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Abstract. This is a survey of a variety of equivariant (co)homology theories for operator
algebras. We briefly discuss a background on equivariant Hochschild cohomology. We discuss
a notion of equivariant L2-cohomology and equivariant L2-Betti numbers for subalgebras of
a von Neumann algebra. For graded C∗-algebras (with grading over a group) we elaborate
on a notion of graded L2-cohomology and its relation to equivariant L2-cohomology.
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1. Introduction

Homology theories are generally regarded as a method of constructing algebraic in-
variants of other structures, with a wide range of applications in geometry, analysis and
algebra.

The first historical instance of a homology theoretical consideration is probably the
Euler polyhedron formula (now called Euler characteristics), rigorously proved by Cauchy
in 1811 (for any convex polyhedron). It was Riemann who first’s defined the genus (and
connectedness numerical invariants) in 1857 and Betti who showed the independence of
homology numbers from the choice of basis in 1871.

Poincarè invented the fundamental group and initiated the study of the so called al-
gebraic varieties and their homology theory. He was then led to Betti numbers through
solving certain vector field problems (to determine the number of holes in the configura-
tion space). One could make a simple observation of how holes (and so Betti numbers)
are significant by examining the behavior of solutions of differential equations, say on
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the torus compared to the sphere. Poincarè [19] published his ideas of analysis situs,
where he introduced the notion of homology classes. To classify possible configurations
of orientable cycles, he used Betti numbers (as refinements of the Euler characteristics).
He also noticed that classifying non-orientable cycles requires torsion coefficients.

The history goes on with great names, such as Alexander (with theory of knots) Veblen,
Brouwer, as well as van Kampen and Lefschetz. It was Noether who first recognized that
the Betti numbers and torsion coefficients are numerical invariants of isomorphism classes
of finitely-generated abelian groups.

Algebraic counterparts of the theory came later. As one of the first instances of such
algebraic homology theories, the Hochschild (co)homology was introduced by Hochschild
[13] for algebras over a field, and extended to algebras over more general rings by Car-
tan and Eilenberg around 1956. Cyclic (co)homology which generalizes the de Rham
(co)homology of manifolds were independently introduced by Tsygan (homology) and
Connes (cohomology) in the 80’s. These are naturally related to the de Rham theory,
Hochschild (co)homology and K-theory. The later development are, among others, due to
Karoubi, Wodzicki and Loday. The origin of the equivariant homology theory (motivated
by group extensions) goes back to Whitehead in 1950. In algebraic topology, this provides
an invariant for classification of topological spaces with a (given) group action. This is
motivated by gauge theory in physics, which is a field theory where the Lagrangian is
invariant under certain Lie groups of local transformations. It is shown that all homology
theories have very natural and successful equivariant counterparts.

The main focus of the present survey is a notion of equivariant L2-cohomology for
operator algebras. This is discussed in more details in Section 3. We briefly review equiv-
ariant Hochschild cohomology in somewhat more technical details and return to it again
in the last section, where we discuss equivariant L2-cohomology and equivariant L2-Betti
numbers.

2. Classical equivariant theories

2.1 Topological background

The main idea in singular cohomology is to give a functor from the category of topo-
logical spaces and continuous maps to the category of graded rings and homomorphisms.
When there is also a group action on the topological space (with appropriate continuity
properties) one may ask about the existence of a functor which encodes both the topology
and the algebra (the action). Equivariant cohomology is supposed to do this.

The origin of equivariant cohomology goes back to 1959 when Borel defined equivariant
singular cohomology using the so called Borel construction [5]. In 1950, Cartan [7] studied
the action of a compact connected Lie group on a manifold and constructed a differential
complex out of the differential forms on the manifold and the Lie algebra of the acting
group (which gives the real equivariant singular cohomology in modern terms). When the
group is trivial, this reduces to the de Rham complex of smooth differential forms which
computes the real singular cohomology of the manifold. The equivariant cohomology
proved later to be a strong computational tool, when it was used in the equivariant
integration formula of Atiyah-Bott [2] and Berline-Vergne [4].

For a manifold M on which the circle S1 acts, the Atiyah-Bott fixed point formula
describes the equivariant index of an elliptic operator onM in terms of local data near the
fixed points of the action. An application of this formula was a geometric interpretation
of the Weyl formula for the characters of irreducible representations of compact Lie
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groups. The character formula has continuous analogues: the formulae for the Fourier
transforms of coadjoint orbits, which are linked to representation theory via Kirillov’s
orbit method. For compact groups, this is the Harish-Chandra formula; for non-compact
semi-simple groups, Rossmann gave a fixed point formula in the case of discrete series
characters. Then Berline and Vergne (1983) used the equivariant forms to find a geometric
interpretation of Rossmann formula. The cohomological tool behind their computation
was a deformation of the de Rham complex with the use of vector fields [4]. A similar
approach was used by Witten in 1982 with a motivation in suppersymmetry and Morse
theory [25].

In turn, the equivariant integration formula is used to show that the stationary phase
approximation formula is exact for a symplectic action (Atiyah-Bott 1984), to calcu-
late the number of rational curves in a quintic threefold (Kontsevich 1995, Ellingsrud-
Strømme 1996), and to calculate the characteristic numbers of a compact homogeneous
space (Tu 2010) [22]. Following Tu, we refer the reader to the expository articles by Bott
[1, 2] and Vergne [23] for further applications.

2.2 Equivariant Hochschild cohomology

The equivariant Hochschild cohomology theory for Banach and operator algebras is
developed by Jensen [14, 15]. Jensen introduces this cohomology first in a purely algebraic
setting and then adapt it to the context of Banach and operator algebras. Here we briefly
describe Jensen construction. First we need to give some necessary definitions. We start
with the notion of action of a locally compact group on a C∗-algebra.

We say that a group G acts on an algebra A if there is a homomorphism α from G
into the group of automorphisms of A, that is, a map α : G → Aut(A); g 7→ αg with the
following properties:

(i) for each g ∈ G, the map αg is bijective and linear;
(ii) αg(ab) = αg(a)αg(b) (a, b ∈ A);
(iii) αgh = αgαh (g, h ∈ G).

We denote this action by G ↷α A. Also, the fixed point algebra of A with respect to α
is the set Aα = {a ∈ A|αg(a) = a (g ∈ G)}.

Let G ↷α A. Suppose X is an A-bimodule. Then, X is said to be an equivariant (α, β)-
G-A-module if there is a map β : G → Lin(X); g 7→ βg with the following properties:

(i) for each g ∈ G the map βg is a linear bijective,
(ii) βg(a · x) = αg(a) · βg(x) and βg(x · a) = βg(x) · αg(a) (a ∈ A, x ∈ X),
(iii) βgh = βgβh (g, h ∈ G).

We denote this action by G ↷β X. Next let us recall the definition of an equivariant
cochain.

Let G,A, X, α and β be as above. For each n ⩾ 1 define

Cn
G(A, X) = {T ∈ Ln(A,X)|T (αg(a1), ..., αg(an)) = βg(T (a1, ..., an)) (g ∈ G)}.

The elements of Cn
G(A, X) are called the (α, β)-equivariant n-cochains (of A with coef-

ficients in X).
The equivariant zero-cochains are defined separately as follows

C0
G(A, X) = {x ∈ X|βg(x) = x (g ∈ G)}.
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Note that the usual coboundary operator δn : Cn(A, X) → Cn+1(A, X) maps Cn
G(A, X)

into Cn+1
G (A, X). We denote the restriction map by δnG.

The equivariant cocycle and coboundary groups are defined, respectively, by

Zn
G(A, X) = ker δnG, Bn

G(A, X) = ran δn−1
G

and the equivariant cohomology groups are defined as the quotients

Hn
G(A, X) = Zn

G(A, X)/Bn
G(A, X).

Suppose A is a Banach algebra with G a group acting on it. Then, A is said to be
G-contractible if H1

G(A, X) = 0 for all Banach G-A-modules X. Also A is said to be
G-amenable if H1

G(A, X) = 0 for all dual G-A-modules X. Jensen also calculates some
low-dimensional equivariant Hochschild cohomologies. For example, he shows that If A
is a unital abelian C∗-algebra and α is an action of a group G on A, then H2

G(A,A) = 0
[14, Corollary II.1.10]. He also verifies the reduction dimension formula [14, Corollary
II.2.6] as Hn+p

G (A, X) ' Hn
G(A, BLp(A, X)).

The relation between ordinary and equivariant cohomology is also investigated. Let
A be a Banach algebra and G be a locally compact group acting on A. Then the map
Hn

G(A, X) → Hn(A, X) is injective, whenever G is compact (amenable) and X is a
Banach (dual) module [14, Proposition II.3.2]. Also if the action α of G on A is inner
and the Banach algebra generated by {αg|g ∈ G} is amenable and the module actions
on X have norm at most 1, then the map Hn

G(A, X) → Hn(A, X) is also surjective. In
particular, if G is an amenable group that acts innerly on a Von Neumann algebra M,
then Hn

G(M,M) and Hn(M,M) are isomorphic [14, Lemma II.3.10].
If A is a UHF C∗-algebra and G has product action on A, then Hn

G(A, X) = 0 for
every dual module X [14, Corollary III.2.8]. For a II1-factor M with a discrete group
action, M is injective whenever H1

G(M, X) = 0 for every dual module X [14, Theorem
III.3.7].

Next, a relative equivariant cohomology theory could be defined. Let A be a Banach
algebra, G a group acting on A, and X a Banach or dual G-A-module. If B is a G-
invariant Banach subalgebra of A, then

Zn
G(A,B;X) = {T ∈ Cn

G(A,B;X)|δnG(T ) = 0},

and

Bn
G(A,B;X) = {δn−1

G (T )|T ∈ Cn−1
G (A,B;X)}.

Here Cn
G(A,B;X) is the set of relative equivariant n-cochains in the sense of [14, Defi-

nition II.4.1]. Then, define the relative equivariant cohomology group to be the quotient
of the cocycle and the coboundary groups, that is

Hn
G(A,B;X) = Zn

G(A,B;X)/Bn
G(A,B;X).

Proposition 2.1 [14, Proposition II.4.4] Suppose A is a Banach algebra, G is a group
acting on A, and B is a G-invariant Banach subalgebra of A. If (i) or (ii) is satisfied,
then Hn

G(A,B;X) = Hn
G(A, X).

(i) B is G-contractible, X is Banach G-A-module, and G is discrete.
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(ii) B is G-amenable and X is a dual G-A-module.

This could be used to show that H1
Z(A,A) ' C where the action of Z on A is defined

by αn = αn for all n in Z.
If we define an action of Zp (the cyclic group of order p) on A, for p in N, by αi =

αi
θp
, i ∈ Zp where θp is a primitive p-th root of unity, then

(i) Hn
Z2
(A,A) ' C for all n ⩾ 0,

(ii) Hn
Zp
(A,A) ' C for n = 0, 1,

(iii) Hn
Zp
(A,A) = 0 for n > 1.

For each discrete group G, that if A is G-contractible, then Hn
G(A, X) = 0 for all n and

all Banach G-A-modules X. For the compact case we have the following proposition.

Proposition 2.2 [15, Lemma III.1.1] If A is a contractible Banach algebra and G is a
compact group acting on A, then A is G-contractible. Moreover, Hn

G(A, X) = 0 for all
n ⩾ 1 and all Banach G-A-modules X.

The next proposition deals with the converse of the above proposition.

Proposition 2.3 [15, Corollary III.1.7] Suppose A is a unital Banach algebra and G is
a group acting on A.

(i) If A is G-contractible, then A is contractible.
(ii) If the group G is compact, then A is contractible if and only if A is G-contractible.

Suppose A is a finite-dimensional C∗-algebra, α is an action of a group G on A, and
(A, α,X, β) is a Banach or dual equivariant module. Then Hn

G(A, X) = 0 for all n ⩾ 1.
This leads to the fact that A is contractible if and only if it is G-contractible.

If A is amenable as a Banach algebra and G is amenable as a group, then A is G-
amenable [15, Lemma III.2.1]. In the case where G is a discrete we have that

(i) If A is G-amenable, then A is amenable.
(ii) If G is amenable as a group, then A is G-amenable if and only if A is amenable.

If A is a UHF C∗-algebra and G has product action on A, then A is G-amenable [15,
Corollary III.2.8].

For a II1-factor M the following theorem holds.

Theorem 2.4 [15, Theorem III.3.7]. Suppose M is a II1-factor and G a discrete group
acting on M. If M is not amenable (as a von Neumann algebra), there is a normal dual
M-module X that is also a dual G-M-module such that H1

G(M, X) 6= 0. Consequently,
if M is G-amenable, then M is amenable.

We return to this theory in Section 4, where we give more details needed for equivariant
L2-cohomology.

3. L2-cohomology

3.1 Basic notions

Throughout the rest of the paper, for an algebra A we denote its opposite algebra by
A◦ and the enveloping algebra associated with A by Ae = A⊗A◦.

Also, A1 denotes the closed unit ball of a C∗-algebra A. The weak (respectively, strong)
operator topology is denoted by WOT (respectively, SOT) and UWOT denotes the ultra-



134 A. Shirinkalam / J. Linear. Topological. Algebra. 11(02) (2022) 129-142.

weak operator topology on B(H), the space of bounded linear operators on a Hilbert
space H.

Let X be a Banach A-bimodule. Then X is said to be dual if it is a dual of a Banach
space and for each a ∈ A, the maps X → X;x 7→ a·x and x 7→ x·a are weak* continuous.
If in addition, A admits a weak* topology (for example whenever A is a von Neumann
algebra), and for every x ∈ X the maps A → X; a 7→ a · x and a 7→ x · a are weak*
continuous, then X is called a normal dual module.

Let X be a Banach A-bimodule. Let BL0(A, X) = X and for each n ∈ N, denote by
BLn(A, X) the space of all bounded n-linear maps from An into X.

For a C∗-algebraA, a map τ : A+ → [0,∞] is called tracial (or a trace) if τ(ab) = τ(ba),
τ(a+ b) = τ(a) + τ(b) and τ(λa) = λτ(a), for all a, b ∈ A+ and λ ⩾ 0. A trace τ is said
to be faithful if a = 0 whenever τ(a∗a) = 0, for a ∈ A. Each faithful trace on A induces a
norm ||.||τ on A defined by ||a||2τ = τ(a∗a) (a ∈ A). A trace τ on a von Neumann algebra
M is said to be normal if ai ↑ a in the SOT of M, then τ(ai) ↑ τ(a).

Let M ⊆ B(H) be a von Neumann algebra. A closed densely defined operator T :
Dom(T ) ⊆ H → H is said to be affiliated with M if Tu = uT for all unitary elements
in the commutant M′. The set of all operators affiliated with M is denoted by U(M).
Linear operations and multiplication on U(M) is defined as follows. For each x, y ∈ U(M)
one can form the natural sum and product of x and y but these may not be closed
operators. Their closure are elements of U(M) called the strong sum and strong product
denoted by x+ y and xy (here the finiteness of M is crucial). The involution operation
is defined obviously. With these definitions U(M) becomes a ∗-algebra containing M as
a ∗-subalgebra. This algebra can obtained in the following way.

Theorem 3.1 [3, Theorem 1] If M is a finite von Neumann algebra, then there exists
a unital ∗-algebra R containing M as a ∗-subalgebra such that

(i) R is a regular ring,
(ii) the relations x, y, z ∈ R and x∗x+ y∗y + z∗z = 1 imply x, y, z ∈ M.

These conditions determine R uniquely up to a ∗-isomorphism that leaves fixed the
elements of M. Note that a ring R is called (von Neumann) regular if, for each element
x ∈ R, there exists an element y ∈ R such that x = xyx.

As an example, if M is an abelian von Neumann algebra, then the algebra M2(M) of
2×2 matrices over M is a finite von Neumann algebra and U(M2(M)) is identified with
M2(U(M)) [3, Lemma 2].

If T is a closed densely defined operator on H with the polar decomposition T = v|T |,
then T ∈ U(M) if and only if v ∈ M and |T | =

∫∞
0 λ dEλ ∈ U(M). In this case, the

spectral projections Eλ belong to M.
For a finite von Neumann algebra M, the set U(M) is an involutive algebra under the

natural operations. The interested reader will find more details in [3, 10].
Nelson in [18] showed that if M ⊆ B(H) is a tracial von Neumann algebra with

a faithful, normal, finite trace τ , then U(M) carries a translation-invariant topology
which is called the measure topology and is generated by the family {N(ϵ, δ)}ϵ,δ>0 of
neighborhoods of 0 of the form

N(ϵ, δ) = {a ∈ M; for some projection p ∈ M, ‖ap‖ ⩽ ϵ and τ(1− p) ⩽ δ}.

He also showed that one can identify U(M) with the closure of M in this topology [18,
Theorem 4]. More precisely, each T ∈ U(M) with the spectral decomposition v

∫∞
0 λ dEλ

is the limit of a sequence Tn = v
∫ n
0 λ dEλ ∈ M in the measure topology.
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This fact is used in Section 4 to extend an action of a group G on M to an action of
G on U(M).

Let A be a unital algebra with a unit 1. Then, Ae is an A-bimodule with the actions

a · (b⊗ c◦) = ab⊗ c◦ and (b⊗ c◦) · a = b⊗ (ca)◦ (a, b, c ∈ A). (1)

If A is a Banach algebra, these actions extend by linearity and continuity.
In general, there is a one to one correspondence between bimodules over A and left

(right) modules over Ae. Indeed, if X is an A-bimodule, then it is a left Ae-module via
(a⊗ b◦) ·x = a ·x · b (or it is a right Ae-module via x · (a⊗ b◦) = b ·x · a) for a, b ∈ A and
x ∈ X. Conversely, if X is a left Ae-module, then it is an A-bimodule with the actions
a · x = (a⊗ 1◦) · x and x · b = (1⊗ b◦) · x for every a, b ∈ A and x ∈ X. The right module
actions are defined similarly.

For a von Neumann algebra M, its enveloping von Neumann algebra M⊗̄M◦ is de-
noted by Me. Since U(Me) is a left Me-module with the multiplication, by the above
argument, U(Me) is a M-bimodule with the module actions

m · T = (m⊗ 1◦)T, T · n = (1⊗ n◦)T (m,n ∈ M, T ∈ U(Me)). (2)

The idea of embedding a finite von Neumann algebra M into the regular ring of
affiliated operators U(M) goes back to the works of Murray and von Neumann in their
1936 paper [17]. In 1956, Yuzo Utumi gave a construction for embedding M in a regular
ring Q, which is called its maximal ring of right quotients [24]. Then, Roos (1968) showed
that Q and U(M) are the same. This detected a deep connection between ring theory
and operator theory. Since then the theory of regular rings of operators has ripened and
their algebraic properties proved neatly and efficiently.

3.2 L2-cohomology for von Neumann algebras

Finding a suitable homology in the context of von Neumann algebras goes back to
the works of Johnson, Kadison and Ringrose (1971-72) and then to Sinclair and Smith
(1995). Their goal was to find a powerful invariant to distinguish von Neumann algebras.

The theory of L2-homology for von Neumann algebras is introduced by Connes and
Shlyakhtenko [9] following the works of Gaboriau (2002) in the field of ergodic equivalence
relations, where he showed that all the L2-Betti numbers are the same for those discrete
groups that can generate isomorphic ergodic measure-preserving equivalence relations.
Connes and Shlyakhtenko used the theory of correspondences together with the algebraic
description of L2-Betti numbers given by Lück, to define the k-th L2-homology of a von
Neumann algebra M by

H
(2)
k (M) = Hk(M,M⊗̄M◦),

where Hk means the algebraic Hochschild homology. Then the corresponding L2-Betti

numbers of M are defined to be β
(2)
k (M) = dimM⊗̄M◦ H

(2)
k (M). The dimension function

used here is the extended dimension function of Lück, that is explained in more details
in the next section.

The correspondences between von Neumann algebras was introduced by A. Connes as
a tool to study of II1 factors ([7, 8]). Let M and N be two von Neumann algebras. A
correspondence between M and N is a Hilbert space H with a pair of commuting normal
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representations πM and πN ◦ of M and N ◦, respectively. The set of equivalence classes is
denoted by Corr(M,N ) and Corr(M) is nothing but Corr(M,M). The standard form
of M yields an element L2(M) of Corr(M) called the identity correspondence of M. A
correspondence H on M carries a bimodule structure as follows

a · h · b = πM(a)πM◦(b◦)h (a, b ∈ M).

Corr(M) plays the role of unitary representations and there is a dictionary between a
discrete group Γ and a II1 factor M as follows [9].

Discrete group II1 factor M
Unitary Representation M−M Hilbert Bimodule
Trivial Representation L2(M)
Regular Representation Coarse Correspondence

Amenability L2(M) ⊂weakly L2(M)⊗̄L2(M◦)

Property T L2(M) isolated

The coarse correspondence is given by the bimodule L2(M)⊗̄L2(M◦) with bimodule
actions

a · (x⊗ y◦) = ax⊗ y◦ and (x⊗ y◦) · a = x⊗ (ya)◦, (a ∈ M, x⊗ y◦ ∈ M⊗M◦).

Connes and Shlyakhtenko investigate the relation between L2-Betti numbers of a dis-

crete group Γ with L2-Betti numbers of its group algebra and showed that β
(2)
k (Γ) =

β
(2)
k (CΓ, τ), where τ is the standard trace on the group algebra CΓ [9, Proposition 2.3].

For a II1-factor M they computed its L2-Betti numbers. They showed that the zeroth
Betti number is 0 and each L2-Betti number of M is a limit of L2-Betti numbers of
its sub-complexes [9, Lemma 2.2]. They also showed that for a von Neumann algebra

(M, τ) with a diffuse center, β
(2)
1 (M, τ) = 0 [9, Corollary 3.5]. In particular, if M is

commutative, then β
(2)
k (M) = 0, for every k ⩾ 1 [9, Corollary 5.4] (the same result is

obtained by A. Thom for all von Neumann algebras with a diffuse center [21, Theorem
2.2]). Finally they give connections to free probability theory including the inequality
between the microstates and microstates-free entropy.

In Section 4 we will combine the Jensen equivariant theory and Connes-Shlyakhtenko
L2-theory to give a numerical invariant in the context of dynamical systems of opera-
tor algebras. To do this, we first introduce a notion of equivariant L2-cohomology and
equivariant L2-Betti numbers for a subalgebra of a von Neumann algebra. Then, con-
sidering a grading of a group G on a C∗-algebra A, we give a definition of the graded
L2-cohomology and the associated L2-Betti numbers for A. We investigate the relation
between graded L2-cohomology of A and the equivariant L2-cohomology of A, when the
group G is abelian.

3.3 The dimension function

Here we give a brief review of the generalized Murray-von Neumann dimension func-
tion. The interested reader may find more details in [16, Chapter 6].

Let R be a unital ring and X be an R-module. The dual module X∗ of X is
HomR(X,R), where the R-multiplications are given by (fr)(x) = f(x)r and (rf)(x) =
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rf(x), for f ∈ X∗, x ∈ X and r ∈ R. If Y is an R-submodule of X, then the closure of
Y in X is defined to be

Y = {x ∈ X|f(x) = 0 for all f ∈ X∗ with Y ⊆ ker(f)}.

For an R-module X, define the submodule TX and the quotient module PX by

TX := {x ∈ X|f(x) = 0 for all f ∈ X∗} = {0}

and

PX := X/TX.

Note that TPX = 0,PPX = PX,X∗ = (PX)∗, and that PX = 0 is equivalent toX∗ = 0.
If X is a finitely generated (f.g.) R-module, then PX is finitely generated projective and
X ∼= TX ⊕ PX.

Let M be a finite von Neumann algebra with a fixed normal, faithful state τ . The
tracial functional τn on Mn(M) given by τn({aij}ni,j=1) =

∑n
i,j=1 τ(aii) is positive and

faithful (but not a state, since it takes the value n on the unit matrix). If P is a finitely
generated projective M-bimodule, then it is isomorphic to MnA for some idempotent
matrix A ∈ Mn(M). Now the Murray-von Neumann dimension of P is defined to be

dimM(P ) = τn(A) ∈ [0,∞).

This definition is independent of the choice of the matrix A. If X is an arbitrary M-
bimodule, then the dimension of X is defined by

dim′
M(X) = sup{dimM(P )|P is a f.g. projective submodule of X} ∈ [0,∞].

By [16, Theorem 6.7], dim′ is the only dimension function that extends the Murray-von
Neumann dimension and satisfies the following properties;

(i) (Extension Property) If P is a f.g. projective M-module, then

dim′
M(P ) = dimM(P );

(ii) (Additivity) If 0 → X0 → X1 → X2 → 0 is an exact sequence of modules, then
dim′

M(X1) = dim′
M(X0) + dim′

M(X2);
(iii) (Continuity) If Y is a submodule of the f.g. module X, then

dim′
M(Y ) = dim′

M(Y );

(iv) If X is f.g., dim′
M(X) = dimM(PX) and dim′

M(TX) = 0.

4. Equivariant L2-cohomology

4.1 Equivariant L2-cohomology

In this section we give a new concept of equivariant L2-cohomology for a tracial ∗-
algebra.
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Let A be an algebra. If G ↷α A, then A provided with the module actions of left and
right multiplication with βg = αg is a Banach equivariant G-A-module. On the other
hand, let M be a von Neumann algebra and let G ↷α M. By the module structure of
Me described in (1) and by an argument similar to [14, I.1.4 (a)], G acts on Me via the
map α̃g : Me → Me defined by α̃g(a⊗ b◦) = αg(a)⊗α◦

g(b) (a, b ∈ M, g ∈ G), extended
by linearity and continuity. Hence Me is an equivariant (α, α̃)-G-M-module.

Let M be a von Neumann algebra with a finite, faithful normal trace τ and let G ↷α

M. This trace τ is called invariant under this action if for each g ∈ G and a ∈ M we
have τ(αg(a)) = τ(a).

Let us observe that if M is a von Neumann algebra with a finite, faithful, normal
trace τ and G ↷α M with the extra property that τ is invariant under the action
α, then there is an action β : G → Lin(U(Me)) which makes U(Me) an equivariant
(α, β)-G-M-module.

To see this, by the actions described in (1), Me is a Banach M-bimodule and as above,
we have an action α̃g : Me → Me (g ∈ G), making Me into an equivariant M-module.
Since Me is dense in U(Me) in the measure topology, for every T ∈ U(Me) there is a
sequence (Tn) ⊆ Me such that Tn → T in the measure topology. Now we define an action
β : G → Lin(U(Me)) by βg(T ) = limn α̃g(Tn) (T ∈ U(Me), g ∈ G), where the limit is
taken in the measure topology. If T = 0, then there is a sequence (Tn) ⊆ Me such that
Tn → 0. By the definition of neighborhoods of 0 in the measure topology, for all ϵ, δ > 0,
Tn ∈ N(ϵ, δ) for n large enough. Since τ is invariant under α, the finite, faithful, normal
trace τ⊗̄τ◦ defined by τ⊗̄τ◦(a⊗ b◦) = τ(a)τ◦(b◦) is invariant under α̃. This shows that
Tn ∈ N(ϵ, δ) if and only if α̃g(Tn) ∈ N(ϵ, δ), so that α̃g(Tn) → 0. Thus βg(T ) = 0. This
argument justifies that the action β is well-defined.

For every a, b ∈ M, by the actions of M on U(Me) described in (2), we have

βg(a · T ) = βg((a⊗ 1◦)T ) = lim
n

α̃g((a⊗ 1◦)Tn)

= lim
n
(αg(a)⊗ 1◦)α̃g(Tn) (α̃ is equivariant)

= (αg(a)⊗ 1◦) · lim
n

α̃g(Tn)

= αg(a) · βg(T ).

A similar argument shows that βg(T · b) = βg(T ) · αg(b).
If g, h ∈ G, then

βgh(T ) = lim
n

α̃gh(Tn) = lim
n

α̃g(Tn)α̃h(Tn)

= lim
n

α̃g(Tn) lim
n

α̃h(Tn) = βg(T )βh(T ),

thus β is a homomorphism.
Finally, we observe that βg is bijective. For each g ∈ G and T ∈ U(Me), βg(T ) has a

dense domain D ⊆ L2(M⊗̄M◦). We show that for such g, βg−1(T ) with domain D′ is the
inverse of βg(T ), that is, βg−1(T )βg(T )ξ = Tξ, for all ξ ∈ D∩Dom(T ) with βg(T )ξ ∈ D′

and βg(T )βg−1(T )η = Tη, for all η ∈ D′ ∩ Dom(T ) with βg−1(T )η ∈ D. If (Tn)n is a
sequence in Me converging to T in the measure topology, then

βg(T )βg−1(T ) = lim
n

α̃g(Tn) lim
n

α̃g−1(Tn) = lim
n

α̃gg−1(Tn) = lim
n
(Tn) = T,
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and similarly, βg−1βg(T ) = T . Hence U(Me) is an equivariant (α, β)-G-M-module. We
will use this fact in Definition 4.2.

Consider a tracial ∗-algebra (A, τ) satisfying in the following two conditions:

(i) τ(a∗a) ⩾ 0 for all a ∈ A,
(ii) ∀b ∈ A ∃C > 0 : τ(a∗b∗ba) ⩽ Cτ(a∗a) (a ∈ A).

Suppose that M = W ∗(A) ⊆ B(L2(A, τ)) be its enveloping von Neumann algebra. We
adapt the following definition due to Thom [21, Definition 3.6].

Definition 4.1 With the above assumptions, the k-th L2-cohomology of A is defined
by

H(2),k(A) = Hk(A,U(Me)),

where Hk(A,U(Me)) is the k-th Hochschild cohomology of A with coefficients in U(Me).

Note that if A is a ∗-subalgebra of U(M) by [21, Corollary 3.7] we have an isomorphism
of right U(Me)-modules

Hk(A,U(Me)) ∼= Hk(A,U(Me))′ ∼= (Hk(A,Me)⊗Me U(Me))′.

Combining this idea with the definition of equivariant Hochschild cohomology due to
Jensen ([14, Definition I.1.7]) we arrive at the following (apparently new) notion:

Definition 4.2 Let M be a von Neumann algebra with a finite, faithful, normal trace τ
and let G ↷α M. Suppose that τ is invariant under the action α. Let A be a ∗-subalgebra
of M invariant under the action α. We denote the restricted action on A again by α.

The k-th equivariant L2-cohomology of A is defined by

H
(2),k
G (A) = Hk

G(A,U(Me)),

where Hk
G(A,U(Me)) is the k-th equivariant Hochschild cohomology of A with coeffi-

cients in U(Me).
Also, the k-th equivariant L2-Betti number of A is defined by

b
(2),k
G (A) = dimU(Me)β H

(2),k
G (A).

Here U(Me)β denotes the fixed point algebra of U(Me) with respect to the action β and
the dimension function is the generalized dimension function described above.

The algebra U(Me) above is a right U(Me)-module with its usual multiplication. This
gives Ck(A,U(Me) a left U(Me)-module structure with the action

ξ · T (a1, ..., ak) = T (a1, ..., ak)ξ, (ξ ∈ U(Me), T ∈ Ck(A,U(Me)).

The restriction of this left action to Ck
G(A,U(Me) is an action of the fixed point algebra

U(Me)β on Ck
G(A,U(Me). That is, if ξ ∈ U(Me)β and T ∈ Ck

G(A,U(Me), then ξ · T ∈
Ck
G(A,U(Me). The critical fact here is that this action commutes with δkG and hence it

induces an action of U(Me)β on Hk
G(A,U(Me). This allows us to take the dimension

over U(Me)β in the above definition.
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4.2 Grading versus dual action

Graded C∗-algebras and their relation with Fell bundles studied by Exel [11].

Definition 4.3 [11, Definition 3.1]. Let G be a discrete group and let A be a C∗-algebra.
A is said to be G-graded if there is a collection of linearly independent closed subspaces
(Ag)g∈G of A with the following conditions

(i) AgAh ⊆ Agh for all g, h ∈ G,
(ii) A∗

g ⊆ Ag−1 ,
(iii) A is the closure of the direct sum ⊕g∈GAg.

This grading is called topological grading if there exists a conditional expectation of A
to Ae. Here e is the identity element of G.

Similarly one can give a definition of a graded von Neumann algebras as follows.
Let G be a discrete group and let M be a von Neumann algebra. A G-grading on M is

a collection of linearly independent closed subspaces (Mg)g∈G of M with the following
conditions:

(i) MgMh ⊆ Mgh for all g, h ∈ G,
(ii) M∗

g ⊆ Mg−1 ,
(iii) M is the UWOT closure of the direct sum ⊕g∈GMg.

The homology of graded rings is well studied. A good source is [12, Section 20]. For the
rest of this section, we suppose that G is a discrete group and G◦ its opposite group.

Let M be a von Neumann algebra and let A = ⊕g∈GAg be a G-graded *-subalgebra
of M. This grading of A induces a (G ⊗ G◦)-grading on A ⊗ A◦ with homogeneous
components

(A⊗A◦)g = {
∑
i

ai ⊗ b◦i |ai ∈ A, b◦i ∈ A◦ and deg(ai) + deg(b◦i ) = g}.

Let (P = {Pk,∗}, d) → (A, 0) be a graded projective resolution of A with the augmenta-
tion map σ in the sense of [12, Section 20], that is, a long exact sequence

...
d−→ P1,∗

d−→ P0,∗
σ−→ A → 0. (3)

Then, HomA⊗A◦(Pk,∗,M⊗M◦) is a graded module of linear maps and

0 → HomAe(P0,∗,Me)
δ−→ HomAe(P1,∗,Me)

δ−→ ... (4)

is a cochain complex of graded modules with the coboundary maps δ defined by

δ(T ) = −(−1)deg(T )Td. We use the standard notation Homk,∗
Ae (P,Me) instead of

HomAe(Pk,∗,Me). Thus the cochain complex (4) has the form (Homk,∗
Ae (P,Me), δ).

Now, let us introduce the L2-cohomology of graded von Neumann algebras.

Definition 4.4 For every k ⩾ 0, the k-th graded L2-cohomology of A is defined by

H
(2),k
grd (A) := Hk,∗(HomAe(P,Me), δ) = ExtkAe(A,Me),
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and the k-th graded L2-Betti number of A is defined by

βk
grd(A) = dimAe H

(2),k
grd (A).

An important fact about graded C∗-algebras is the relation between grading on the
C∗-algebra and the action induced by this grading on the C∗-algebra. Raeburn in [20,
Theorem 3] showed that if G is an abelian group and if A is a topologically G-graded

C∗-algebra, then there is a strongly continuous action α of the dual group Ĝ on A such
that for each a ∈ Ag, αγ(a) = γ(g)a and the conditional expectation F : A → Ae is
defined by F (a) =

∫
Ĝ αγ(a)dγ for all a ∈ A.

Conversely, let α be a Ĝ-action on a C∗-algebra A. For every g ∈ G let Ag = {a ∈
A|αγ(a) = γ(g)a, γ ∈ Ĝ} and put Aα = ⊕g∈GAg. Then the collection (Ag)g∈G is a
grading on the closed subalgebra Aα of A.

4.3 Concluding Remarks

The idea of equivariant L2-cohomology presented here is at its very beginning and
deserves further development. There are a few important features that needs to be further
investigated. The first is finding conditions under which the equivariant L2-Betti numbers
vanish. Second, it is nice to have a relation between equivariant L2-cohomology and
the L2-cohomology of the corresponding crossed-product (or its subalgebras). Third,
it is desirable to have a relation between equivariant L2-cohomology and graded L2-
cohomology, as actions and gradings are interrelated as shown above. This is not an easy
task, as the two notions are defined here via two different approaches. Summing up,
the equivariant L2-cohomology theory and its counterparts sound as a promising field of
research with many non trivial and challenging problems.
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