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Abstract. In this paper, we prove some results on complex partial b-metric space (ℜ, pcb),
which are more generalization of S-contractive mappings. Also, we expand weakly increasing
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1. Introduction

In fixed point theory, usual metric spaces and their generalizations are significant topics
for many researchers. It have vast literature proven in many papers. Fixed point theory
is one of the most important and significant theory in mathematics, since it has many
applications in area of sciences. One of many generalizations of metric spaces, which is
introduced by Matthews [11, 12], is partial metric space such that the distance of a point
to itself need not be equal to zero.

Bakhtin [3] and Czerwick [6] introduced a b-metric space which is generalization of
a metric space and proved some results with contraction mappings. Furthermore, Gu-
naseelan [7, 9] introduced complex partial b-metric spaces and gave some more results.
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Also, we recite some few research papers [1, 2, 8, 10, 19] for the right direction from
metric space to complex partial b-metric spaces.

Shukla and Tiwari [16] generalized the contraction mapping known as S-contraction
mapping and proved many results [13, 14, 17]. In this paper, we prove some results using
S-contraction in complex partial b-metric spaces.

2. Preliminaries and definitions

Rao et al. [15] has defined partial order relations ≺ and ⪯ in complex numbers c. Also,
they considered the set of non-negative complex numbers as follows: C+ = {(α, β)|α, β ∈
R+}, where R+ is the set of non-negative real numbers.

Definition 2.1 [16] Let ζ : ℜ → ℜ, where (ℜ, d) be a complete metric space. Then ζ is
called a S-contraction if there exist 0 ⩽ κ < 1

3 such that

d(ζα, ζβ) ⩽ κ[d(α, ζβ) + d(ζα, β) + d(α, β)]

for all α, β ∈ ℜ.

Lemma 2.2 [5] Let (ℜ, p) be a partial metric space. If a sequence {αn} is convergent
to a point α ∈ ℜ, then lim

n→∞
p(αn, α) ⩽ p(α, γ) for all γ ∈ ℜ. Also, if p(α, α) = 0, then

lim
n→∞

p(αn, γ) = p(α, γ).

Definition 2.3 [15] A function dcb : ℜ×ℜ → C is said to be a complex valued b-metric
on a nonempty set ℜ if for all α, β, γ ∈ ℜ and µ ⩾ 1, it satisfies the following conditions:

(1) (dcb1) 0 ⪯ dcb(α, β) and dcb(α, β) = 0 ⪯ if and only if α = β,
(2) (dcb2) d

c
b(α, β) = dcb(β, α), (symmetry)

(3) (dcb3) d
c
b(α, β) ⪯ µ[dcb(α, γ) + dcb(γ, β)]. (triangularity)

The pair (ℜ, dcb) is said to be a complex valued b-metric space.

Definition 2.4 [9] A function pcb : ℜ×ℜ → C+ is said to be a complex partial b-metric
on a non-void set ℜ if for all α, β, γ ∈ ℜ, it satisfies the following conditions:

• (pcb1) p
c
b(α, β) = pcb(β, α), (symmetry)

• (pcb2) p
c
b(α, α) = pcb(α, β) = pcb(β, β) ⇔ α = β, (equality)

• (pcb3) 0 ⪯ pcb(α, α) ⩽ pcb(α, β), (small self distance)

• (pcb4) ∃ a real number µ ⩾ 1 and µ is an independent of α, β, γ such that pcb(α, β) ⩽
µ
[
pcb(α, γ) + pcb(γ, β)

]
− pcb(γ, γ). (triangularity)

The pair (ℜ, pcb) is said to be complex partial b-metric space.

Example 2.5 [4, 9] Let ℜ+ be the set of nonnegative real numbers and C+ be the set
of nonnegative complex numbers. We define a mapping pcb : ℜ+ ×ℜ+ → C+ such that

pcb(α, β) =
[
(max{α, β})r + |α− β|r

]
(1 + i)

for all α, β ∈ ℜ+. Then, for coefficient µ = 2r > 1, (ℜ+, pcb) is a complete complex partial
b-metric space but it is neither a b-metric space nor a partial metric space.

Definition 2.6 [4] Let (ℜ, pbc) be a complex partial b-metric space with coefficient µ ⩾ 1
and (ℜ,⪯) be a partially ordered set. A pair (ζ, ξ) of self-mappings of ℜ is said to be
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weakly increasing if ζα ⪯ ζξα and ξα ⪯ ξζα for all α ∈ ℜ.

Now, we define Cauchy sequence and convergent sequence in complex partial b-metric
spaces.

Definition 2.7 [18] Let (ℜ, pcb) be a complex partial b-metric space with coefficient
µ ⩾ 1. Then

• (i) The sequence {αn} in ℜ converges to α ∈ ℜ if lim
n→∞

pcb(αn, α) = pcb(α, α).

• (ii) The sequence {αn} is said to be a Cauchy sequence in (ℜ, pcb) if lim
m,n→∞

pcb(αm, αn)

exists and is finite.

• (iii) The space (ℜ, pcb) is said to be a complete complex partial b-metric space if for
every Cauchy sequence {αn} in ℜ, there exists α ∈ ℜ such that

lim
m,n→∞

pcb(αm, αn) = lim
m→∞

pcb(αm, α) = pcb(α, α).

• (iv) A mapping ζ : ℜ → ℜ is said to be continuous at α0 ∈ ℜ if for every ϵ > 0, there
exists t > 0 such that ζ(Bpcb(α0, t)) ⊂ Bpcb(ζ(α0, ϵ)).

3. Main results

Theorem 3.1 Let (ℜ, pcb) be a complete partial b-metric space with coefficient µ ⩾ 1
and ζ be a self-mapping on ℜ satisfying the following condition:

pcb(ζα, ζβ) ⩽ κ
[
pcb(α, ζβ) + pcb(ζα, β) + pcb(α, β)

]
(1)

for all α, β ∈ ℜ and κ ∈
[
0, 13

)
. Then ζ has a unique fixed point in ℜ.

Proof. Let ϵ0 be an arbitrary point of ℜ and a sequence {ϵn} in ℜ such that ζϵn = ϵn+1.
Now, putting α = ϵn−1 and β = ϵn in (1), we have

pcb(ϵn, ϵn+1) = pcb(ζϵn−1, ζϵn)

⩽ κ
[
pcb(ϵn−1, ζϵn) + pcb(ζϵn−1, ϵn) + pcb(ϵn−1, ϵn)

]
= κ

[
pcb(ϵn−1, ϵn+1) + pcb(ϵn, ϵn) + pcb(ϵn−1, ϵn)

]
(using pcb4)

⩽ κ
[
µ
{
pcb(ϵn−1, ϵn) + pcb(ϵn, ϵn+1)

}
− pcb(ϵn, ϵn) + pcb(ϵn, ϵn) + pcb(ϵn−1, ϵn)

]
,

which implies that

(1− κµ)pcb(ϵn, ϵn+1) ⩽ (κµ+ κ)pcb(ϵn−1, ζϵn).

Thus, pcb(ϵn, ϵn+1) ⩽
(
κµ+κ
1−κµ

)
pcb(ϵn−1, ζϵn) and hence, pcb(ϵn, ϵn+1) ⩽ ℏpcb(ϵn−1, ζϵn), where

ℏ =
(
κµ+κ
1−κµ

)
< 1 if κ < 1

1+2µ . Then it follows that

pcb(ϵn, ϵn+1) ⩽ ℏpcb(ϵn−1, ζϵn) ⩽ .... ⩽ ℏnpcb(ϵ0, ϵ1).

Now, we have to show that the sequence {ϵn} is a Cauchy sequence. For any m,n ∈ N
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with m < n, we get

pcb(ϵm, ϵn) ⩽ µ
[
pcb(ϵm, ϵm+1) + pcb(ϵm+1, ϵn)

]
− pcb(ϵm+1, ϵm+1)

⩽ µpcb(ϵm, ϵm+1) + µ2
[
pcb(ϵm+1, ϵm+2) + pcb(ϵm+2, ϵn)

]
− µpcb(ϵm+2, ϵm+2)− pcb(ϵm+1, ϵm+1)

⩽ µpcb(ϵm, ϵm+1) + µ2pcb(ϵm+1, ϵm+2) + µ3pcb(ϵm+2, ϵm+3) + .....+ µn−mpcb(ϵn−1, ϵn)

⩽ µℏmpcb(ϵ1, ϵ0) + µ2ℏm+1pcb(ϵ1, ϵ0) + µ3ℏm+2pcb(ϵ1, ϵ0) + .....+ µn−mℏn−1pcb(ϵ1, ϵ0)

= µℏm[1 + µℏ+ µ2ℏ2 + .....+ µn−m−1ℏn−m−1]pcb(ϵ1, ϵ0),

which implies that

pcb(ϵm, ϵn) ⩽ µℏm
[1− (µℏ)n−m

1− µℏ

]
pcb(ϵ1, ϵ0)

Thus, |pcb(ϵm, ϵn)| ⩽ µℏm
[
1−(µℏ)n−m

1−µℏ

]
|pcb(ϵ1, ϵ0)| → 0 as m,n → ∞, which implies that

lim
m,n→∞

pcb(ϵm, ϵn) = 0.

Hence, {ϵn} is a Cauchy sequence in ℜ. By completeness of ℜ, there exists a α ∈ ℜ such
that ϵn → α and

lim
m,n→∞

pcb(ϵm, ϵn) = lim
m→∞

pcb(ϵm, α) = pcb(α, α) = 0. (2)

Next, we have to show that ζ has a fixed point in ℜ. Let us assume that α ∈ ℜ and for
any n ∈ N, we obtain

pcb(α, ζα) ⩽ µ
[
pcb(α, ϵn+1) + pcb(ϵn+1, ζα)

]
− pcb(ϵn+1, ϵn+1)

⩽ µ
[
pcb(α, ϵn+1) + pcb(ζϵn, ζα)

]
⩽ µ

[
pcb(α, ϵn+1) + κ

{
pcb(ϵn, ζα) + pcb(ζϵn, α) + pcb(ϵn, α)

}]
By completeness of ℜ and using equation (2), we have pcb(α, ϵn) and pcb(ϵn, ζα) → 0 as
n → ∞. Therefore, pcb(α, ζα) ⩽ 0, but by definition of partial metric pcb(m,n) ⩾ 0. Thus,
pcb(α, ζα) = 0. Hence, α is a fixed point of ζ. Now, we have to show that α is a unique
fixed point of ζ. We assume a contradictory that α, β ∈ ℜ be two distinct fixed points of
ζ. Then pcb(α, α) = 0 and pcb(β, β) = 0. Now, consider

pcb(α, β) = pcb(ζα, ζβ) ⩽ κ
[
pcb(α, ζβ) + pcb(ζα, β) + pcb(α, β)

]
= κ

[
pcb(α, β) + pcb(α, β) + pcb(α, β)

]
= 3κpcb(α, β),

which implies that (1− 3κ)pcb(α, β) ⩽ 0. Since 1− 3κ > 0, therefore pcb(α, β) ⩽ 0, which
is contradiction. Hence our assumption is false. Thus, pcb(α, β) = 0 ⇒ α = β. Hence, the
fixed point is unique. ■
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Theorem 3.2 Let (ℜ, pcb) be a complete partial b-metric space with coefficient µ ⩾ 1
and ζ be a self-mapping on ℜ satisfying the following condition:

pcb(ζα, ζβ) ⩽ κmax
{
pcb(α, ζβ), p

c
b(ζα, β), p

c
b(α, β)

}
(3)

for all α, β ∈ ℜ and κ ∈
[
0, 13

)
. Then ζ has a unique fixed point in ℜ.

Proof. Let ϵ0 be an arbitrary point of ℜ and a sequence {ϵn} in ℜ, such that ζϵn = ϵn+1.
Now, putting α = ϵn−1 and β = ϵn in (3), we have

pcb(ϵn, ϵn+1) = pcb(ζϵn−1, ζϵn)

⩽ κmax
{
pcb(ϵn−1, ζϵn), p

c
b(ζϵn−1, ϵn), p

c
b(ϵn−1, ϵn)

}
= κmax

{
pcb(ϵn−1, ϵn+1), p

c
b(ϵn, ϵn), p

c
b(ϵn−1, ϵn)

}
.

Case-I If max
{
pcb(ϵn−1, ϵn+1), p

c
b(ϵn, ϵn), p

c
b(ϵn−1, ϵn)

}
= pcb(ϵn, ϵn), then pcb(ϵn, ϵn+1) ⩽

pcb(ϵn, ϵn), which is contradiction.

Case-II If max
{
pcb(ϵn−1, ϵn+1), p

c
b(ϵn, ϵn), p

c
b(ϵn−1, ϵn)

}
= pcb(ϵn−1, ϵn+1), then

pcb(ϵn, ϵn+1) ⩽ κ
[
µ
{
pcb(ϵn−1, ϵn) + pcb(ϵn, ϵn+1)

}
− pcb(ϵn, ϵn)

]
⩽ κµ

[
pcb(ϵn−1, ϵn) + pcb(ϵn, ϵn+1)

]
− κpcb(ϵn, ϵn)

⩽ κµ
[
pcb(ϵn−1, ϵn) + pcb(ϵn, ϵn+1)

]
,

which implies that (1− κµ)pcb(ϵn, ϵn+1) ⩽ κµpcb(ϵn−1, ϵn) Thus,

pcb(ϵn, ϵn+1) ⩽
( κµ

1− κµ

)
pcb(ϵn−1, ϵn)

and hence, pcb(ϵn, ϵn+1) ⩽ ℏpcb(ϵn−1, ζϵn), where ℏ =
(

κµ
1−κµ

)
< 1, if κ < 1

2µ . Then it

follows that

pcb(ϵn, ϵn+1) ⩽ ℏpcb(ϵn−1, ζϵn) ⩽ .... ⩽ ℏnpcb(ϵ0, ϵ1).

Thus, pcb(ϵn, ϵn+1) ⩽ ℏnpcb(ϵ0, ϵ1).

Case-III If max
{
pcb(ϵn−1, ϵn+1), p

c
b(ϵn, ϵn), p

c
b(ϵn−1, ϵn)

}
= pcb(ϵn−1, ϵn), then

pcb(ϵn, ϵn+1) ⩽ κpcb(ϵn−1, ϵn). Continuing this process, we obtain pcb(ϵn, ϵn+1) ⩽
κnpcb(ϵ0, ϵ1). Now, we have to show that the sequence {ϵn} is a Cauchy sequence. For
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any m,n ∈ N with m < n, we have

pcb(ϵm, ϵn) ⩽ µ
[
pcb(ϵm, ϵm+1) + pcb(ϵm+1, ϵn)

]
− pcb(ϵm+1, ϵm+1)

⩽ µpcb(ϵm, ϵm+1) + µ2
[
pcb(ϵm+1, ϵm+2) + pcb(ϵm+2, ϵn)

]
− µpcb(ϵm+2, ϵm+2)− pcb(ϵm+1, ϵm+1)

⩽ µpcb(ϵm, ϵm+1) + µ2pcb(ϵm+1, ϵm+2) + µ3pcb(ϵm+2, ϵm+3) + .....+ µn−mpcb(ϵn−1, ϵn)

⩽ µℏmpcb(ϵ1, ϵ0) + µ2ℏm+1pcb(ϵ1, ϵ0) + µ3ℏm+2pcb(ϵ1, ϵ0) + .....+ µn−mℏn−1pcb(ϵ1, ϵ0)

= µℏm[1 + µℏ+ µ2ℏ2 + .....+ µn−m−1ℏn−m−1]pcb(ϵ1, ϵ0)

= µℏm
[1− (µℏ)n−m

1− µℏ

]
pcb(ϵ1, ϵ0)

Thus, |pcb(ϵm, ϵn)| ⩽ µℏm
[
1−(µℏ)n−m

1−µℏ

]
|pcb(ϵ1, ϵ0)| → 0 as m,n → ∞, which implies that

lim
m,n→∞

pcb(ϵm, ϵn) = 0.

Hence {ϵn} is a Cauchy sequence in ℜ. By completeness of ℜ, there exists α ∈ ℜ such
that ϵn → α and

lim
m,n→∞

pcb(ϵm, ϵn) = lim
m→∞

pcb(ϵm, α) = pcb(α, α) = 0. (4)

Next, we have to show that ζ has a fixed point in ℜ. Let us assume that α ∈ ℜ and for
any n ∈ N, we obtain

pcb(α, ζα) ⩽ µ
[
pcb(α, ϵn+1) + pcb(ϵn+1, ζα)

]
− pcb(ϵn+1, ϵn+1)

⩽ µ
[
pcb(α, ϵn+1) + pcb(ζϵn, ζα)

]
⩽ µ

[
pcb(α, ϵn+1) + κmax

{
pcb(ϵn, ζα), p

c
b(ζϵn, α), p

c
b(ϵn, α)

}]
⩽ µ

[
pcb(α, ϵn+1) + κmax

{
pcb(ϵn, ζα), p

c
b(ϵn+1, α), p

c
b(ϵn, α)

}]
.

By completeness of ℜ and using equation (4), we have pcb(α, ϵn) and pcb(ϵn, ζα) → 0 as
n → ∞. Therefore, pcb(α, ζα) ⩽ 0, but by definition of partial metric pcb(m,n) ⩾ 0. Thus,
pcb(α, ζα) = 0. Hence, α is a fixed point of ζ. Now, we have to show that α is a unique
fixed point of ζ. We assume a contradictory that α, β ∈ ℜ are two distinct fixed points
of ζ. Then pcb(α, α) = 0 and pcb(β, β) = 0. Now, we have

pcb(α, β) = pcb(ζα, ζβ)

⩽ κmax
{
pcb(α, ζβ), p

c
b(ζα, β), p

c
b(α, β)

}
= κmax

{
pcb(α, β), p

c
b(α, β), p

c
b(α, β)

}
= κpcb(α, β),

which implies that (1− κ)pcb(α, β) ⩽ 0. Since 1− κ > 0, therefore pcb(α, β) ⩽ 0, which is
contradiction. Hence our assumption is false. Thus, pcb(α, β) = 0 ⇒ α = β. Hence, the
fixed point is unique. ■
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Example 3.3 [4, 9] As earlier, we have discussed in Example 2.5. We define a mapping
ζ : ℜ+ → ℜ+ such that ζ(s) = s

5 . Now, we choose α = 2, β = 3 and r = 2. We have

pcb(ζ(2), ζ(3)) = pcb

(2
5
,
3

5

)
=

( 9

25
+

1

25

)
(1 + i) =

2

5
(1 + i) (5)

Case-I: Now, we calculate

pcb(2, ζ(3)) + pcb(ζ(2), 3) + pcb(2, 3) = pcb

(
2,

3

5

)
+ pcb

(2
5
, 3
)
+ pcb(2, 3)

=
[(

4 +
49

25

)
+
(
9 +

169

25

)
+ (9 + 1)

]
(1 + i)

=
(
23 +

49

25
+

169

25

)
(1 + i) =

793

25
(1 + i).

From equations (1) and (5) with above value, we have

pcb(ζ(2), ζ(3)) ⩽ κ
[
pcb(2, ζ(3)) + pcb(ζ(2), 3) + pcb(2, 3)

]
.

Thus, ζ satisfies all conditions of Theorem 3.1 in complex partial b-metric space and
hence, 0 is unique fixed point of ζ.
Case-II: Again we calculate

max
[
pcb(2, ζ(3)), p

c
b(ζ(2), 3), p

c
b(2, 3)

]
= max

[
pcb

(
2,

3

5

)
, pcb

(2
5
, 3
)
, pcb(2, 3)

]
= max

[(
4 +

49

25

)
,
(
9 +

169

25

)
, (9 + 1)

]
(1 + i)

=
(
9 +

169

25

)
(1 + i) =

394

25
(1 + i).

From equations (3) and (5) with above value, we have

pcb(ζ(2), ζ(3)) ⩽ κmax
[
pcb(2, ζ(3)), p

c
b(ζ(2), 3), p

c
b(2, 3)

]
.

Similarly, ζ satisfies all conditions of Theorem 3.2 in complex partial b-metric space.
Therefore, 0 is unique fixed point of ζ.

Theorem 3.4 Let (ℜ, pcb) be a complete partial b-metric space with coefficient µ ⩾ 1
and ζ, ξ : ℜ → ℜ be two continuous and weakly increasing self-mappings satisfy the
following condition

pcb(ζα, ξβ) ⩽ κ
[
pcb(α, ξβ) + pcb(ζα, β) + pcb(α, β)

]
(6)

for all α, β ∈ ℜ and κ ∈
[
0, 13

)
. Then ζ and ξ have a unique common fixed point in ℜ.

Proof. Let ϵ0 be an arbitrary point of ℜ and a sequence {ϵn} in ℜ such that ϵ2n+1 = ζϵ2n
and ϵ2n+2 = ξϵ2n+1 for n = 0, 1, 2, · · · . Then ϵ1 = ζϵ0 and ξϵ1 = ϵ2. Since ζ and ξ are
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weakly increasing mapping. Therefore, we obtain

ϵ1 = ζϵ0 ⩽ ξζϵ0 = ξϵ1 = ϵ2,

ϵ2 = ξϵ1 ⩽ ζξϵ1 = ζϵ2 = ϵ3.

Continuing this process, we have

ϵ1 ⩽ ϵ2 ⩽ ϵ3 ⩽ ..... ⩽ ϵn ⩽ ϵn+1 ⩽ ...

Now, consider pcb(ϵ2n, ϵ2n+1) = 0 for all n ∈ N. Then ϵ2n = ϵ2n+1. Therefore, by the
definition of ζ and ξ, we have

ϵ2n = ϵ2n+1 = ζϵ2n , ϵ2n+1 = ϵ2n+2 = ξϵ2n+1.

Therefore, ζ and ξ have a common fixed point in ℜ. Hence, the proof is complete. Next,
we assume that pcb(ϵ2n, ϵ2n+1) > 0 for all n ∈ N. Since ϵ2n and ϵ2n+1 are comparable, we
have

pcb(ϵ2n+1, ϵ2n+2) = pcb(ζϵ2n, ξϵ2n+1)

⩽ κ
[
pcb(ζϵ2n, ϵ2n+1) + pcb(ϵ2n, ξϵ2n+1) + pcb(ϵ2n, ϵ2n+1)

]
= κ

[
pcb(ϵ2n+1, ϵ2n+1) + pcb(ϵ2n, ϵ2n+2) + pcb(ϵ2n, ϵ2n+1)

]
⩽ κ

[
pcb(ϵ2n+1, ϵ2n+1) + µ

{
pcb(ϵ2n, ϵ2n+1) + pcb(ϵ2n+1, ϵ2n+2)

}
− pcb(ϵ2n+1, ϵ2n+1) + pcb(ϵ2n, ϵ2n+1)

]
,

which implies that (1− κµ)pcb(ϵ2n+1, ϵ2n+2) ⩽ (κ+ κµ)pcb(ϵ2n, ϵ2n+1). Thus,

pcb(ϵ2n+1, ϵ2n+2) ⩽
(κ+ κµ

1− κµ

)
pcb(ϵ2nϵ2n+1)

and hence, pcb(ϵ2n+1, ϵ2n+2) ⩽ ℏpcb(ϵ2n, ϵ2n+1), where ℏ =
(
κ+κµ
1−κµ

)
< 1 if κ < 1

1+2µ .

Continuing in the following way, we obtain

pcb(ϵ2n+1, ϵ2n+2) ⩽ ℏpcb(ϵ2n, ϵ2n+1) ⩽ ℏ2pcb(ϵ2n−1, ϵ2n) ⩽ ...... ⩽ ℏ2n+1pcb(ϵ0, ϵ1).

Now, we have to show that the sequence {ϵn} is a Cauchy sequence. For any m,n ∈ N
with m < n, we have

pcb(ϵm, ϵn) ⩽ µ
[
pcb(ϵm, ϵm+1) + pcb(ϵm+1, ϵn)

]
− pcb(ϵm+1, ϵm+1)

⩽ µpcb(ϵm, ϵm+1) + µ2
[
pcb(ϵm+1, ϵm+2) + pcb(ϵm+2, ϵn)

]
− µpcb(ϵm+2, ϵm+2)− pcb(ϵm+1, ϵm+1)

⩽ µpcb(ϵm, ϵm+1) + µ2pcb(ϵm+1, ϵm+2) + µ3pcb(ϵm+2, ϵm+3) + ...+ µn−mpcb(ϵn−1, ϵn)

⩽ µℏmpcb(ϵ1, ϵ0) + µ2ℏm+1pcb(ϵ1, ϵ0) + µ3ℏm+2pcb(ϵ1, ϵ0) + ...+ µn−mℏn−1pcb(ϵ1, ϵ0)

= µℏm[1 + µℏ+ µ2ℏ2 + ...+ µn−m−1ℏn−m−1]pcb(ϵ1, ϵ0),
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which implies that

pcb(ϵm, ϵn) ⩽ µℏm
[1− (µℏ)n−m

1− µℏ

]
pcb(ϵ1, ϵ0).

Thus, |pcb(ϵm, ϵn)| ⩽ µℏm
[
1−(µℏ)n−m

1−µℏ

]
|pcb(ϵ1, ϵ0)| → 0 as m,n → ∞, which implies that

lim
m,n→∞

pcb(ϵm, ϵn) = 0.

Hence, {ϵn} is a Cauchy sequence in ℜ. By completeness of ℜ, there exists a α ∈ ℜ such
that ϵn → α and

lim
m,n→∞

pcb(ϵm, ϵn) = lim
m→∞

pcb(ϵm, α) = pcb(α, α) = 0. (7)

Since ζ and ξ are continuous in (ℜ, pcb), then by property of continuity, ζϵ2n → ζα and
ξϵ2n+1 → ξα as n → ∞. Therefore,

pcb(ζα, ζα) = lim
n→∞

pcb(ζα, ζϵ2n) = lim
n→∞

pcb(ζϵ2n, ζϵ2n),

but

pcb(ζα, ζα) = lim
n→∞

pcb(ζϵ2n, ζϵ2n) = lim
n→∞

pcb(ϵ2n+1, ϵ2n+1) = 0. (8)

Similarly,

pcb(ξα, ξα) = lim
n→∞

pcb(ξα, ξϵ2n+1) = lim
n→∞

pcb(ξϵ2n+1, ξϵ2n+1),

but

pcb(ξα, ξα) = lim
n→∞

pcb(ξϵ2n+1, ξϵ2n+1) = lim
n→∞

pcb(ϵ2n+2, ϵ2n+2) = 0.

Next, we have to show that ζ and ξ have a common fixed point in ℜ. Let us assume that
α ∈ ℜ and for any n ∈ N, we have

pcb(α, ζα) ⩽ µ
[
pcb(α, ϵn+1) + pcb(ϵn+1, ζα)

]
− pcb(ϵn+1, ϵn+1)

⩽ µ
[
pcb(α, ϵn+1) + pcb(ζϵn, ζα)

]
⩽ µ

[
pcb(α, ϵn+1) + κ

{
pcb(ϵn, ζα) + pcb(ζϵn, α) + pcb(ϵn, α)

}]
⩽ µ

[
pcb(α, ϵn+1) + κ

{
pcb(ϵn, ζα) + pcb(ϵn+1, α) + pcb(ϵn, α)

}]
.

By completeness of ℜ and using equation (7) and (8), we have pcb(α, ϵn) and pcb(ϵn, ζα) → 0
as n → ∞. Therefore, pcb(α, ζα) ⩽ 0, but by definition of partial metric pcb(m,n) ⩾ 0.
Thus, pcb(α, ζα) = 0. Therefore, ζα = α. Hence, α is a fixed point of ζ. Similarly, we can
prove that α is fixed point of ξ. Hence, ζα = ξα = α. Thus, α is a common fixed point
of ζ and ξ. Now, we have to show that α is a unique common fixed point of ζ and ξ. We
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assume a contradictory that α, β ∈ ℜ are two distinct common fixed points of ζ and ξ.
Then pcb(α, α) = 0 and pcb(β, β) = 0. Now, consider

pcb(α, β) = pcb(ζα, ξβ)

⩽ κ
{
pcb(α, ξβ) + pcb(ζα, β) + pcb(α, β)

}
= κ

{
pcb(α, β) + pcb(α, β) + pcb(α, β)

}
= 3κpcb(α, β)

which implies that (1− 3κ)pcb(α, β) ⩽ 0. Since 1− 3κ > 0, therefore pcb(α, β) ⩽ 0, which
is contradiction. Hence, our assumption is false. Thus, pcb(α, β) = 0 ⇒ α = β. Hence, α
is a unique common fixed point of ζ and ξ. ■

Example 3.5 Let ℜ = {a, b, c, d} be a non-void set with partial order relation α ⪯ β if
and only if α ⩽ β. Consider a mapping pcb : ℜ× ℜ → C as follows:

(α, β) pcb(α, β)

(a, a), (b, b) 0

(a, b), (b, a), (a, c), (c, a), (b, c), (c, b), (c, c) eiθ

(a, d), (d, a), (b, d), (d, b), (c, d), (d, c),(d, d) deiθ

Here (ℜ, pcb) satisfies all properties of complete complex partial b-metric space with the
coefficient µ ⩾ 1 and θ ∈ [0, π]. Define two self-mappings ζ, ξ on ℜ such that

ζα = a and ξβ =

{
a if β ∈ {a, b, c}
b if β = d.

Then ζ and ξ are continuous and weakly increasing mappings. Now, we create different
cases as follows:
Case-I: For α = a and β = a, we have ζα = a and ξβ = a. Then (6) is trivially true.
Case-II: For α = b and β = d, we have ζα = a and ξβ = b. So, for value of α and β, we
have pcb(ζα, ξβ) = pcb(ζb, ξd) = pcb(a, b) = eiθ. Putting value of α and β in (6) and using
above values, we have

pcb(ζα, ξβ) ⩽ κ
[
pcb(α, ξβ) + pcb(ζα, β) + pcb(α, β)

]
,

which implies that

pcb(ζb, ξd) ⩽ κ
[
pcb(b, ξd) + pcb(ζb, d) + pcb(b, d)

]
.

Thus, eiθ ⩽ κ
[
pcb(b, b) + pcb(a, d) + pcb(b, d)

]
and hence, eiθ ⩽ κ

[
0 + deiθ + deiθ

]
. So

eiθ ⩽ κ(2d)eiθ, which implies that 1 ⩽ κ(2d) and hence, κ ⩾ 1
2d .

Case-III: For α = d and β = d, then ζα = a and ξβ = b. Therefore, for value of α and
β, we have pcb(ζα, ξβ) = pcb(ζd, ξd) = pcb(a, b) = eiθ. Similar process of case-II and using
(6), we have

pcb(ζd, ξd) ⩽ κ
[
pcb(d, ξd) + pcb(ζd, d) + pcb(d, d)

]
,
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which implies that

eiθ ⩽ κ
[
pcb(d, b) + pcb(a, d) + pcb(d, d)

]
= κ

[
deiθ + deiθ + deiθ

]
.

Thus, eiθ ⩽ κ(3d)eiθ, which implies that 1 ⩽ κ(3d) and hence, κ ⩾ 1
3d .

Case-IV: (i) for α = a and β = d, then ζα = a and ξβ = b and (ii) for α = c and β = d,
then ζα = a and ξβ = b. So, for all values of α and β, we have pcb(ζα, ξβ) = pcb(a, b) = eiθ.
As similar manner of above cases, putting for all values of α and β in equation (6) and
using above values, we get eiθ ⩽ κ

[
eiθ + deiθ + deiθ

]
and so, eiθ ⩽ κ(1 + 2d)eiθ. Thus,

1 ⩽ κ(1 + 2d) ⇒ κ ⩾ 1

1 + 2d
.

Case-V: (i) for α = b and β = c, then ζα = a and ξβ = a and (ii) for α = c
and β = c, then ζα = a and ξβ = a. Therefore, for all values of α and β, we have
pcb(ζα, ξβ) = pcb(a, a) = 0. Similarly as above, putting for all values of α and β in (6), we
have 0 ⩽ κ

[
eiθ + eiθ + eiθ

]
and hence, 0 ⩽ κ(3)eiθ. Thus, 0 ⩽ κ(3) and κ ⩾ 0.

Case-VI: For (i) α = a, β = b then ζα = a and ξβ = a.
(ii) α = a, β = c then ζα = a and ξβ = a.
(iii) α = b, β = b then ζα = a and ξβ = a.

So, for all values of α and β, we have pcb(ζα, ξβ) = pcb(a, a) = 0. Similarly, putting for
all values of α and β in equation (6) and using required values given above, we get
0 ⩽ κ

[
eiθ + eiθ + 0

]
, which implies that 0 ⩽ κ(2)eiθ. Thus, 0 ⩽ κ(2) and hence, κ ⩾ 0.

Here, ζ and ξ satisfy all conditions of Theorem 3.4. Hence, a is a unique common fixed
point of ζ and ξ. ■
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