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1. Introduction and preliminaries

Numerous of real life problems such as system of linear or algebraic equations, ordinary
or partial differential equations, etc can be framed as linear or nonlinear equations of
the form Sa = a. In this case a is called a fixed point of S. To study the existence
of fixed points for discontinuous mappings, Kannan [7] introduced a weaker contraction
condition and proved a very interesting fixed point result. Rhoades [11] compared various
contractive definitions and he showed that though most of the contractive definitions do
not force the mapping to be continuous on the entire domain, all of them force the
mapping to be continuous at the fixed point. Motivated by his observations, Rhoades
[12] formulated an interesting open question whether there exists a contractive definition
which is strong enough to ensure the existence and uniqueness of a fixed point which
does not force the mapping to be continuous at the fixed point.For more details, we refer
to [1, 2, 9] and reference contained therein. The first answer of the this open question

∗Corresponding author.
E-mail address: mahdi.salamatbakhsh@gmail.com (M. Salamatbakhsh); Robab.haghi@gmail.com (R. H. Haghi);
fallahi1361@gmail.com (K. Fallahi).

Print ISSN: 2252-0201 © 2022 IAUCTB.
Online ISSN: 2345-5934 http://jlta.iauctb.ac.ir

http://jlta.ctb.iau.ir/article_690298.html
http://dx.doi.org/10.30495/jlta.2022.1949868.1459


16 M. Salamatbakhsh et al. / J. Linear. Topological. Algebra. 11(01) (2022) 15-26.

appeared after more than a decade by Pant [10]. On the other hand, Wardowski [19]
introduced a new class of functions and denoted them by F−contractions mappings.
In recent years, the concept of F−contractions has attracted the attention of several
researchers. By now, there exists a considerable literature in enriching this idea (see
[3, 6] and references therein).

All maps have not fixed point. In this case, one tries to gain an approximate solutions
a subject to the condition that the distance between a and Sa is minimum. Indeed, best
proximity point theorems explore the existence of such optimal approximate solutions,
known as best proximity points of map or multifunction. Then a is the best proximity
of S : A → B if ρ(a,Sa) = ρ(A,B).

A best proximity point theorem for non-self-contractions has been investigated in [15].
In [13] Sadiq Basha defined proximal contraction mappings S : A → B and proved the
best proximity point for these mappings.

In this paper we introduce proximal F∗-weak contraction mappings of first and second
kind, then we proved best proximity point theorems for such contractions. Throughout
this paper, let (M, ρ) be a metric space and A and B be nonempty subsets of M. We
recall the following notations, which will be used in the sequel.

ρ(A,B) := inf{ρ(a, b) : a ∈ A and b ∈ B},

A0 := {a ∈ A : ρ(a, b) = ρ(A,B) for some b ∈ B},

B0 := {b ∈ B : ρ(a, b) = ρ(A,B) for some a ∈ A}.

In [8], sufficient conditions are provided to guarantee the non-empties of A0 and B0.
Also, in the setting of normed linear spaces, if A and B are closed subsets such that
ρ(A,B) > 0, then A0 and B0 are contained in the boundaries of A and B, respectively
[17].

Definition 1.1 [13] The set B is said to be approximatively compact with respect to
A if every sequence {bn} of B satisfying the condition that ρ(a, bn) → ρ(a,B) for some
a ∈ A has a convergent subsequence.

It is trivial to note that every set is approximatively compact with respect to itself,
and that every compact set is approximatively compact with respect to any arbitrary
set. Further, A0 and B0 are nonempty if A is compact and B is approximatively compact
with respect to A.

Definition 1.2 [13] A point a∗ ∈ A is called a best proximity point of map S : A → B
if it satisfies the condition that ρ(a∗,Sa∗) = ρ(A,B).

It is apparent that a best proximity point serves as a global minimizer of a → ρ(a,Sa),
Since we have ρ(a,Sa) ⩾ ρ(A,B) for all a ∈ A. As a result, a best proximity point repre-
sents an optimal approximate solution of a = Sa in the sense that it is an approximate
solution of a = Sa with the least possible error.

Definition 1.3 [16] Let {an} be a sequence in A and {bn} be a sequence in B. Then,
the sequence {(an, bn)} in A×B is said to be a cyclically Cauchy sequence if and only if
for every ϵ > 0, there exits a positive integer N such that ρ(am, bn) < ρ(A,B) + ϵ for all
m,n ⩾ N .

The sequence {an} in A is a Cauchy sequence if and only if the sequence {(an, an)} is
a cyclically Cauchy sequence in A×A.

Definition 1.4 [16] Let {an} be a sequence in A and {bn} be a sequence in B. Then,
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the sequence {(an, bn)} in A×B is said to be a fairly Cauchy sequence if and only if the
following conditions are satisfied:
(i) {(an, bn)} is a cyclically Cauchy sequence;
(ii) {an} and {bn} are Cauchy sequence.

Definition 1.5 [16] The pair (A,B) is called a fairly complete space if and only if
for every fairly Cauchy sequence {(an, bn)} in A × B, the sequences {an} and {bn} are
convergent in A and B, respectively.

Definition 1.6 [14] A set A is said to have uniform approximation in B if and only if,
for given ϵ > 0, there exists δ > 0 such thatρ(a1, b1) = ρ(A,B)

ρ(a2, b2) = ρ(A,B)
ρ(a1, a2) < δ

implies ρ(b1, b2) < ϵ

for all a1, a2 ∈ A and b1, b2 ∈ B.

Definition 1.7 [13] Let S : A → B be a map. Then, A is said to have uniform S-
approximation in B if, for given ϵ > 0, there exists δ > 0 such thatρ(u1,Sa1) = ρ(A,B)

ρ(u2,Sa2) = ρ(A,B)
ρ(u1, u2) < δ

implies ρ(Sa1,Sa2) < ϵ

for all a1, a2, u1, u2 ∈ A.

Definition 1.8 Given non-empty subsets A and B of a metric space, a map S : A → B
is said to be a proximally quasi-continuous ifρ(un,San) = ρ(A,B)

ρ(u,Sa) = ρ(A,B)
an → a

implies unk
→ u for some subsequence unk

of un

for a, u ∈ A and for all sequences {un} and {an} in A.

Definition 1.9 [19] Let F : (0,+∞) → R be a mapping satisfying:
F1: S is strictly increasing, that is, α < β implies F(α) < F(β) for all α, β ∈ (0,+∞),
F2: For every sequence {αn} in (0,+∞) we have

lim
n→+∞

αn = 0 if and only if lim
n→+∞

F(αn) = −∞

F3: There exists a number k ∈ (0, 1) such that limα→0 α
kF(α) = 0

We denote with Ψ the family of all functions F which satisfy the conditions F1 −F3.

Example 1.10 Let Fi : (0,+∞) → R, where i = 1, 2, 3, 4 be defined by

F1(α) =
1√
α
, F2(α) = ln(α), F3(α) = ln(α) + α, F4(α) = ln(α2 + α).

Then F1,F2,F3,F4 ∈ Ψ.
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It was remarked in [19] that the monotonicity of F implies that every F-contraction
mapping is contractive and hence continuous. Secelean [18] observed that the continuity
of any F-contraction mapping can be obtained from the condition F2. Wardowski1 and
Dung [20] used the same class of auxiliary functions to introduce the notion of F−weak
contractions that we denote it with Ψ∗ that is the family of all functions F such that
satisfy the conditions F2. Obviously, Ψ∗ ⊆ Ψ. However, the converse inclusion is not
true in general as shown in the following examples:

Example 1.11 Let F : (0,+∞) → R be given by F(α) = ln(α2 )+sin(α). It is clear that
F satisfies F2. However, it does not satisfy F1.

Example 1.12 Let F : (0,+∞) → R be given by F(α) = cos(α)− 1
α . It is clear that F

satisfies F2. However, it does not satisfy F1 and F3.

Next, we introduce the notion of proximal F∗−weak contraction mappings, which runs
as follows.

Definition 1.13 A mapping S : A → B is called a proximal F∗−weak contraction of
the first kind if there exists F ∈ Ψ∗ and τ > 0 such that

ρ(u1,Sa1) = ρ(u2,Sa2) = ρ(A,B) implies τ + F(ρ(u1, u2)) ⩽ F(ρ(a1, a2)),

where a1, a2, u1, u2 ∈ A and a1 ̸= a2, u1 ̸= u2.

Definition 1.14 Let A,B be nonempty subsets of a metric space M. S : A → B is
said to be a proximal F∗−weak contraction of the second kind if and only if there exists
F ∈ Ψ∗ and τ > 0 such that{

ρ(u1,Sa1) = ρ(A,B)
ρ(u2,Sa2) = ρ(A,B) implies τ + F(ρ(Su1,Su2)) ⩽ F(ρ(Sa1,Sa2)),

where a1, a2, u1, u2 ∈ A and Sa1 ̸= Sa2,Su1 ̸= Su2.

Definition 1.15 A mapping S : A → B is said to be a strong proximal F∗−weak
contraction of the second kind if and only if the following conditions are satisfied:
(a) S is a proximally quasi-continuous,
(b) S is a proximal F∗−weak contraction of the second kind.

Lemma 1.16 [4] Let {an} be a sequence in M. If {an} is not a Cauchy sequence, then
there exist an ϵ > 0 and two sequences {an(k)} and {am(k)} of {an} such that for all
k ⩾ 1 and m(k) < n(k),

ρ(am(k), an(k)) ⩾ ϵ and ρ(am(k), an(k)−1) < ϵ,

furthermore, if lim
n→+∞

ρ(an, an+1) = 0, then

lim
k→+∞

ρ(am(k), an(k)) = lim
k→+∞

ρ(am(k)−1, an(k)−1) = ϵ.

2. Main Results

Now, we are ready to state and prove our main results.
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Lemma 2.1 Let A and B be non-empty subsets of a metric space such that A0 and B0

are non-empty and S : A → B be a map. Also, assume that S(a) ∈ B0 for any a ∈ A0.
Then there exists a sequence {an} in A0 such that ρ(an+1,San) = ρ(A,B) for all n ∈ N.

Proof. Let a0 ∈ A0. By assumption S(a0) ∈ B0. Therefore there exists a1 ∈ A such that
ρ(a1,S(a0)) = ρ(A,B). Also, we have a1 ∈ A0. By assumption S(a1) ∈ B0. Therefore,
there exists a2 ∈ A such that ρ(a2,S(a1)) = ρ(A,B). We have a2 ∈ A0. By repeating the
same process, we can make sequence {an} in A such that ρ(an+1,San) = ρ(A,B) for all
n ∈ N. ■

Theorem 2.2 Let (M, ρ) be a complete metric space. Suppose that the following con-
ditions are satisfied:
(i) A,B are nonempty subsets of M and A is closed;
(ii) B is approximatively compact with respect to A;
(iii) A0 is nonempty;
(iv) S : A → B is a proximal F∗−weak contraction of the first kind;
(v) S(A0) ⊆ B0;
(vi) F is continuous.
Then there exists a unique element a ∈ A such that ρ(a,Sa) = ρ(A,B). Further, for any
fixed a0 ∈ A0, the sequence {an} defined by ρ(an+1,San) = ρ(A,B) is convergent to a.

Proof. Let a0 ∈ A0. By using Lemma 2.1, we get the sequence {an} in A0 such that,
for any n ∈ N, we have

ρ(an+1,San) = ρ(an+2,San+1) = ρ(A,B).

By (iv), for any n ∈ N, we get

τ + F(ρ(an+2, an+1)) ⩽ F(ρ(an+1, an)). (1)

We are going to show that lim
n→+∞

ρ(an+1, an) = 0. By (1), we have

F(ρ(an+1, an)) ⩽ F(ρ(an, an−1))− τ.

By repeating this process, for any n ∈ N, we get

F(ρ(an+1, an)) ⩽ F(ρ(a1, a0))− nτ.

It follows that lim
n→+∞

F(ρ(an+1, an)) = −∞. Consequently

lim
n→+∞

ρ(an+1, an) = 0. (2)

Now, we claim that {an} is a Cauchy sequence. If not, due to Lemma 1.16 and (2), there
exist ϵ > 0 and two sub-sequences {am(k)} and {an(k)} of {an} such that for all k ⩾ 1
and m(k) < n(k),

ρ(an(k)−1, am(k)) < ϵ ⩽ ρ(an(k), am(k))
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and

lim
k→+∞

ρ(an(k), am(k)) = lim
k→+∞

ρ(an(k)−1, am(k)−1) = ϵ. (3)

Since

ρ(an(k),San(k)−1) = ρ(am(k),Sam(k)−1) = ρ(A,B),

then by applying (iv), we have

τ + F(ρ(an(k), am(k))) ⩽ F(ρ(an(k)−1, am(k)−1)). (4)

As F is continuous, so on letting k → +∞ in (4) and using (3), we obtain τ+F(ϵ) ⩽ F(ϵ),
which is a contradiction. Hence, {an} is a Cauchy sequence. Since M is a complete metric
space and A is closed, there exists a ∈ A such that an → a as n → +∞. It is easy to
prove that

ρ(a,B) ⩽ ρ(a,San) ⩽ ρ(a, an+1) + ρ(an+1,San)

= ρ(a, an+1) + ρ(A,B) ⩽ ρ(a, an+1) + ρ(a,B). (5)

Therefore, ρ(a,San) → ρ(a,B) as n → +∞. By (ii), {San} has a convergent subsequence
to b ∈ B. Then ρ(a, b) = ρ(A,B) and so a ∈ A0. Therefore, Sa ∈ B0. We claim that
ρ(a, T a) = ρ(A,B), if not, there exists c ∈ A such that ρ(c,Sa) = ρ(A,B). By (iv), we
get

τ + F(ρ(an+1, c)) ⩽ F(ρ(a, an)).

Since F is a continuous map, then by taking n → +∞ we get τ = 0 that is a contradiction.
Then ρ(a,Sa) = ρ(A,B). Now, assume that a∗ is an another best proximity point of S
(then ρ(a, a∗) > 0). We have

ρ(a,Sa) = ρ(a∗,Sa∗) = ρ(A,B).

By (iv), we get

τ + F(ρ(a, a∗)) ⩽ F(ρ(a, a∗))

That is a contradiction. Then ρ(a, a∗) = 0 and so a = a∗. ■

Theorem 2.3 Let (M, ρ) be a complete metric space. Suppose that the following con-
ditions are satisfied:
(i) A,B are nonempty closed subsets of M;
(ii) B is approximatively compact with respect to A;
(iii) A0 is nonempty;
(iv) S : A → B is a strong proximal F∗−weak contraction of the second kind;
(v) S(A0) ⊆ B0;
(vi) A is continuous.
Then there exists a unique element a ∈ A such that ρ(a,Sa) = ρ(A,B). Further, for any
fixed a0 ∈ A0, the sequence {an} defined by ρ(an+1,San) = ρ(A,B) is convergent to a.
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Proof. Let a0 ∈ A1. By using Lemma 2.1 we get a sequence {an} in A0 such that, for
any n ∈ N, we have

ρ(an+1,San) = ρ(an+1,San) = ρ(A,B).

By (iv), for any n ∈ N, we get

τ + F(ρ(San+2,San+1)) ⩽ F(ρ(San+1,San)). (6)

We are going to show that lim
n→+∞

ρ(San+1,San) = 0. By (6), for any n ∈ N, we have

F(ρ(San+1,San)) ⩽ F(ρ(San,San−1))− τ.

With repeating this process, for any n ∈ N, we get

F(ρ(San+1,San)) ⩽ F(ρ(Sa1,Sa0))− nτ.

It follows that lim
n→+∞

F (ρ(San+1,San)) = −∞ and consequently, we have

lim
n→+∞

ρ(San+1,San) = 0. (7)

Now, we claim that {San} is a Cauchy sequence. If not, due to Lemma 1.16 and (7),
there exist ϵ > 0 and two sub-sequences {Sam(k)} and {San(k)} of {San} such that

ρ(Sam(k), an(k1) < ϵ = ρ(San(k),Sam(k))

for all k ⩾ 1 and m(k) < n(k), and

lim
k→+∞

ρ(San(k),Sam(k)) = lim
k→+∞

ρ(San(k)−1,Sam(k)−1) = ϵ. (8)

Now, in view of (8), there exists N ∈ N such that ρ(an(k), am(k)) > 0 for all k ⩾ N . Since

ρ(an(k),San(k)−1) = ρ(am(k),Sam(k)−1) = ρ(A,B),

then by applying (iv), we have

τ + F(ρ(San(k),Sam(k))) ⩽ F(ρ(San(k)−1,Sam(k)−1)). (9)

As F is continuous, so on letting k → +∞ in (9) and using (8), we obtain τ +F(ϵ) ⩽
F(ϵ), which is a contradiction. Hence, {San} is a Cauchy sequence. SinceM is a complete
metric space and B is closed, there exists b ∈ B such that San → b as n → +∞. Also,
we have

ρ(b,A) ⩽ ρ(b, an+1) ⩽ ρ(b,San) + ρ(an+1,San)

= ρ(b,San) + ρ(A,B) (10)

⩽ ρ(b,San) + ρ(b,A).
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Then ρ(b, an+1) → ρ(b,A) as n → +∞. By (ii), {an} has a convergent subsequence to
a ∈ A. Therefore, ρ(a, b) = ρ(A, b). By (10), we have

ρ(A,B) ⩽ ρ(b,A) ⩽ ρ(b, an+1) ⩽ ρ(y,San) + ρ(an+1,San).

Then

ρ(A,B) ⩽ ρ(b, an+1) ⩽ ρ(b,San) + ρ(A,B).

Thus, ρ(a, b) = ρ(A,B) and so we have a ∈ A0. By (v), there exists c ∈ A such that
ρ(c,Sa) = ρ(A,B). Moreover, {an} has a convergent subsequence like {ank

} such that
ank

→ a as k → +∞. So we have

ρ(ank+1,Sank
) = ρ(c,Sa) = ρ(A,B).

On account of the fact that S is proximally quasi-continuous (by (iv)), {ank
} has a

convergent subsequence to c. Thus, c = a and we get ρ(a,Sa) = ρ(A,B). ■

Theorem 2.4 Let (M, ρ) be a complete metric space. Suppose that the following con-
ditions are satisfied:
(i) A,B are nonempty closed subsets of M;
(ii) A0 is nonempty;
(iii) S : A → B is a strong proximal F∗−weak contraction of the first and second kind;
(v) S(A0) ⊆ B0;
(vi) F is continuous.
Then there exists a unique element a ∈ A such that ρ(a,Sxa) = ρ(A,B). Further, for
any fixed a0 ∈ A0, the sequence {an} defined by ρ(an+1,San) = ρ(A,B) is convergent to
a.

Proof. Let a0 ∈ A1. Using Lemma 2.1 we get a sequence {an} in A0 such that

ρ(an+1,San) = ρ(an+2,San+1) = ρ(A,B).

Similar to the proof of Theorem 2.2, it can be shown that, {an} ⊆ A is a Cauchy
sequence. since M is complete and A is closed, then there exists a ∈ A such that an → a
as n → +∞. Also similar to the proof of Theorem 2.2, San is a Cauchy sequence. So there
exists b ∈ B such that San → b as n → +∞. Then ρ(an+1,San) → ρ(a, b) = ρ(A,B) as
n → +∞. Thus a ∈ A0 and so there exists c ∈ B0 such that

ρ(c,Sa) = ρ(an+1,San) = ρ(A,B).

Similar to the proof of Theorem 2.2 we can show that c = a and a is the unique best
proximity point of S. ■

In next theorems we replace approximatively compact condition with others conditions.

Theorem 2.5 Let (M, ρ) be a metric space. Suppose that the following conditions are
satisfied
(i) A,B are nonempty closed subsets of M;
(ii) A0,B0 are nonempty;
(iii) (A,B) is a fairly complete space;
(iv) A has uniform S−approximation in B;
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(v) S : A → B is a proximal F∗−weak contraction of the first kind;
(vi) S(A0) ⊆ B0;
(vii) F is continuous.
Then there exists a ∈ A such that ρ(a,Sa) = ρ(A,B). Further, for any fixed a0 ∈ A0,
the sequence {an} defined by ρ(an+1,San) = ρ(A,B) is convergent to a.

Proof. Let a0 ∈ A0. Using Lemma 2.1, we get sequences {an} in A0 and {bn} in B0

(bn = San) such that for any n ∈ N, we have

ρ(an+1, bn) = ρ(an+1,San) = ρ(A,B)

and

ρ(an+1,San) = ρ(an+2,San+1) = ρ(A,B).

Thus, by (v), we get

τ + F(ρ(an+2, an+1)) ⩽ F(ρ(an+1, an)). (11)

for any n ∈ N.
Similar to the proof of Theorem 2.2, it can be shown that {an} ⊆ A is a Cauchy

sequence. Then by (iv), there exists δ > 0 such that for enough large m,n,

ρ(an+1, bn) = ρ(am+1, bm) = ρ(A,B), ρ(an+1, am+1) < δ =⇒ ρ(bn, bm) < ϵ.

for given ϵ > 0. Then {bn} is a Cauchy sequence. Also, we have

ρ(bn, an) ⩽ ρ(bn, an+1) + ρ(an+1, an) ⩽ ρ(A,B) + ρ(an+1, an).

On the other hand,

ρ(am, bn) ⩽ ρ(am, an) + ρ(an, bn).

Therefore, (an, bn) is a cyclically Cauchy sequence. By (iii), there exists a ∈ A and b ∈ B
such that an → a and bn → b as n → +∞. Thus, we have

ρ(a, b) = lim
n→+∞

ρ(an+1, bn) = ρ(A,B).

Then for a ∈ A0 and by (vi), there exists c ∈ A such that ρ(c,Sa) = ρ(A,B). Let c ̸= a.
For any n ∈ N, we have ρ(an+1,San) = ρ(A,B). By (v), we can deduce that

τ + F(ρ(an+1, c)) ⩽ F(ρ(an, c)).

That is a contradiction. Then c = a. Also Similar to the proof of Theorem 2.2 we can
show that the best proximity point of S is unique and the proof is complete. ■

Theorem 2.6 Let (M, ρ) to be a metric space. Suppose that the following conditions
are satisfied:
(i) A,B are nonempty closed subsets of M;
(ii) A0, B0 are nonempty;
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(iii) (A,B) is a fairly complete space;
(iv) BA has a uniform approximation in A;
(v) S : A → B is a strong proximal F∗−weak contraction of the second kind;
(vi) S(A0) ⊆ B0;
(vii) F is continuous.
Then there exists a unique element a ∈ A such that ρ(a,Sa) = ρ(A,B). Further, for any
fixed a0 ∈ A0, the sequence {an} defined by ρ(an+1,San) = ρ(A,B) is convergent to a.

Proof. Let a0 ∈ A1. By using the proof of lemma 2.1, we get sequences {an} in A0 and
{bn} in B0 (bn = San) such that

ρ(an+1, bn) = ρ(an+1,San) = ρ(A,B)

and

ρ(an+1,San) = ρ(an+2,San+1) = ρ(A,B).

for any n ∈ N. Thus by (v) , for any n ∈ N, we get

τ + F(ρ(San+2,San+1)) ⩽ F(ρ(San+1,San)). (12)

Similar to the proof of Theorem 2.3, it can be shown that, {bn = San} ⊆ B is a Cauchy
sequence. Then by (iv), for given ϵ > 0, there exists δ > 0 such that for enough large
m,n,

ρ(an+1, bn) = ρ(am+1, bm) = ρ(A,B), ρ(bn, bm) < δ

which implies that ρ(an+1, am+1) < ϵ. Then {an} is a Cauchy sequence. Also, we have

ρ(bn, an) ⩽ ρ(bn, an+1) + ρ(an+1, an) ⩽ ρ(A,B) + ρ(an+1, an).

On the other hand, we have

ρ(am, bn) ⩽ ρ(am, an) + ρ(an, bn).

Therefore, (an, bn) is a cyclically Cauchy sequence. By (iii), there exist a ∈ A and b ∈ B
such that an → a and bn → b as n → +∞. Thus we have

ρ(a, b) = lim
n→+∞

ρ(an+1, bn) = ρ(A,B).

Then a ∈ A0. By (vi), there exists c ∈ A such that ρ(c,Sa) = ρ(A,B). Let c ̸= a. For any
n ∈ N we have ρ(an+1,San) = ρ(A,B). By (v) and that S is proximally quasi-continuous
and an → a, Then there exists subsequence {anr+1} of {an+1} such that anr+1 → c as
r → +∞. Thus we get c = a. Also Similar to the proof of Theorem 2.2 we can show that
the best proximity point of S is unique and the proof is complete. ■

Example 2.7 SupposeM = R2 endowed with the metric ρ((u, v), (a, b)) = |u−a|+|v−b|.
Set A = {(0, u) : 0 ⩽ u ⩽ n}, B = {(1, v) : 0 ⩽ v ⩽ n} where n ∈ N. It is clear that
A0 = A,B0 = B, and S(A0) ⊆ B0. Moreover, B is approximatively compact with respect



M. Salamatbakhsh et al. / J. Linear. Topological. Algebra. 11(01) (2022) 15-26. 25

to A. Let us define S : A −→ B by S(0, u) = (1, u2 ). We show that S is a proximal
F∗-weak contraction of the first kind. Assume that

ρ(u1, Tu) = ρ(u2, T v) = ρ(A,B) = 1,

where u1, u2, u, v ∈ A. If we set Su = (1, u2 ),Sv = (1, v2 ), then we get u1 = (0, u2 ), u2 =
(0, v2 ). For τ = ln(2) and F(α) = ln(α) + sin(απ2n ), we have

τ + F(ρ(u1, u2)) ⩽ F(ρ(u, v))

⇕

τ + ln(
1

2
|u− v|) + sin(

|u− v|π
4n

) ⩽ ln(|u− v|) + sin(
|u− v|π

2n
)

⇕

τ + ln(
1

2
) ⩽ 0.

Therefore, S : A → B is a proximal F∗−weak contraction of the first kind. Then, by
Theorem 2.2, there exists u∗ ∈ A such that ρ(u∗,Su∗) = ρ(A,B) = 1. It is clear that
u∗ = (0, 0).
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