Journal of Linear and Topological Algebra Vol. 11, No. 04, 2022, 265-269 DOR: 20.1001.1.22520201.2022.11.04.5.2 DOI: 10.30495/JLTA.2023.699063

On lifting acts over monoids

B. Tahmasebi Ashtiani^a, H. Rasouli^{a,*}, A. Tehranian^a, H. Barzegar^b

^aDepartment of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran. ^bDepartment of Mathematics, Tafresh University, 39518-79611, Tafresh, Iran.

Received 23 November 2022; Revised 24 December 2022; Accepted 27 December 2022.

Communicated by Hamidreza Rahimi

Abstract. Let A be an S-act where S is a monoid. Then A is called lifting if every proper subact L of A lies over a direct summand, that is, L contains a direct summand K of A such that $K \subset L$ is co-small in A. In this paper, characterizations of lifting S-acts and co-closed subacts are presented. We show that the class of supplemented acts are strictly larger than that of lifting ones.

Keywords: S-act, supplement, supplemented, lifting, co-closed.2010 AMS Subject Classification: 20M30, 20M50.

1. Introduction and preliminaries

The study of lifting modules was initiated by Oshiro [7] and then continued in many papers (see, for example, [1–3, 7]). A module M is called lifting if every submodule N of M lies over a direct summand, that is, N contains a direct summand X of M such that N/X is small in M/X. We refer to [1, 6] for basic terminology on lifting modules. Here we extend the notion of lifting to S-acts over a monoid S and give a characterization for such kinds of S-acts. Thereafter, we consider co-closed subacts and characterize them. It is also proved that lifting acts are supplemented but not vice versa.

Let us first recall some preliminaries from [4] about S-acts needed in the sequel.

Throughout S is a monoid unless otherwise stated. A (non-empty) set A is called a (*right*) S-act if there is a mapping $\lambda : A \times S \to A$, denoting $\lambda(a, s)$ by as, satisfying a(st) = (as)t and a1 = a for all $a \in A$ and $s, t \in S$. An element $\theta \in A$ is said to be a

© 2022 IAUCTB. http://jlta.ctb.iau.ir

^{*}Corresponding author.

E-mail address: tahmasebi5757@gmail.com (B. Tahmasebi Ashtiani); hrasouli@srbiau.ac.ir (H. Rasouli); tehranian@srbiau.ac.ir (A. Tehranian); barzegar@tafreshu.ac.ir (H. Barzegar).

zero element if $\theta s = \theta$ for all $s \in S$. The singleton S-act $\{\theta\}$ is denoted by Θ . Also, for an S-act A, A^{θ} denotes the S-act $A \cup \Theta$ in which a zero element θ is externally adjoint to A. A (non-empty) subset B of A is called a *subact* of A, denoted as $B \leq A$, if $bs \in B$ for every $b \in B$ and $s \in S$. If B is a proper subact of A, then we write B < A. Clearly, S is an S-act with its operation as the action. Any set A can be made into an S-act by setting as = a for all $a \in A, s \in S$; this action of S is said to be *trivial*. By a *simple S*-act we mean an S-act with no proper subact. An S-act A is said to be *decomposable* if it is a disjoint union of two proper subacts; otherwise, it is called *indecomposable*.

2. Lifting acts and co-closed subacts

In this section we introduce and characterize the concepts of lifting S-acts and co-closed subacts which are based on the notion of superfluous subacts.

Recall from [5] that a subact B of an S-act A is called *superfluous* if $B \cup C \neq A$ for each proper subact C of A, and it is denoted by $B \leq_s A$. Also an S-act A is said to be *hollow* if any proper subact of A is superfluous.

Definition 2.1 Given subacts K < N < A of an S-act A, the inclusion $K \subset N$ is called *co-small* in A if $N/K \leq_s A/K$.

We say that a subact A_1 of an S-act A is a *direct summand* of A in case there is a subact A_2 of A with $A = A_1 \cup A_2$ and $A_1 \cap A_2 = \emptyset$. In this case, we write $A = A_1 \dot{\cup} A_2$.

Definition 2.2 An S-act A is called *lifting* if every proper subact L of A lies over a direct summand, that is, L contains a direct summand K of A such that $K \subset L$ is co-small in A.

The following observations are directly obtained from the definition of a lifting S-act:

- (1) Every simple act is lifting. In particular, every group is a lifting act over itself.
- (2) Any non-simple lifting act is decomposable.

(3) A lifting S-act A contains no minimal proper subact and so A has no zero element. As a consequence, all proper subacts of a non-simple lifting act are infinite.

Theorem 2.3 (Characterization of lifting S-acts) An S-act A is lifting if and only if every proper subact N of A can be written as $N = N_1 \dot{\cup} N_2$ with N_1 a direct summand of A and $N_2 \leq_s A$.

Proof. Let A be a lifting S-act and N be a proper subact of A. Then there exists a proper subact X of N with $A = X \dot{\cup} X'$ for some $X' \leq A$, and $N/X \leq_s A/X$. Let $\varphi: A/X \to X' \dot{\cup} \Theta$ be the obvious isomorphism. Then it follows from [5, Lemma 2.4(iii)] that

$$\varphi(N/X) = (N \cap X') \dot{\cup} \Theta \leqslant_s X' \dot{\cup} \Theta.$$

Now, by [5, Lemma 2.3(ii)], we have $(N \cap X')^{\theta} \leq_s A^{\theta}$ and hence $\emptyset \neq N \cap X' \leq_s A$. Since $N = X \dot{\cup} (N \cap X')$, taking $N_1 = X$ and $N_2 = N \cap X'$ gives the assertion. For the converse, let N be a proper subact of A. By the assumption, $N = N_1 \dot{\cup} N_2$ such that $A = N_1 \dot{\cup} X$ for some subact X of A and $N_2 \leq_s A$. We claim that $N_1 \subset N$ is co-small in A. To this end, first note that $N/N_1 = (N_1 \dot{\cup} N_2)/N_1 = \Theta \dot{\cup} N_2$ and $A/N_1 = (N_1 \dot{\cup} X)/N_1 = \Theta \dot{\cup} X$. It must be shown that $\Theta \dot{\cup} N_2 \leq_s \Theta \dot{\cup} X$. Clearly, it suffices to show that $N_2 \leq_s X$. Let $N_2 \cup Y = X$ for $Y \leq X$. Then $(N_2 \cup Y) \dot{\cup} N_1 = X \dot{\cup} N_1 = A$. Since $N_2 \leq_s A, Y \dot{\cup} N_1 = A$. This implies that Y = X, as desired. Hence, A is lifting.

Corollary 2.4 A is a lifting S-act if and only if for every proper subact N of A, $A = A_1 \dot{\cup} A_2$ for some $A_1 < N$ and $A_2 < A$ with $\emptyset \neq N \cap A_2 \leq_s A$.

Proof. Let A be a lifting S-act and N be a proper subact of A, then there exists a proper subact X of N such that $A = X \cup X'$, for some X' < A, and $N/X \leq_s A/X$. Now by the proof of Theorem 2.3, $\emptyset \neq N \cap X' \leq_s A$. By setting $A_1 := X$ and $A_2 := X'$, the result follows. Conversely, let N be a proper subact of A. Using the assumption, $A = A_1 \cup A_2$ for some $A_1 < N$ and $A_2 < A$ with $\emptyset \neq N \cap A_2 \leq_s A$. Putting $N_1 = A_1$ and $N_2 = N \cap A_2$, we have $N = N_1 \cup N_2$, N_1 is a direct summand of A and $N_2 \leq_s A$. Now, applying Theorem 2.3, A is lifting.

Definition 2.5 A subact N of an S-act A is said to be *co-closed* in A provided that N has no proper subact K which $K \subset N$ is co-small in A.

Clearly, a lifting S-act has no co-closed proper subact.

Remark 1 Let A be an S-act and N < A. If N is co-closed in A and N has a zero element with |N| > 1, then A is not hollow. Indeed, $\Theta \subset N$ is not co-small so that $N = N/\Theta \leq_s A/\Theta = A$.

Theorem 2.6 (Characterization of co-closed subacts) L is a co-closed subact of an S-act A if and only if for any proper subact K of L, there is a subact N of A such that $L \cup N = A$ implies $K \cup N \neq A$.

Proof. Let *L* be a co-closed subact of *A* and K < L such that for any $N \leq A$, if $L \cup N = A$, then $K \cup N = A$. We claim that $L/K \leq_s A/K$. Let $(L/K) \cup (N/K) = A/K$ where $K \leq N \leq A$. Then $(L \cup N)/K = A/K$ and so $L \cup N = A$. Using the assumption, $K \cup N = A$. Then N = A and so N/K = A/K. Therefore, $K \subset L$ is co-small in *A*, which is a contradiction. Conversely, assume that *L* satisfies the mentioned condition. We show that *L* is co-closed. On the contrary, let K < L be co-small in *A* and so $L/K \leq_s A/K$. Let $N \leq A$ and $L \cup N = A$. Then

$$A/K = (L \cup N)/K = (L \cup K \cup N)/K = (L/K) \cup ((K \cup N)/K).$$

Now from $L/K \leq_s A/K$ we conclude that $(K \cup N)/K = A/K$ and hence $K \cup N = A$, which contradicts the assumption.

In light of the above theorem, the following is immediate.

Corollary 2.7 Any direct summand of an S-act A is co-closed in A.

Recall from [5] that the *radical* of an S-act A, denoted as $\operatorname{Rad}(A)$, is the intersection of all maximal subacts of A, and if A contains no maximal subact, we put $\operatorname{Rad}(A) = A$. By [5, Proposition 4.6], $\operatorname{Rad}(A) = \bigcup \{B \mid B \leq_s A\}$.

Theorem 2.8 Let A be an S-act and $K \leq L \leq A$. Then the following assertions hold: (i) If L is co-closed in A, then L/K is co-closed in A/K.

(ii) If L is co-closed in A, then $K \leq_s A$ implies $K \leq_s L$ and so $\operatorname{Rad}(L) = L \cap \operatorname{Rad}(A)$.

(iii) If L is hollow, then either L is co-closed in A or $L \leq_s A$.

(iv) If K is co-closed in A, then K is co-closed in L.

Proof. (i) Suppose there exists a proper subact N of L such that $N/K \subset L/K$ is co-small in A/K. Then

$$L/N \cong \frac{L/K}{N/K} \leqslant_s \frac{A/K}{N/K} \cong A/N,$$

and so $L/N \leq_s A/N$, showing that $N \subset L$ is co-small in A, which contradicts the assumption.

(ii) Let $K \leq_s A$ and $K \cup K' = L$ for some $K' \leq L$. Choose $K' \leq L' \leq A$ such that $A/K' = (L/K') \cup (L'/K')$. Then

$$A = L \cup L' = K \cup K' \cup L' = K \cup L'.$$

Since $K \leq_s A$, L' = A and so L'/K' = A/K', which shows that $L/K' \leq_s A/K'$. Since L is co-closed in A, L = K' so that $K \leq_s L$. For the second assertion, first note that $\operatorname{Rad}(A) = \bigcup \{N \mid N \leq_s A\}$ and $\operatorname{Rad}(L) = \bigcup \{N \mid N \leq_s L\}$. We show that $\operatorname{Rad}(L) = L \cap \operatorname{Rad}(A)$. Take any $x \in \operatorname{Rad}(L)$. Thus $x \in N$ for some $N \leq_s L$. Using [5, Lemma 2.3(ii)], $N \leq_s A$ whence $x \in \operatorname{Rad}(A)$. Therefore, $x \in L \cap \operatorname{Rad}(A)$. For the reverse inclusion, let $x \in L \cap \operatorname{Rad}(A)$. Then $x \in L \cap B$ for some $B \leq_s A$. Then, $L \cap B \leq B \leq_s A$ whence $L \cap B \leq_s A$ by [5, Lemma 2.3(i)], so that $x \in L \cap B \leq_s L$ by the previous assertion of this part, which means that $x \in \operatorname{Rad}(L)$.

(iii) Assume that L is not co-closed in A. Then there exists K < L such that $L/K \leq A/K$. Since L is hollow, $K \leq L$ and so $K \leq A$ by [5, Lemma 2.3(ii)]. Then from [5, Lemma 2.3(i)] one concludes that $L \leq A$.

(iv) Let there exist $X \subseteq K$ such that $K/X \leq_s L/X$. Then $K/X \subseteq L/X \subseteq A/X$ and by [5, Lemma 2.3(ii)], $K/X \leq_s A/X$. But being K co-closed in A implies K = X, which gives that K is co-closed in L.

Ultimately, we investigate some connections between lifting acts and supplemented acts studied extensively in [8]. Let us first recall some notions.

Let B be a subact of an S-act A. A subact C of A is said to be a supplement of B in A if C is minimal with respect to $A = B \cup C$, that is, $A = B \cup C$ and if $A = B \cup D$ for some subact D of C, then D = C. An S-act A is called supplemented if the supplement of any proper (non-empty) subact B of A is proper in A, that is, $B_A^s < A$, where $B^s = (A \setminus B)S$ is the unique supplement of B in A (see [8, Theorem 2.3]).

Theorem 2.9 Any lifting *S*-act is supplemented.

Proof. Let A be a lifting S-act. Take any proper subact B of A. Using the assumption, there exists a proper subact C of B and $A = C \dot{\cup} D$ for some D < A. Then, by [8, Lemma 2.4], we get $B_A^s \subseteq C_A^s \subseteq D \subset A$, which means that A is supplemented.

The converse of the above theorem is not generally true. For instance, the S-act $A = \{a, b\}$ over a monoid S with trivial action is supplemented by [8, Remark 3.2(iii)] whereas it is not clearly lifting.

Proposition 2.10 Let A be a lifting S-act and $B, B_A^s < A$. Then B_A^s is a direct summand of A.

Proof. By the assumption and Theorem 2.3, $B_A^s = L\dot{\cup}T$ where L is a direct summand of A and $T \leq_s A$. So, $A = B \cup B_A^s = B \cup L\dot{\cup}T = B \cup L$, where the last equality follows from $T \leq_s A$. Then minimality of B_A^s implies $B_A^s = L$ and hence B_A^s is a direct summand of A.

References

- J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules, Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006.
- [2] M. Harada, On lifting property on direct sums of hollow modules, Osaka J. Math. 17 (3) (1980), 783-791.

- [3] D. Keskin, On lifting modules, Comm. Algebra. 28 (2000), 3427-3440.
- M. Kilp, U. Knauer, A. Mikhalev, Monoids, Acts and Categories, de Gruyter, Berlin, 2000. [4]
- [5] R. Khosravi, M. Roueentan, Co-uniform and hollow S-acts over monoids, Commun. Korean Math. Soc. 37 (2) (2022), 347-358.
 [6] S. H. Mohamed, B. J. Miller, Continuous and Discrete Modules, London Math. Soc. LNS 147 Cambridge
- Univ. Press, Cambridge, 1990.
- [7] K. Oshiro, Lifting modules, extending modules and their applications to generalized uniserial rings, Hokkaido Math. J. 13 (3) (1984), 339-346.
- [8] B. Tahmasebi Ashtiani, H. Rasouli, A. Tehranian, H. Barzegar, On the notion of supplement in acts over monoids, J. Algebra Appl. (2023), In press.