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Abstract. For a given positive integer n, the nth commutativity degree of a finite non-
commutative semigroup S is defined to be the probability of choosing a pair (x, y) for
x, y ∈ S such that xn and y commute in S. If for every elements x and y of an associa-
tive algebraic structure (S, .) there exists a positive integer r such that xy = yrx, then S
is called quasi-commutative. Evidently, every abelian group or commutative semigroup is
quasi-commutative. In this paper, we study the nth commutativity degree of certain classes
of quasi-commutative semigroups. We show that the nth commutativity degree of such struc-

tures is greater than
1

2
. Finally, we compute the nth commutativity degree of a finite class

of non-quasi-commutative semigroups and we conclude that it is less than
1

2
.
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1. Introduction and preliminaries

For a given finite algebraic structure A, the commutativity degree of A (denoted by
P (A)) is defined to be the probability of choosing a pair (x, y) of the elements of A such
that x commutes with y. Indeed,

P (A) =
|{(x, y) ∈ A×A : xy = yx}|

|A|2
=

∑
x∈A |CA(x)|

|A|2
,

where CA(x) is the centralizer of x in A. The commutativity degree of groups has been
studied extensively by certain authors during the years and recently it is studied and
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considered for finite semigroups. One may find some results around them in [11, 12, 19].
In general, for n ⩾ 2, the nth commutativity degree of a finite algebraic structure S
(denoted by Pn(S)) is defined to be the probability of choosing a pair (x, y) ∈ S×S such
that xn and y commute. Then, we have

Pn(S) =
|{(x, y) ∈ S × S : xny = yxn}|

|S|2
.

In [13], one can see some good results on the nth commutativity degree of certain non-
commutative finite groups and semigroups. The quasi-commutativity property in alge-
braic structures is one of the interesting ideas which has been studied by many authors
since 1971. The classification or identification of certain major classes of semigroups has
been studied as well. For more and detailed descriptions on the quasi-commutative, quasi-
commutative Hamiltonian, quasi-commutative super Hamiltonian and periodic Hamilto-
nian semigroups, one may consult the prolific articles [16, 17, 20]. A non-commutative
semigroup S is called quasi-commutative if for every two elements x, y ∈ S, xy = yrx
holds for some positive integers r. These semigroups introduced and studied by Mukher-
jee in [16]. For more decomposition property and also the certain infinite classes of such
semigroups, see the results studied by Sorouhesh in [21]. According to [21], consider the
following presentations:

π1 = ⟨a, b|a5 = a, b2 = a2, ba = ab3⟩

and for a given positive integer k,

π2 = ⟨a, b, c1, c2, . . . , ck|a5 = a, b2 = a2, ba = ab3, c3i = ci, aci = cia, bci = cib,

cicj = cjci, 1 ⩽ i, j ⩽ k⟩,

π3 = ⟨a, b, c1, c2, . . . , ck, d|a5 = a, b2 = a2, c3i = ci, d
p+1 = d, aci = cia, da = ad,

db = bd,ba = ab3, dci = cid, bci = cib, cicj = cjci, 1 ⩽ i, j ⩽ k⟩,

where p is an odd prime.
Our notation is fairly standard and following [1, 2, 7, 19], We recall the notion of a

presentation ⟨A|R⟩ of a semigroup A. For an alphabet A, let A+ be the free semigroup
over A. For a subset R of A+ × A+, let ρ be a congruence relation generated by R.
Then the semigroup S = A+/ρ will be denoted by ⟨A|R⟩ that is called a semigroup
with the presentation for S. To lessen the likelihood of confusion, for w1, w2 ∈ A+ we
write w1 ≡ w2 if w1 and w2 are identical words, and w1 = w2 if they represent the same
element of S (i.e. if (w1, w2) ∈ ρ). For example, let A = {a, b} and R = {ab = ba}, then
aba = a2b and aba ̸≡ a2b. For more information on the presentation of semigroups, one
may consult [2–10] and for a detailed study, one can see [15, 18, 19]. In whole of this
paper, we use the well known notation Sg(π) to denote the semigroup presented by the
presentation π.

2. The semigroup Sg(S1)

Let S1 = Sg(π1), S2 = Sg(π2) and S3 = Sg(π3). In this section, we study the behaviour
of nth commutativity degree Pn(S1), n ⩾ 2 and in sections 3 and 4, we will consider the
nth commutativity degrees Pn(S2) and Pn(S3) and will give our main results around.
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Our main result on S1 is considered in the following proposition.

Proposition 2.1 For every positive integer n, Pn(S1) >
1

2
. In fact,

Pn(S1) =


49
81 if n = 1,

56
81 if n ⩾ 2 and n is even,

46
81 if n ⩾ 3 and n is odd.

Proof. Let C(xn) = {y | xny = yxn} be the centralizer of xn for every element x ∈ S1.
If n = 1, then by using the relation of S1 we obtain

C(a) = C(a3) = {ai| i = 1, . . . , 4},
C(b) = C(a2b) = C(a4b) = {a2i, b, a2ib| i = 1, 2},
C(a2) = C(a4) = {ai, b, aib| i = 1, . . . , 4},
C(ab) = C(a3b) = {a2i, a2i−1b| i = 1, 2}.

Consequently, P1(S1) =
49
81 .

Now, let n > 1. Then we consider two following cases: If n is even, then

C(xn) =



C((a2)
n

2 ) = C(a2) = {ai, b, aib| i = 1, . . . , 4} if x = a
C((a2)n) = C(a4) = {ai, b, aib| i = 1, . . . , 4} if x = a2

C((a3)n) = C(a2) if x = a3

C((a4)n) = C(a4) if x = a4

C(bn) = C(a) = {ai| i = 1, . . . , 4} if x = b
C((ab)n) = C(a) if x = ab
C((a2b)n) = C(an−1) if x = a2b
C((a3b)n) = C(an−1) if x = a3b
C((a4b)n) = C((b5)n) = C(b5n) = C(a5n) = C(a) if x = a4b

.

Thus, we have

Pn(S1) =
9 + 9 + 9 + 9 + 4 + 4 + 4 + 4 + 4

9× 9
=

56

81
.

A similar proof may be used when n is odd. In this case, we obtain that

Pn(S1) =
4 + 9 + 4 + 9 + 4 + 4 + 4 + 4 + 4

9× 9
=

46

81
.

Consequently, for every positive integer n > 1, Pn(S1) >
1
2 . ■

3. The semigroup Sg(S2)

In this section, we try to obtain the nth commutativity degree Pn(S2) for a positive
integer n. Our main result of this section is presented as the following proposition.

Proposition 3.1 For every positive integer n, Pn(S2) ⩾ 1
2 . In fact,
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Pn(S2) =


17
25 if n = 1

3
4 if n ⩾ 2 and n is even

1
2 if n ⩾ 3 and n is odd.

Proof. For n = 1, we may use a similar proof to that of the semigroup S1 and then we
get the following results, where 1 ⩽ i, j ⩽ k and ℓ = 1, 2.

C(a) = C(a3) = {at, cℓi , atcℓi , c
ℓ
ic

ℓ
j , a

tcℓic
ℓ
j |t = 1, . . . , 4},

C(a2) = C(a4) = {at, b, atb, cℓi , atcℓi , bcℓi , atbcℓi , cℓicℓj , atcℓicℓj , bcℓicℓj , atbcℓicℓj |t = 1, . . . , 4},

C(b) = {at, b, atb, cℓi , atcℓi , bcℓi , atbcℓi , cℓicℓj , atcℓicℓj , bcℓicℓj , atbcℓicℓj |t = 1, 2},

C(ab) = C(a3b) = {at, a2t−1b, cℓi , a
tcℓi , a

2t−1bcℓi , c
ℓ
ic

ℓ
j , a

tcℓic
ℓ
j , a

2t−1bcℓic
ℓ
j |t = 1, 2},

C(a2b) = C(a4b) = C(b),

C(cℓi) = C(cℓic
ℓ
j) = C(a2),

C(atcℓi) = C(atcℓic
ℓ
j) = C(at), (t = 1, . . . , 4),

C(bcℓi) = C(bcℓic
ℓ
j) = C(b),

C(atbcℓi) = C(atbcℓic
ℓ
j) = C(atb), (t = 1, . . . , 4).

Since |S2| = 10× 3k − 1, then

P1(S2) =
4× 3k(5(3k)− 1) + 3× 3k(6(3k)− 1) + (3(3k)− 1)(10(3k)− 1)

(10(3k)− 1)2

=
68(32k)− 20(3k) + 1

100(32k)− 20(3k) + 1
,

lim
k→∞

68(32k)− 20(3k) + 1

100(32k)− 20(3k) + 1
= lim

k→∞

32k(68− 20

3k
+

1

32k
)

32k(100− 20

3k
+

1

32k

) =
17

25
.

For n > 1, we consider two cases. If n is even, then C(xn) is equal to



C(a2) if x = at, t = 1, 3
C((at)n) = C(a4) if x = at, t = 2, 4
C(bn) = C(a) if x = b
C((atb)n) = C(a) if x = atb, t = 1, 4
C((atb)n) = C(an−1) if x = atb, t = 2, 3
C((cℓi)

n) = C((cℓic
ℓ
j)

n) = C(c2i ) if x = cℓi , c
ℓ
ic

ℓ
j , ℓ = 1, 2

C((atcℓi)
n) = C((atcℓic

ℓ
j)

n) = C(a2c2i ) if x = atcℓi , a
tcℓic

ℓ
j , ℓ = 1, 2, t = 1, 3

C((atcℓi)
n) = C((atcℓic

ℓ
j)

n) = C(a4c2i ) if x = atcℓi , a
tcℓic

ℓ
j , ℓ = 1, 2, t = 2, 4

C((bcℓi)
n) = C((bcℓic

ℓ
j)

n) = C(ac2i ) if x = bcℓi , bc
ℓ
ic

ℓ
j , ℓ = 1, 2

C((atbcℓi)
n) = C((atbcℓic

ℓ
j)

n) = C(ac2i ) if x = atbcℓi , a
tbcℓic

ℓ
j , ℓ = 1, 2, t = 1, 4

C((atbcℓi)
n) = C((atbcℓic

ℓ
j)

n) = C(an−1c2i ) if x = atbcℓi , a
tbcℓic

ℓ
j , ℓ = 1, 2, t = 2, 3,
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where 1 ⩽ i, j ⩽ k. Therefore,

Pn(S2) =
5× 3k(5(3k)− 1) + (5(3k)− 1)(10(3k)− 1)

(10(3k)− 1)2
=

75(32k)− 20(3k) + 1

100(32k)− 20(3k) + 1
.

This gives us lim
k→∞

Pn(S2) =
3

4
.

For the odd values of n, we may use a similar method and conclude that

Pn(S2) =
10(10(3k)− 1) + (10(3k)− 1)(5(3k)− 1)

(10(3k)− 1)2
=

50(32k) + 85(3k)− 9

100(32k)− 20(3k) + 1

and lim
k→∞

Pn(S2) =
1

2
. Finally, for every positive integer n, we have Pn(S2) ⩾

1

2
. ■

4. The semigroup Sg(S3)

In this section, we compute the nth commutative degree of the semigroup S3. The
following proposition show our main result of this section.

Proposition 4.1 For every positive integer n, Pn(S3) ⩾ 1
2 . In fact,

Pn(S3) =


17
25 if n = 1

3
4 if n ⩾ 2, and n is even

1
2 if n ⩾ 3, and n is odd.

Proof. Since S3 is a finite quasi-commutative semigroup of order 10(3k)(1 + p)− 1 (see
[5]), where p is an odd prime and k is a positive integer then to estimate P1(S3) we need
to compute |C(x)|’s for all x ∈ S3, for instance using |C(a)| we get

|C(a)| = 5× 3k − 1 + p+ (5× 3k − 1)p = 5× 3k(1 + p)− 1.

Consequently,

P1(S3) =
(4(3k)(1 + p)− 1)(5(3k)(1 + p)− 1)

(10(3k)(1 + p)− 1)2

+
(3(3k)(1 + p)− 1)(6(3k)(1 + p)− 1)

(10(3k)(1 + p)− 1)2

+
(3(3k)(1 + p)− 1)(10(3k)(1 + p)− 1)

(10(3k)(1 + p)− 1)2
.

As an immediate result and using an almost tedious hand calculation, we see that

lim
k→∞

P1(S3) =
17

25
.
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For every values of n ⩾ 2, we may consider two cases. Let n be even. Then

|C(xn)| =



|C((at)n)| = |C(a2)| = 10(3k)(1 + p)− 1
|C(bn)| = |C((atb)n)| = |C(a)| = 5(3k)(1 + p)− 1
|C((cℓi)

n)| = |C((cℓic
ℓ
j)

n)| = |C(c2i )| = 10(3k)(1 + p)− 1

|C((atcℓi)
n)| = |C((atcℓic

ℓ
j)

n)| = |C(a2c2i )| = 10(3k)(1 + p)− 1

|C((atbcℓi)
n)| = |C((atbcℓic

ℓ
j)

n)| = |C(a2bc2i )| = 10(3k)(1 + p)− 1

|C(dn)| = |C(d)| = 10(3k)(1 + p)− 1
|C((dp)n)| = |C(d)| = 10(3k)(1 + p)− 1
|C((atd)n)| = |C(a2d)| = 10(3k)(1 + p)− 1
|C((bdp)n)| = |C(d)| = 10(3k)(1 + p)− 1
|C((atbdp)n)| = |C(d)| = 10(3k)(1 + p)− 1
|C((dcℓi)

n)| = |C((dcℓic
ℓ
j)

n)| = |C(dc2i )| = 10(3k)(1 + p)− 1

|C((atdci)
n)| = |C((atdcℓic

ℓ
j)

n)| = |C(a2dc2i )| = 10(3k)(1 + p)− 1

|C((atbdpcℓic
ℓ
j)

n)| = 10(3k)(1 + p)− 1,

where 1 ⩽ i, j ⩽ k, t = 1, . . . 4, ℓ = 1, 2 and p is an odd prime. This computation yields
us:

Pn(S3) =
(5(3k)(1 + p)− 1)(5(3k)(1 + p)− 1) + (5(3k)(p+ 1)− 1)(10(3k)(1 + p)− 1)

(10(3k)(1 + p)− 1)2

=
75(32k)p2 + 150(32k)p+ 75(32k)− 25(3k)p− 25(3k) + 2

100(32k)p2 + 200(32k)p+ 10032k − 20(3k)p− 20(3k) + 1
.

Now, let n be odd. Then, in a similar way as above, we conclude that

Pn(S3) =
(10(1 + p))(10(3k)(1 + p)− 1) + (5(3k)(p+ 1)− 1)(10(3k)(1 + p)− 1)

(10(3k)(1 + p)− 1)2

=
50(32k)p2 + 100(32k)p+ 100(3k)p2 + 185(3k)p+ 50(32k) + 85(3k) + 10p+ 11

100(32k)p2 + 200(32k)p+ 10032k − 20(3k)p− 20(3k) + 1
,

For every odd prime p, if k tends to infinity, then we get

lim
k→∞

Pn(S3) =
3

4
or lim

k→∞
Pn(S3) ⩾

1

2
,

if n is even either odd, respectively. Hence, Pn(S3) ⩾
1

2
for every positive integer n. ■

5. Conclusion

For all of the considered quasi-commutative semigroups in the last sections, the nth

commutativity degree was greater than of equal to
1

2
.

Challenging on getting probabilities less than
1

2
will be of interest and we suppose that

the quasi-commutativity property invites the probability to be ⩾ 1

2
, we consider a finite
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class of non-quasi-commutative semigroups.

π4 = ⟨a, b| am+1 = a, b3 = b, ba = am−1b⟩, (m ⩾ 3).

This class studied for its finiteness property in [14]. Now, we show that:

Proposition 5.1 Let S4 = Sg(π4), for m ⩾ 11, we have P1(S4) <
1

2
.

Proof. We may easily get that |S4| = 3m+2 and by using a similar method to calculate
P1(S4), as in the last sections we get

|C(x)| =


|C(ai)| = |C(aib2)| = |C(a)| = 2m+ 1 if x = ai, aib2, 1 ⩽ i ⩽ m− 1,
|C(am)| = |C(amb2)| = |C(b2)| = 3m+ 2 if x = am,
|C(b)| = |{am, b, b2, ab, amb2}| = 5 if x = b,
|C(aib)| = |{am, b2, aib, amb2}| = 4 if x = aib, 1 ⩽ i ⩽ m− 1,
|C(amb)| = |{am, b, b2, amb, amb2}| = 5 if x = amb.

Therefore,

P1(S4) =
(2m− 2)(2m+ 1) + 4(m− 1) + 3(3m+ 2) + 2× 5

(3m+ 2)2
=

4m2 + 11m+ 10

9m2 + 12m+ 14
.

Obviously, P1(S4) >
4

9
for m ⩾ 11. Hence,

4

9
< P1(S4) <

1

2
. ■

An example of the n-almost commutative semigroup, i.e.; the semigroup when nth

commutativity degree is equal to 1, is another result of the study of S4 as follows:

Proposition 5.2 For every even positive integers m and n such that m = n, m,n ⩾ 4,
we have Pn(S4) = 1, where S4 = Sg(π4).

Proof.

|C(xn)| =


|C((aib2)n)| = |C((aib)n)| = |C((ai)n)| = |C(am)| = 3m+ 2

if x = ai, aib, aib2,

|C((b)n)| = |C((b2)n)| = |C(b2)| = 3m+ 2 if x = b, b2,

where 1 ⩽ i ⩽ m. Hence, P1(S4) =
(3m+ 2)(3m+ 2)

(3m+ 2)2
= 1. ■

Consider a finite class of non commutative semigroups π5 =< a, b| a2 = bm, bab = a >
of order |S5| = 5m− 1.

Proposition 5.3 For m > 2, P1(S5) <
1

2
, where S5 = Sg(π5).

Proof. As a similar of proof in the last sections for calculate P1(S5), we get

|C(x)| =

4 if x = a, a3, ab, ba, ab2, b2a, a2ba, a3b,
11 if x = b, b2, b3, a2b, aba, a2b2, ab2a, a4b, a3ba,
19 if x = a2, a4.
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Therefore,

P1(S5) =
8× 4 + 2× 19 + 9× 11

19× 19
=

169

361
<

1

2
.

Now, for when m be even and greater than 2, we have

|C(x)| =


|C(a)| = |C(a3)| = |C(abi)| = |C(bia)| = 4 if x = a, a3, 1 ⩽ i ⩽ m− 1,
|C(bi)| = 3m− 1 if 1 ⩽ i ⩽ m− 1,
|C(a2bi)| = |C(a4bi)| = 3m− 1 if 1 ⩽ i ⩽ m− 1,
|C(ai)| = 5m− 1 if i = 2, 4,

and we conclude that

P1(S5) =
2m× 4 + 2× (5m− 1) + 3(m− 1)(3m− 1)

(5m− 1)2
=

9m2 + 6m+ 1

25m2 − 10m+ 1

and

lim
m→∞

9m2 + 6m+ 1

25m2 − 10m+ 1
= lim

m→∞

m2(9 +
6

m
+

1

m2
)

m2(25− 10

m
+

1

m2
)
=

9

25
.

Thus, P1(S5) <
1

2
. ■
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