurrences per hour.

Figure 1. Upper and Lower control limits

Notation Description
n sample size
h The time interval between successive samples (sampling frequency)
k The control-limit width in terms of standard deviations σ

s = (n, h, k) The DMU vector

ARLo(s) Average run length (ARL) with the process in control state ( 1
α
), affected by s

p(s) The detection power of the economical control chart (after out-of-control status), affected by s
pL The lower bound of the economical control chart detection power
τ The expected time of occurrence of the assignable cause within the interval between two samples
D The time to search the assignable cause and make the process work at the in-control state again
λ Assignable cause follows a Poisson process with rate λ
1
p

The expected number of samples taken before detecting a mean shift of the process

Φ(z) The probability density function of the standardized normal distribution
δ The number of standard deviations σ in the shift of process mean µ0

α(s) The probability of false alarm (type-I error), affected by s = (n, h, k)
αU The upper bound of the type-I error

ECT (s) The average cycle length
ECC(s) The expected cost per cycle
EHC(s) The expected cost per hour

a1 The xed cost of sampling
a2 The variable cost of sampling
a3 The cost of searching for an assignable cause
a4 The cost of investigating a false alarm
a5 The hourly penalty cost associated with production in the out-of-control state
g A constant used to estimate the average time of sampling, inspection, evaluation and plotting for sample gn

Table 1. Nomenclature used in the multi-objective X-bar economical control chart model [16]

When the process goes to out-of-control state, the probability that this state will be
detected on any subsequent sampling is p, which represents the detection power of the
chart and can be written as

p =

∫ −k−δ
√
n

−∞
Φ(z)dz +

∫ +∞

k−δ
√
n
Φ(z)dz, (1)

where Φ(z) is the probability density function of standardized normal distribution, δ
represents the number of standard deviations σ in the shift of process mean µ0, and k
is the control-limit width in terms of standard deviations σ. Accordingly, the expected
number of sample taken before detecting a mean shift of the process is 1

p . Moreover,
the expected time of occurrence of the assignable cause within the interval between two
samples is derived as

τ =

∫ (j+1)h
jh λe−λt(t− jh)dt∫ (j+1)h

jh λe−λtdt
=

1− (1 + λh)e−λh

−λe−λh
(2)
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where h is the time interval between succeeding samples. The average time spent on
sampling, inspection, evaluation, and plotting for each sample is a constant g proportion
to the sample size n. Thus, the time delayed on this phase is gn. The time to search the
assignable cause and make the process work at in-control state again is a constant D.
The average cycle length of the process for a design s = (n, h, k) can be expressed by
ECT (s):

ECT (s) =
1

λ
+ (

h

p
− τ) + gn+D. (3)

Furthermore, the expected cost per cycle under a design s = (n, h, k) can be expressed
by ECC(s):

ECC(s) =
(a1 + a2n)ECT (s)

h
+ a3 +

a4αe
−λk

1− e−λk
+ a5(

h

p
− τ + gn+D),

where α =
1

ARLo
= 2

∫ k

−∞
Φ(z)dz.

(4)

The cost per time unit EHC(s) under a design s can be obtained by dividing ECC(s),
the expected cost per cycle, by ECT (s), the average cycle length [4].

In this paper, three objectives are derived based on the original economic design model
of Duncan (1956). By considering two statistical constraints (the upper bond αU of the
type-1 error and the lower bound pL of the detection power), which were integrated by
Sangia (1989) into his economic model, the multi-objective X-bar economical control
chart design can be formulated as follows:

max ARLo(s)

max p(s)

min EHC(s)

s.t.
p(s) > pL
α(s) < αU

(5)

for all s = (n, h, k)
The decision variable in the multi-objective problem are the sample size n, the con-

trol limits k, with respect to a known process standard deviation σ, and the sampling
frequency of two successive samples within the interval h. One possible design for the
control chart consists of a combination of n, h and k [4]. After defining multi-objective
design of the control chart problem and presenting its mathematical model, the modified
NSGA-III and MOPSO algorithm and are utilized to generated on optimal design in
Pareto frontier.

2.1 NSGA-III

NSGA-III is incorporated in the selection mechanism of NSGA-II. The idea is to use
reference points which could be a set of predefined points, or one that are generated
systematically. The pseudo-code of NSGA-III is shown in Table 2 (Deb & Jain, 2014).

The algorithm starts with NPop where P0 denote the initial population. Notice that
n, h and k are the parameters of the existing problem. Each solution represented by
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1. Input:
P0 (Initial Population),
NPop size of population,
t (iteration) = 0
Itmax (Maximum iteration).

2. While t < Itmax do
3. Create offspring Qt

4. Mutation on Qt

5. Set Rt = Pt ∪Qt

6. Apply non-dominated sorting on Rt and find F1, F2, · · ·
7. St = , i = 1;
8. While |St| ⩽ NPop do
9. St = St ∪ Fi

10. i = i+ 1
11. End
12. If |St| = NPop do
13. Pt+1 = St; break
14. Else

15. Pt+1 =
∪l−1

j=1 Fj

16. Normalize St using min and intercept points of each objective
17. Associate each member of St to a reference point
18. Choose NPop−|Pt+1| members from F1 by niche-preserving operator
19. End
20. t = t+ 1
21. End
22. Report Pt

Table 2. NSGA-III pseudo-code [16]

si = (ni, hi, ki) for i = 1, 2, · · · , NPop. Note that individuals of the initial population are
randomly generated such that ni ∈ ℵ+ and hi, ki ∈ ℜ+ for i = 1, 2, · · · , NPop as follows:

ni = [nmin + rand.(nmax − nmin)],

hi = [hmin + rand.(hmax − hmin)],

ki = [kmin + rand.(kmax − kmin)],

where xmin and xmax represent lower and upper bounds for the variable x, respectively.
Rand is a uniform number between 0 and 1, and [x] represents the smallest integer greater
than the real number x (M. Tavana et al. (2016)).

2.2 Multi-objective particle swarm optimization (MOPSO)

Particle swarm optimization (PSO) is inspired by the social behavior of birds within a
flack. A particle represents each potential solution of the problem and a swarm represents
the population of solution. In PSO, each particle (solution) searcher the solution space
based on its current position and velocity direction, where the search is affected by
the history of the particle and other individuals. The efficiency and fast convergence of
the PSO in solving single objective has been extended to solve multiobjective problems
Kennedy et al. [10]. Some extended version of the MOPSO algorithm presented by Durill
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et al. [8]. (M. Tavana et al. (2016)). The peudo-code of the general MOPSO is presented
in Table 3.

1. Input:
P0 (Initial Population),
NPop size of population,
t (iteration ) = 0
Itmax (Maximum iteration).

2. Record non-dominated particle in REP
3. Generated the grid (hypercubes)
4. Update p Bestti
5. Update g Bestt

6. While t < Itmax do
7. For each particle I do
8. Update velocity vti
9. Update new position sti
10. Update p Bestti
11. End for
12. Update g Bestti
13. Update REP
14. t = t+ 1
15. End While

Table 3. Pseudo-code MOPSO [16]

Note that, for comparison, we use the results of MOPSO and NSGA-III algorithms of
article (M. Tavana et al. [16]).

3. Multi-objective optimization problems by combined DEA model
and GA algorithm

In this section, we describe a multi-objective optimization problem and the concept of
Pareto optimal solution. Consider a multi-objective optimization problem as follows:

min
x

f(x) = (f1(x), · · · , fm(x))T ,

s.t. x ∈ S = {x ∈ ℜn|gj(x) ⩽ 0, j = 1, 2, · · · , l},
(6)

where x = (x1, · · · , xn) is a design variable and S is the set of all feasible solutions. Gener-
ally, unlike traditional optimization problem with a single objective function, an optimal
solution in the meaning that minimize all objective function fi(x) for i = 1, 2, · · · ,m
simultaneously does not necessarily exist in the problem. Therefore, the concept of an
optimal solution found on the relation of Pareto domination is given as follows [15]:

Definition 3.1 A point x̂ is said to be a Pareto optimal solution to the MOOP if there
exists no x ∈ S such that f(x) ⩽ f(x̂).

A final solution to the multi-objective problem may be found out from the set of
Pareto optimal solution by eg jxisting methods, such as lexicography method, aspiration
level,... . For solving MOOP, the above method requires a lot of time, especially when
these issues have either several aims or large number constraint. So we use the proposed
method for solving multi-objective problems.
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DEA which was initially proposed by Charnes-Cooper-Rhodes, is a method to measure
the relative efficiency of Decision Making Units (DMUs) performing similar tasks in a
production system that consumes multiple inputs to produce multiple outputs. There
are CCR model [3], BCC model [2] and FDH model [17], as representative models. These
models are classified by how to determine the production possibility set. In DEA, the
efficiency θ of an individual xk is given by solving the following linear programming
problem:

min
θ,λ

θ,

s.t.
[f1(x), · · · , fm(x)]λ− θf(xk) ⩽< 0,

λ ∈ ℜn , λ ⩾ 0.

(7)

The degree of efficiency θ represents how far f(xk) is from DEA-efficient frontier. And
only when θ = 1, then f(xk) is located on DEA-efficient frontier. Arakawa et al. [1]
suggested a method using DEA and genetic algorithm (GA) to find the answer efficient
multi-objective problem.

In other words, this method investigates the relation of domination among individuals
with respect to the shaded region (see Figure 2). In Figure 2, the solid curve represents the
exact efficient frontier and the dotted line represents DEA-frontier at a generation. As the
figure shows, individual C and G are removed fast, and then a good approximation of the
exact efficient frontier can be obtained efficiently. Therefore, when the efficient frontier
is convex, non-Pareto solution can be removed from a young generation. But when the
efficient frontier is non-convex, the sunken part of it can’t be generated according to
Arakawa et al. method [1].

Figure 2. GA with DEA method [18]

min
∆,µ,ν

∆,

s.t.
∆ ⩽ d̃j + α(

∑s
r=1 ur(yrk − yrj) +

∑m
i=1 vi(−xik + xij),∑s

r=1 ur +
∑m

i=1 vi = 1,
ur, vi ⩾ ε, i = 1, 2, · · · ,m, r = 1, 2, · · · , s,

(8)
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Yun et al. [18] suggested a GDEA which includes existing DEA models. The effi-
ciency based on generalized data envelopment analysis (GDEA) model is called GDEA-
efficiency. Then, the GDEA-efficiency of DMUk is judged by solving the following prob-
lem:

where α is a constant and ε is a sufficiently small positive number and

d̃j = max
k = 1, 2, · · · , n
j = 1, 2, · · · ,m

{ur(yrk − yrj), vi(−xik + xij)}

Various kinds of DEA-efficient frontier are obtained by changing the value of parameter α
in problem (GDEA). To clarify we employ the example presented in Figure 3 consisting
of six DMUs consume a single input to produce a single output. The figure indicates
that GDEA-efficiency frontier with varying the value of α, and DMUs on the lines are
α-efficient.

Figure 3. Efficiency frontier with various αin GDEA [18]

4. The Spider’s web initial solution (SWIS) method

Ranjbar [13] introduced the SWIS method in 2020. In this method at first several
feasible points on all the constraints of the problem are selected and then connected
in the desired direction. From these points, and the resulting lines, we can extrapolate
additional feasible points that are pertinent to the problems requirements. This expansion
of points may yield a more extensive set of Pareto-optimal solutions. If we put more
points, more Pareto answers will be gained.

Theorem 4.1 The SWIS method is feasible.

Proof. The proof is similar representation Theorem in [5]. ■

5. Proposed method

We know that in DEA models that have several inputs and outputs, a unit is efficient
which means it has the minimum input and maximum output. In this method, first,
we guess an initial solution to approach feasible region and SWIS method. We put this
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solution set in the function of objectives which are maximized as output, in continue
we put the values of these feasible solutions in the function of minimum objectives as
input. As it is known, DEA models find, as much as possible, units having minimum
input and maximum output, and use the concept of dominant solution. Because they
may have many objects in multi-objective problem, so the most important link between
MOOP and DEA is that DEA is the only tool that can easily evaluate each multi-
objective problem with a large number of objects. Finally, because our goal is to find a
set of efficient solutions and not just some units, we imagine all the other units on the
efficiency frontier. This will provide a Pareto solution set of the efficient solution.
The steps are summarized as follows:

(1) At first a SWIS of feasible region is selected, some points on the constraints are chosen
and then connected in the desired direction.

(2) Again some feasible points on the resulting lines are selected.
(3) Next this solution set is put in the function of objectives which are maximum as

output, Then the values of these feasible solutions are put in the function of minimum
objectives as input.

(4) Efficiency of points by the DEA is obtained.
(5) We image all the other units of the problem on the efficiency frontier. Finally, we

consider the solutions which are applied to the feasible region as the final solutions.

In what follows, we try to solve two examples. we solve an example that none of the
existing methods have been able to solve. Finally, the proposed integrated optimization
method is applied to the industrial case, borrowed from Tavana et al. [16] and Chen and
Liao [4].

6. Examples

We consider the following examples with six objective functions to be compared with the
proposed method.

min f1 = −x1

min f2 = −4x1 − 3x2

min f3 = x21 + x22 − 4

max f4 = x2

max f5 = 8x1 + 2x2

max f6 = 5x1 + 6x2

s.t.



1
2x1 − x2 ⩽ 3

2 ,
7x1 + x2 ⩽ 49,
x21 + x22 ⩾ 4,

−0.2222x21 + x1 − x2 + 8 ⩾ 0,
x31 − x2 + 5 ⩾ 0,

0.8x1 − x2 + 6 ⩾ 0,
x1 ⩾ 0, x2 ⩾ 0

For solving Example at first, as shown in Figure 4, we choose 59 point by the SWIS into
feasible region. We put the (SWIS) value the maximum objective function and we choose
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it as an output. Similarly we put SWIS value the minimum objective function and we
choose it as an input. And we solve the problem in model output oriented BCC model.
Then image all the other units on the efficient frontier. Finally, we consider the solutions
that apply to the feasible region as the final solutions. We see the final result in Figure
5. As you can see, in the proposed method once using DEA method and without any
other algorithm can solve most of the MOOP.

Figure 4. Feasible solution and the SWIS for Example 3

Figure 5. Efficiency frontier of Example

Example 6.1 (Case study) In this section, the proposed integrated optimization
method is applied to the industrial case, borrowed from Chen and Liao [2] and Ta-
vana et al. [10]. The case study is about the process of producing electronic capacitors,
where the target value of capacitance, for a particular model is set to 300 (in µF ). The
process shifts occur at random with a frequency of about 1 every 4 hours of operation
(λ = 0.25). The fixed cost of sampling is estimated to be $ 1.00 (a1 = 1) and the variable
cost is assumed to be $ 0.1 per capacitor (a2 = 0.1). The average time of sampling,
measuring and recording the capacitance is estimated to be 0.01 h (g = 0.01). When the
process goes out of control, the magnitude of the shift is approximately estimated to be
one standard deviation (δ = 1.0). The average time to search the assignable cause is 2
h (D = 2). The cost to search the assignable cause and also the measurable portion of
the cost to investigate the false alarm are both $ 50 (a3 = a4 = 50). The penalty cost
associated with production in the OOC state is considered to be approximately $ 200
per hour (a5 = 200). Based on quality control experts’ suggestions, the upper bound on
the type-I error and the lower bound of the detection power are assumed to be 0.005 and
0.95, respectively (αU = 0.005, pL = 0.95) [16].
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The multi-objective X-bar economical control chart design formulation for this case study
is as follow:

max f1 = ARLo(s) = max
1

2
∫ −k
−∞ 2Φ(z)dz

max f2 = p =

∫ −k−δ
√
n

−∞
Φ(z)dz +

∫ +∞

k−δ
√
n
Φ(z)dz

min f3 = EHC(s) =
ECC(s)

ECT (s)
=

(a1+a2n)ECT (s)
h + a3 +

a4αe−λk

1−e−λk + a5(
h
p − τ + gn+D)

1
λ + (hp − τ) + gn+D

s.t.

 p(s) ⩾ pL,
α(s) ⩽ αU ∀ design s = (n, h, k) {n ∈ Z, 20 ⩽ n ⩽ 30},

{h ∈ ℜ, 0.4 ⩽ h ⩽ 0.5} and {k ∈ ℜ, 2.9 ⩽ k ⩽ 3.8},
(9)

where Φ(z) can be obtained from the following formulation:

Φ(z) =

∫ z

−∞

1√
2π

e−
u2

2 du, τ =
1− (1 + λh)e−λh

−λe−λh
. (10)

Similarly, to solve Example 6.1, initially, as shown in Figure 6, we choose 55 point by
the SWIS into feasible region. We solve the problem in model CCR model and image all
the other units on the efficient frontier. As you can see, in the proposed method once
using DEA method and without any other algorithm can solve the X-bar control charts
problem. It should be noted that the points O show the frontier of efficiency without the
image and points ∗ display the frontier of the efficiency of the points that are image on
the efficiency frontier.

Figure 6. Efficiency frontier of Example 6.1

For comparison, the Pareto frontier obtained by NSGA-III and MOPSO plotted in
Figure 7. Both Pareto frontier fall approximately in the same range, but the NSGA-
III frontier were closed to the border area of the feasible solution and generated more
solution at the edge of the Pareto frontier.
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Figure 7. Efficiency frontier of NSGA-III and MOPSO method [16]

For better comparison, in addition to using methods NSGA-III and MOPSO, the
results of Chen and Liao method, which is a data sensitivity analysis method, are also
used in the following table. Table 4 presents a summary of the results obtained from the
four optimization algorithms. As can be observed, all four algorithms generated solution
such that the value of the decision variable and objective function fall approximately
in the same ranges. As shown in Figures 6 and 7 and Table 4, the solutions obtained
from the proposed method are very close to the standard methods. It is noteworthy that
the proposed method solves problems with both the velocity and the accuracy of the
calculations.

Parameters NSGA-III MOPSO Chen and liao Proposed method
Min Max Average Min Max Average Min Max Average Min Max average

n 21 30 27.56 21 30 26.8 21 30 25 21 30 25
h 0.4 0.48639 0.438813 0.401441 0.499747 0.451195 0.4 0.4 0.4 0.4 0.5 0.4

k 2.9 3.8 3.343374 2.9 3.733528 3.215011 2.9 3.8 2.9 2.9 3.8 2.9
ARLo(s) 267.9797 6911.037 2523.49 267.9797 5296.156 1090.571 267.98 6911.00 267.98 271.785 6911.00 268.007

p(s) 0.950003 0.99502 0.967355 0.950092 0.995019 0.972723 0.95377 0.95325 0.98214 0.96731 0.95325 0.98224
EHC(s) 95.32335 99.07514 97.88204 95.33462 98.85651 97.52637 95.236 98.632 96.706 96.5882 98.632 96.7157

Table 4. Summary solution

7. Conclusion

In this paper we applied a combined approach involving DEA method and SWIS
to MOOP and X-bar control charts problem. The biggest challenge is the complexity
of solving these issues. Due to the fact that optimal design of control charts can be
formulated as a MOOP. To solve this problem, we used initial solution Spider’s web data
envelopment analysis method. In the proposed method without any algorithm could just
one initial population standard (SWIS) with MATLAB easily obtained and image the
answer on the efficient frontier. The proposed method solves problems with both the
velocity and the accuracy of the calculations. This method works very well for convex
problems. But for non-convex problems may solution the final number is a little lower
than final solution are problems with convex feasible region.
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