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Abstract. In this paper, we present some fixed point results for cyclic weak ¢-contractions
in w-complete modular metric spaces and w-compact modular metric spaces, respectively.
Some results for contractions that have the zero cyclic property are also provided.
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1. Introduction and preliminaries

The concept of modular spaces was introduced by Nakano [7] and was later reconsid-
ered in detail by Musielak and Orlicz [I5, 06]. In 2010, Chistyakov [8] introduced a new
metric structure, which has a physical interpretation, and generalized modular spaces
and complete metric spaces by introducing modular metric spaces [I, 68, [1]. For more
features of concepts of modular metric spaces, see [2, d]. On the other hand, fixed point
theory involves many branches of applied science and fields of mathematics such as func-
tional analysis, mathematical analysis, general topology and operator theory [5, 9]. In
2003, Kirk et al. [T4] introduced cyclic contraction in metric spaces and investigated the
existence of proximity points and fixed points for cyclic contraction mapping [21]. Later,
Karapinar and Erhan [T3] proved the existence of fixed points for various types of cyclic
contractions in a metric space. In 2011, Karapinar [I2] proved a fixed point theorem for
an operator T' on a complete metric space X when X has a cyclic representation with
respect to T'.

In this paper, we improve and generalize the fixed point results for mappings satisfying
cyclical contractive conditions established by Karapinar [17] in modular metric spaces.
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Karapinar’s cyclic weak contractions [T2] have been generalized by Harjani et al. [I0].
We present some fixed point theorems for cyclic weak contractions in compact metric
spaces. Some auxiliary results for contractions that have the zero cyclic property are also
provided.

We first review some definitions from [3, I3, I9].

Definition 1.1 [I3] Let X be an arbitrary set. The function w : (0,00) x X x X —
[0, 00], that will be written as wy(z,y) = w(\, z,y) for all z,y € X and for all A > 0,
is said to be a modular metric on X (or simply a modular if no ambiguity arises) if it
satisfies the following three conditions:

(i) wa(z,y) =0for all A > 0 and z,y € X if and only if x = y;
(ii) wa(z,y) =wr(y,x) for all A > 0 and z,y € X;
(i) wryp(®,y) <wr(z,2) +wu(z,y) for all A\, p >0 and z,y,z € X.

If instead of (i), we have only the following condition
(iv) wy(z,xz) =0for all A >0 and =z € X,

then w is said to be a (metric) pseudomodular on X and if w satisfies (iv) and the
following condition

(v) given z,y € X, if there exists A > 0 possibly depending on x and y such that wy(z,y) =
0 implies that x =y,

then w is called a strict modular on X.
If instead of (iii) we replace the following condition for all A\, u > 0 and z,y,z € X,

A@,2) + w2, y), (1)

<

w
A+

then w is called a convex modular on X.

Definition 1.2 [3] Given a modular w on X, the sets

X =Xp(zo) ={z € X : wr(z,25) = 0as A — oo},
X=X (vs) ={r € X :wr(z,z5) <00 for some XA > 0}

are said to be modular spaces (around z,). The modular spaces X, and X} can be
equipped with metrics d,, and d;, generated by w and given by setting

dy(z,y) = inf{A > 0 : wx(z,y)

Yy AL z,y € Xy,
di(z,y) =inf{A > 0:wy(z,y) <1

<
<1}, z,ye X

If w is a convex modular on X, then according to [3, Theorem 3.6] the two modular
spaces coincide. Indeed, we have X, = X.

Definition 1.3 Let X, be a modular metric space. A sequence {z,}7°; in X,, is said
to be modular convergent (w-convergent) to an element z € X, if there exists A > 0

possibly depending on {z,} and z such that lim wy(z,,z) = 0. We write 2, > = as
n—oo
n — o0.

Definition 1.4 A sequence {z,} C X, is said to be w-Cauchy if there exists A > 0 such
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that lim wy(zp,zm) =0, ie.,
m,n—o0

Ve >0 dne(e) e N Vnom €N (n>m = no(e) = wr(zn, Tm) < €).

A modular metric space is said to be w-complete if each w-Cauchy sequence in X, is
modular convergent to an x € X|,,.

Remark 1 A modular w = wy on a set X is non-increasing on A. Indeed, if 0 < A < p,
then we have

wu(-r?y) < UJH,)\({E,CIJ) —I-CU)\(ZE,y) = CU)\(LU,y)

forall x,y € X.

2. A fixed point theorem for contractions in w-complete modular
metric space

In this section, we prove some fixed point results for cyclic weak ¢-contractions in
w-complete modular metric spaces and we obtain some results for contractions that have
the zero cyclic property.

Definition 2.1 Let X, be a modular metric space and {4;}7, be nonempty subsets of
X, and T : X, = X,,. We say that the set U™, A; is a cyclic representation of X, with
respect to T if the following two conditions hold

(i) Xo=U"4;

(ii) T(A;) CAjpp for 1 <i<m—1,and T(A,,) C A;.
Definition 2.2 Let X, be a modular metric space and {4;}", be w-closed nonempty
subsets of X, and Y = U™, A;. The operator T' : ¥ — Y is called a cyclic weak ¢-
contraction if the following two conditions hold

(i) U™, A; is a cyclic representation of Y with respect to T';

(ii) there exists a non-decreasing function ¢ : [0,00) — [0, 00) such that ¢(t) > 0, ¢(t) =0

has a unique solution at ¢t = 0 and

W)\(Tl', Ty) < (,L))\(l', y) - (ﬁ(w)\(l', y)) (2)

foral A\ >0and all z € A;, y € Aj41,4=1,2,...,m where A,,11 = A;.

We say that the operator T : Y — Y has the zero cyclic property if there exists a
sequence {y,} C Y with li_>m Wx(Yn, Tyn) = 0. Also, we define
n oo

Z2C(T)={{ya} CY: nlgIolo Wx(Yn, Tyn) = 0}.

Indeed, the set ZC(T) is the set of all sequences in Y that the operator T" has the zero
cyclic property at them.

Remember that a point x is called an isolated point of a subset S in a modular metric
space X, if x is an element of S and there exists a neighborhood of x that does not
contain any other points of S.

Example 2.3 Let X, = [0, 1]. Consider the mapping w : (0,00) x [0,1] x [0, 1] — [0, c0]
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P —
by W)\(x,y) = |>\y‘
nonempty subsets of X, as follows:

for all z,y € X = X, and A > 0. Also, consider the w-closed

2 1 5 3

A1 = A5 =10,1], A5 =1[0,=|, A3 =10,=|, A4 =0, —], A5 = [0, =].
1 6 [07 ]7 2 [073]7 3 [072]7 4 [07 12]7 5 [078]
3:C+1

Let Y = U9 ;4; and T : Y — Y be the mapping defined by T and ¢ :

[0,00) — [0,00) by ¢(t) = £. Hence, ¢(0) = 0, ¢ is strictly increasing, T'(A;) C Ai1,
1=1,2,...,5 and

3z+1 3y+1
| B \w—y\ 1

1
_ 6 6 - _Z

This indicates that T is a cyclic weak ¢-contraction.

Remark 2 It follows from the inequality (1) that

A+ wwrtp(z,y) < Aoa(z, 2) + pwn(y, 2)

This shows the function w is a convex modular on X if and only if the function @y defined
by Wx(x,y) = Awa(x,y) is a modular on X for all X > 0 and z,y € X and the function
A= Wx(z,y) = dwr(z,y) is non-increasing on (0,00). So, for 0 < A < u, one can deduce

A
U.)M(.’E,y) < ;CL))\((L',Z/) < OJ)\(iU,y)-

On the other hand, we can find k € Ry such that = kX for any A < u. This implies

wra (T, y) < %WA(% Y). (3)

Theorem 2.4 Let w be a convex modular on X and X, an w-complete modular metric
space. Let {A;}", be w-closed subsets of X, and Y = U A4;. T :Y — Y is a cyclic
weak ¢-contraction, then 7" has a unique fixed point at z € N2, A;.

Proof. Let z, be an arbitrary point in ¥ = U", A; and consider a Picard sequence as
Tnt1 = T(zy) for n =0,1,2,.... We realize two cases:

(1) If there exists mo such that x, 1 = =z, , then Tz, = x, +1 = x,, and the
existence of the fixed point is proved.

(2) Suppose zp+1 # x, for all n. Then by Definition 270 for any n > 1 there exists
in € {1,2,...,m} such that x, € A;, and =, € A; 1. Using (B) for each A > 0, we get

W (Tnt1, Tnr2) = WA(TTn, Trt1)
w)\(xn; xn—&—l) - ¢<w)\(x7’7,7 xn—i—l))
w

)\(xna wn—O—l)- (4)

AN IN

Therefore, {wy(Zn, Tnt+1)} is a decreasing sequence of non-negative real numbers. So, this
sequence is convergent. Assume that wy(xn, Tntr1) — 1 as n — oo. Now, taking n — oo
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in (@), we obtain
n<n— m G(wr(zn, Tnt1)) <7
and hence,
Jim_ g(wx (2, Znt1)) = 0. (5)
Define t,, = wy(zn, Tn+1). By (@), we find that
lnt1 S tp — ¢(tn) < tne (6)
Suppose that n > 0. Since n = inf {w)(n, Tnt1) : 7 € N}, one can deduce 0 < n < ¢, for

n=0,1,2,... and so 0 < ¢(n) < ¢(t,). According to (B), we have tp41 < t, — P(t,) <
tn, — @¢(n). This ensures

tnt2 < tny1 — ¢(tn+1) Sin — (b(tn) - ¢(tn+1) Sin — 2¢(tn) Sin — 2¢(77)-

Inductively, we obtain t,, 4, < t, — p¢p(n) which is a contradiction for large enough p € N
and hence n = 0. Now, we prove that {x,} is an w-Cauchy sequence. First, we claim that
there exists € > 0 such that for any n € N, we can find p > ¢ > n with p — ¢ =1 (mod
m) satisfying wy (zp, z4) > €. Using (W)-(8), we get

1 1
€< (“))\(‘Tpa xq) < 5("}% (xp?$p+1) + §w%(mp+1a .’Eq)
< WA(Zp, Tpt1) + wr(Tpt1, Tg)
1 1
< wa(p, Tpy1) + iw%(xpﬂ, Tg+1) + §wg($q+17 Tq)
< WA (@p, Tpt1) + WA (@p+1, Tg1) + WaA(Tg41,2Tq)
= wx(@p, Tp+1) + Wa(Tp, Txq) + WA(Tg11, Zq)- (7)

Since x, and x4 lie in different adjacently labeled sets A; and A;y; for certain i €
{1,2,...,m}, from (@) and using (B), we obtain

€ S wx(Tp, 2q) < Wa(Zp, Tpi1) + walTp, Tq) — Plwa(@p, 2q)) + wa(Tgt1,2q)
and so,
P(wr(Tp, Tq)) < WaA(Tp, Tp+1) + WA (Tgt1, Tg)- (8)
Since € < wy(zp, z4) and ¢ is non-decreasing, it follows that
0 < ¢(€) < Pwa(wp, Tq)- (9)
By (B) and (@), we get

0 < @(€) < P(wr(Tp, Tq)) < Wa(Tp, Tps1) + wWalTgs1, Zq)
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Passing to the limit as p,¢ — oo in the above inequality with p — ¢ = 1 (mod m) and
using (H), we reach

0 < o(e) < lim P(wr(xp, 7)) <O

p,q—00
p—g=1 (mod m)

which is a contradiction. This means that for every € > 0 there exists n, € N such that
if p,qg > no with p — ¢ =1 (mod m), then wy(zp, z4) < €.

In order to prove that {z,} is w-Cauchy, we fix e > 0. By the above claim there exists
no € N such that if p,q > no with p —¢ = 1 (mod m), then wy(zp, z4) < 5. On the
other hand, since wy (2, Tnt1) — 0 as n — oo, one can find n) € N such that if n > nl,
then wx(2n, znr1) < 5. We take 7t > max {no,n,} with ¢ > r. Then there exists
k€ {1,2,...,m} such that t — r =k (mod m). Putting j =m —k+1,sot—r+j=1
(mod m) and by using (0) and (), we get

WA(Tr, 2¢) < WA(Tr, Tigj) + WA (Tigjs Tegjo1) + oo+ WA (@41, ).

So, wx(zr,24) < S+ (j —1)5 = j5 < e and {#,} is w-Cauchy. Since the sets A; are
w-closed, Y = U™, A; is w-closed and so Y is w-complete. This implies that there exists
z € Y such that z, = = as n — oco. We prove that z is a fixed point of 7. Since
U™, A; is a cyclic representation of Y with respect to T, it is clear that infinitely many
terms of {x,} lie in each A; for i = 1,2,...,m. From the fact that each A; is w-closed
for i =1,2,...,m, we have z € N, A;. Suppose x € A; for certain ¢ € {1,2,...,m} and
Tz € Aiy1. We take a subsequence {z,,} of {x,} with z,, € A; (where A,,11 = A1)
and w-convergent to z. Using ([I) and (2) for all A > 0, we observe that

wi(z, Tz) < wr(@, Tpe41) + wWr(Tny+1, T)

£ &£ &

( )+ wa(
ANz Ty 41) + wn(Txy,, Tx)
M@, Tny11) + W (T, ) = G(WA(Tn,, )
( ) (

NI

MZ, Tng+1) + WA (Zny, T )

Passing to the limit as k& — oo in the above inequality, we obtain wy(z,Tx) < 0 for all
A > 0 and so, wy(z, Tx) = 0 for all A > 0. This implies that x is a fixed point of T.

For the uniqueness, suppose that y, z are two fixed points of T'. Since U] ; A; is a cyclic
representation of Y with respect to T', we see that z,y € U™, A;. Since ¢p(wx(y, 2)) > 0
for wy(y, z) > 0, using the contractive condition () for all A > 0, we have

W)\(yv Z) = W)\(Tvaz) < w)x(ya Z) - (,{)(W)\(y, Z)) < W)\(y, Z)'

This implies that ¢(wx(y,z)) = 0 for all A > 0 and hence wy(y,z) = 0 for all A > 0.
Therefore, y = z. [ |

Corollary 2.5 Let w be a convex modular on X and X, an w-complete modular metric
space. If T : X, — X, is a cyclic weak ¢-contraction, then T has a unique fixed point
at z € X,,.

Proof. Define 4; = X, and set Y = U, A;. So, by assumption 7' : Y — Y is a cyclic
weak ¢-contraction. Apply Theorem B to conclude that 1" has a unique fixed point at
A A1 = X,. ]
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. 3r+1
Corollary 2.6 If T': [0,1] — [0, 1] is an operator defined by Tx =

a unique fixed point at z € [0, 3].

, then T has

Proof. Let X, = [0,1]. Consider the mapping w and the w-closed nonempty subsets

A; of X, for i = 1,...,6 as in Example 223. Define Y = U%_; A;. According to Example

3 the operator T : Y — Y is a cyclic weak ¢-contraction. Apply now Theorem P4 to

conclude that 7" has a unique fixed point at z € NY_; 4; = [0, 3]. [ |
Note that Corollary EC@ works properly, since we know that in this corollary T(%) =

1 3

3 €[0,3].

3 » 8

Theorem 2.7 Under the hypotheses of Theorem P4, if the operator T': Y — Y has the
zero cyclic property, then

(i) T has a unique non-isolated fixed point;
(ii) there exists a sequence {y,} € ZC(T) such that lim, oo wx(yn, T"z) = 0 for
every x € Y.

Proof. Since T has the zero cyclic property, there exists a sequence {y,} € ZC(T') with
lim w(Yn, Tyn) = 0.
n—oo

(i) According to Theorem P4 for any initial value z, € Y, one can deduce z € N*; A; is
the unique fixed point of 7" and so, wy(yn, z) is well defined. By (@) and (&) we have

WA (Un 2) < WA (Yns TYn) + Wr(TYn, T2) < WA (Yns TYn) + Wr(Yn, 2) — d(wr(Yn, 2))

for all A > 0 and so, ¢(wx(Yn, 2)) < wr(Yn, Tyn) for all A > 0. Passing to the limit as
n — 0o, we get lim ¢(wx(yn, z)) = 0 for all A > 0. Therefore, lim w)(yn,z) = 0 for all
n—oo n—o0o

A > 0. This indicates that z is not an isolated point.
(ii) By part (i), there exists a sequence {y,} € ZC(T') such that li_>m wx(Yn,z) = 0 for
n—oo

all A > 0. For initial value z € Y and by the proof of Theorem P, it is clear that the
sequence {T"x} is w-convergent to z. This implies wy(yn, T") < wx(Yn, 2) + wr(z, T"x).
Now, by passing to the limit as n — oo for all A > 0 in the above inequality, we get
nan;owA(yn,T"x) =0. |

3. A fixed point theorem for contractions in w-compact modular
metric space

Recently, Ozkan et al. [I8] have defined compact modular metric spaces and have
proved some new fixed points theorems for contractive mappings in compact modular
metric spaces. In 2013, Harjani et al. [I0] generalized Karapinar’s cyclic weak contractions
[T2] and gave some fixed point theorems for such contractions in compact metric spaces.

In this section, we verify some fixed point results for cyclic weak ¢-contractions in the
context of compact modular metric spaces and we deduce some results for contractions
that have the zero cyclic property.

Definition 3.1 [20] Let X, be a modular metric space. We say that T : X, — X, is

modular continuous (w-continuous) if x,, <+ 2 implies that Tz,, <> Tz as n — oo for each
{zn} C Xo.
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Definition 3.2 [IR] Let X,, be a modular metric space. We say that B C X, is modular

compact (w-compact) if and only if every sequence in B has an w-convergent subsequence
in B.

In the next theorem, we consider the operator T : X,, — X, is w-continuous and then
under the assumption that X, is w-compact we can drop the w-closedness of the sets A;
(i=1,2,...,m) in Theorem 2.

Theorem 3.3 Let w be a convex modular on X and X, an w-compact modular metric
space. Let {A;}", be nonempty subsets of X, and X, =U" A;. If T': X, — X, is an
w-continuous cyclic weak ¢-contraction, then 7" has a unique fixed point at z € NI, A;.

Proof. Let x, be an arbitrary point in X, = U, A; and consider a Picard sequence
Tpi1 = T(xy) for n =0,1,2,.... We realize two cases:

(1) If there exists no such that x, 1 = x,,, then Tx, = x, +1 = x,, and the
existence of the fixed point is proved.

(2) Suppose zp+1 # x, for all n. Then by Definition P70 for any n > 1 there exists
in € {1,2,...,m} such that z,, € A4;, and =z, € A; y1. Now similar to the proof of
Theorem 24 we have limy, o0 wi(Zpn, Tny1) = 0. Since x,41 = Ty, this fact gives us
that

inf{wy(z,Tx): x € X,} = 0for all A > 0. (10)

We define the function F : X, — R* by Fo = wy(z,Tz) for all A\ > 0. Since the
mapping 1" is w-continuous, so F' is continuous. Since X,, is w-compact, one can find
z € X, such that wy(z,Tz) = inf{wy(x,Tz) : x € X, } for all A > 0. By (I0), we find
that wy(z,72) =0 for all A > 0 and so z = T'z.

For the uniqueness, suppose that y, z are two fixed points of T'. Since U] | A; is a cyclic
representation of X, with respect to T', we see that z,y € U | A;. Since ¢(wx(y, z)) >0
for wy(y, z) > 0, using the contractive condition (B) for all A > 0, we have

W)\(yv Z) = W/\(TyaTZ) < w,\(y, Z) - gb(wx(y, Z)) < W)\(y, Z)'

This implies that ¢(wx(y,z)) = 0 for all A > 0 and hence wy(y,z) = 0 for all A > 0.
Therefore, y = z. [ |

Example 3.4 Let M = M U M5 and

M, = { {“” ‘”2} Lay; € [0, 1]} and M, = {[b“ bm] by € [—1,0}}.

az21 a2 b21 b22

Let w: (0,00) x M x M — [0, 00] be a metric modular on M with

1
A, B) =~ i — by
(A B) = 3 max lay by

forall A,B € M = X, and X > 0. It is clear that M = X, is w-compact and w is convex
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modular. In fact,

A+ mwriu(4, B) = max aij — bij]

N

 max laij — byl + max aij — by

< )\C«J)\(A, B) + ku(Av B)

Define the mapping T': M — M by T(A) = —g and the mapping ¢ : [0,00) — [0, 00)
by ¢(t) = L. Hence, T is w-continuous and we have ¢(0) = 0, ¢ is strictly increasing,
T(Ml) Q MQ, T(MQ) g M1 and

A B

w/\(T(A)7T(B)) = w)\(_§7 _5)
_ 1 lai; — byl
TN 1digge Y T

1

<wr(4,B) - wr(4, B)
= wy(4, B) — ¢(wr(A, B)).

This indicates that T is a cyclic weak ¢-contraction. Apply Theorem B3 to conclude that

T has a unique fixed point at X, = M; U My (which is indeed A = {8 8] ).
Corollary 3.5 Under the hypotheses of Theorem B33, if the operator T : X,, — X, has
the zero cyclic property, then

(i) T has a unique non-isolated fixed point;
(ii) there exists a sequence {y,} € ZC(T) such that li_)m Wx(Yn, T™x) = 0 for every
n—oo

Tz e X,.
Proof. The proof is similar to that of Theorem P4 [ |

4. Conclusions

We provided some fixed point results for cyclic weak ¢-contractions in w-complete
modular metric spaces. Some other some fixed point results are proved in w-compact
modular metric spaces. Also, some results for contractions that have the zero cyclic
property are proved. We now propose two questions for interested readers as follows:

(1) Let w be a convex modular on X. Can we prove the results for w-closed modular
metric spaces?

(2) All results are proved for w-complete modular metric spaces or w-compact modular
metric spaces, where w was a convex modular on X. Can we prove the results for a non-
convex modular on X7
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