Journal of Linear and Topological Algebra Vol. 10*, No.* 03*,* 2021*,* 235*-* 239

A class of (2*m −* 1)**-weakly amenable Banach algebras**

M. Yegan*^a*

^a*Department of Mathematics, Faculty of Basic Sciences, Imam Ali University, Tehran, Iran.*

Received 30 July 2021; Revised 6 October 2021; Accepted 7 October 2021. Communicated by Ghasem Soleimani Rad

Abstract. Let $\mathfrak A$ be a Banach space and λ be a non-zero fixed element of $\mathfrak A^*$ (dual space of \mathfrak{A}) with non-zero kernel. Defining algebra product in \mathfrak{A} as $a \cdot b = \lambda(a)b$ for $a, b \in \mathfrak{A}$, we show that \mathfrak{A} is a $(2m-1)$ -weakly amenable Banach algebra but not 2*m*-weakly amenable for any $m \in \mathbb{N}$. Furthermore, we show the converse of the statement [2, Proposition 1.4.(ii)] "for a non-unital Banach algebra \mathfrak{A} , if $\mathfrak A$ is weakly amenable then $\mathfrak{A}^{\#}$ is weakly amenable" does not hold.

 \odot 2021 IAUCTB.

Keywords: Banach algebra, cohomology group, weakly amenable.

2010 AMS Subject Classification: 46H30,46H25.

1. Introduction and preliminaries

Let $\mathfrak A$ be a Banach algebra and *X* be a Banach $\mathfrak A$ -bimodule. A derivation $D: \mathfrak A \longrightarrow X$ is a linear map satisfying the equation $D(ab) = D(a) \cdot b + a \cdot D(b)$. For any $x \in X$, define $\delta_x : \mathfrak{A} \longrightarrow X$ by $\delta_x(a) = a \cdot x - x \cdot a$. Then δ_x is a bounded derivation from \mathfrak{A} to X. This derivation is called inner derivation. The spaces of all bounded derivations and all inner derivations from \mathfrak{A} to X are denoted by $\mathcal{Z}^1(\mathfrak{A}, X)$ and $\mathcal{N}^1(\mathfrak{A}, X)$, respectively. Then the first (topological) cohomology group of $\mathfrak A$ with coefficients in X is the quotient space $\mathcal{Z}^1(\mathfrak{A},X)/\mathcal{N}^1(\mathfrak{A},X)$ and denoted by $\mathcal{H}^1(\mathfrak{A},X)$ (for reviewing these concepts one may see a standard text such as [1]). Much studies have been devoted to the calculation of cohomology groups $\mathcal{H}^1(\mathfrak{A}, X)$ and the higher dimensions cohomology groups $\mathcal{H}^n(\mathfrak{A}, X)$.

A Banach algebra $\mathfrak A$ is called amenable if $\mathcal H^1(\mathfrak A, X^*) = (0)$ for every Banach $\mathfrak A$ bimodule X. The Banach algebra $\mathfrak A$ is said to be weakly amenable if $\mathcal H^1(\mathfrak A,\mathfrak A^*)=(0)$.

E-mail address: mryegan@yahoo.com (M. Yegan).

The notions of *n*-weakly amenable ($n \in \mathbb{N}$) and permanently weakly amenable were introduced by Dales, Ghahramani and Gronbæk [2]. A Banach algebra A is said to be *n*-weakly amenable if $\mathcal{H}^1(\mathfrak{A}, \mathfrak{A}^{(n)}) = (0)$ and is permanently weakly amenable if $\mathcal{H}^1(\mathfrak{A}, \mathfrak{A}^{(n)}) = (0)$ for each $n \in \mathbb{N}$. They considered the weakly amenable Banach subalgebra $E \hat{\bigotimes} E^*$ (tensor algebra of *E*) of *B*(*E*) for a Banach space *E* and proved it is $(2m - 1)$ -weakly amenable but not 2*m*-weakly amenable for any $m \in \mathbb{N}$. Their work along with Zhang's work [3] were a motivation to recognize some more such Banach algebras.

In this article, we define a special product on a given Banach space such that it becomes a (2*m−*1)-weakly amenable Banach algebra but not 2*m*-weakly amenable for any *m ∈* N.

2. Main results

Lemma 2.1 Let \mathfrak{A} be a Banach space and λ be a fixed non-zero element of \mathfrak{A}^* with non-zero kernel. Define algebra product on \mathfrak{A} as $a \cdot b = \lambda(a)b$ for $a, b \in \mathfrak{A}$. Then \mathfrak{A} is a weakly amenable Banach algebra.

Proof. Clearly, \mathfrak{A} is a non-commutative Banach algebra and the module actions can be formulated as $a \cdot \Lambda = \langle a, \Lambda \rangle \lambda$ and $\Lambda \cdot a = \lambda(a) \Lambda$ for $a \in \mathfrak{A}$ and $\Lambda \in \mathfrak{A}^*$. Let $D : \mathfrak{A} \longrightarrow \mathfrak{A}^*$ be a bounded derivation. Then,

$$
D(ab) = D(a) \cdot b + a \cdot D(b),
$$

\n
$$
D(\lambda(a)b) = \lambda(b)D(a) + \langle a, D(b) \rangle \lambda.
$$
\n(1)

■

Now, let $a = b$, then (1) implies $\langle a, D(a) \rangle = 0$, and therefrom $\langle a + b, D(a + b) \rangle = 0$, and this in turn yields $\langle a, D(b) \rangle = -\langle b, D(a) \rangle$. Since $\lambda \neq 0$ there exists $e_0 \in \mathfrak{A}$ as left identity. Indeed, $e_0 \cdot a = \lambda(e_0)a = 1a = a$ for each $a \in \mathfrak{A}$. Hence,

$$
D(e_0 a) = D(e_0) \cdot a + e_0 \cdot D(a)
$$

= $D(e_0) \cdot a + \langle e_0, D(a) \rangle \lambda$
= $D(e_0) \cdot a - \langle a, D(e_0) \rangle \lambda$
= $D(e_0) \cdot a - a \cdot D(e_0), \quad D(e_0) \in \mathfrak{A}^*.$

For referring to the mentioned algebra in Lemma 2*.*1 we call it **Scalar algebra**.

Lemma 2.2 Let $\mathfrak A$ be a Scalar algebra. Then $\mathfrak A$ is a left ideal in its second dual algebra A *∗∗ .* Furthermore, A is Arens regular.

Proof. Let \mathfrak{A} be produced by $\lambda \in \mathfrak{A}^*$. We equip \mathfrak{A}^{**} with first Arens product and identify $a \in \mathfrak{A}$ with $\hat{a} \in \mathfrak{A}^{**}$, where \hat{a} is the canonical embedding of \mathfrak{A} into \mathfrak{A}^{**} . Hence,

$$
\psi \Box a = \psi \Box \hat{a} = \langle \lambda, \psi \rangle \hat{a} = \langle \lambda, \psi \rangle a.
$$

For Arens regularity let $\eta \in \mathfrak{A}^*$, and $\Phi, \Psi \in \mathfrak{A}^{**}$. Then, we have

first Arens product

 $\langle \langle \eta, \Phi \rangle \rangle = \langle \Psi \rangle \langle \eta, \Phi \rangle = \langle \langle \eta, \Psi \rangle \langle \chi \rangle + \langle \Phi \rangle = \langle \eta, \Psi \rangle \langle \chi \rangle + \langle \Phi \rangle$

second Arens product

$$
\langle \eta, \Phi \lozenge \Psi \rangle = \langle \eta \cdot \Phi, \Psi \rangle = \langle \langle \lambda, \Phi \rangle \eta, \Psi \rangle = \langle \lambda, \Phi \rangle \langle \eta, \Psi \rangle.
$$

Remark 1 In the general case, $\mathfrak A$ *is not a right ideal in* $\mathfrak A^{**}$. For this, let $\mathfrak A$ be a non*reflexive Banach algebra. Choose* $\psi \in \mathfrak{A}^{**} \backslash \mathfrak{A}$ and $a \in \mathfrak{A}$ for which $\lambda(a) \neq 0$. Then $a \Box \psi = \hat{a} \Box \psi = \lambda(a) \psi \notin \mathfrak{A}.$

Theorem 2.3 The Scalar algebra \mathfrak{A} is $(2m-1)$ -weakly amenable.

Proof. The Scalar algebra $\mathfrak A$ is weakly amenable and has left identity. It is also a left ideal in its second dual algebra, so by [3, *Theorem* 3] it is $(2m - 1)$ -weakly amenable. ■

In continuation, we show that every Scalar algebra is not 2-weakly amenable. Then immediately by [2, proposition 1.2] it is not 2m-weakly amenable for any $m \in \mathbb{N}$.

Lemma 2.4 Let \mathfrak{A} be a Scalar algebra produced by $\lambda \in \mathfrak{A}^*$. Then $I = {\lambda}^{\perp}$ is a closed two sided ideal in \mathfrak{A}^{**} with codimension one and $\mathfrak{A}^{**} \cong I \bigoplus \mathbb{C}$.

Proof. We equip \mathfrak{A}^{**} with the first Arens product and define $\Phi : \mathfrak{A}^{**} \longrightarrow \mathbb{C}$ by $\Phi(\psi) = \langle$ $\lambda, \psi > 0$. It is easy to see that Φ is a non-zero character on \mathfrak{A}^{**} . Indeed, for any ψ_1 and ψ_2 in \mathfrak{A}^{**} , we have

$$
\Phi(\psi_1 \Box \psi_2) = \langle \lambda, \psi_1 \Box \psi_2 \rangle
$$

= $\langle \psi_2 \cdot \lambda, \psi_1 \rangle$
= $\langle \lambda, \psi_2 \rangle \lambda, \psi_1 \rangle$
= $\Phi(\psi_1)\Phi(\psi_2)$.

Clearly, $ker \Phi = {\lambda}^{\perp}$ is a closed two sided ideal in \mathfrak{A}^{**} . Hence, $\frac{\mathfrak{A}^{**}}{I} \cong \mathbb{C}$. For short exact sequence $0 \rightarrow I \stackrel{\imath}{\longrightarrow} \mathfrak{A}^{**} \stackrel{\Phi}{\longrightarrow} \mathbb{C} \rightarrow 0$, define $\theta : \mathbb{C} \rightarrow \mathfrak{A}^{**}$ by $\theta(z) = z\hat{e_0}$ where e_0 is a (fixed) left identity of \mathfrak{A} . Then θ is a continuous homomorphism and $\Phi \circ \theta = \iota_{\mathbb{C}}$. Hence, the extension splits strongly; that is, $\mathfrak{A}^{**} \cong I \bigoplus \mathbb{C}$.

Proposition 2.5 The Scalar algebra $\mathfrak A$ is not 2-weakly amenable.

Proof. We specify dual module actions as

$$
a \cdot \psi = \hat{a} \Box \psi = \lambda(a)\psi,
$$

$$
\psi \cdot a = \psi \Box \hat{a} = \langle \lambda, \psi \rangle \langle \hat{a}, \quad a \in \mathfrak{A}, \psi \in \mathfrak{A}^{**}.
$$

Let $D: \mathfrak{A} \longrightarrow \mathfrak{A}^{**}$ be a continuous derivation. Then, for given $a, b \in \mathfrak{A}$, we have

$$
D(a \cdot b) = D(a) \cdot b + a \cdot D(b),
$$

$$
D(\lambda(a)b) = \langle \lambda, D(a) \rangle \hat{b} + \lambda(a)D(b).
$$

■

Consequently, $\langle \lambda, D(a) \rangle = 0$. So, $D(a) \in {\{\lambda\}}^{\perp} = I$. It is easy to see that every bounded linear operator $D: \mathfrak{A} \longrightarrow I = {\lambda}^{\perp}$ is a bounded derivation. Now, define $D: \mathfrak{A} \longrightarrow I$ by $D(a) = f(a)\psi$ for some non-zero $f \in \mathfrak{A}^*$ and non-zero $\psi \in I$. If *D* is an inner derivation, then

$$
D(a) = f(a)\psi = \delta_w(a) \text{ for some } w \in \mathfrak{A}^{**} \cong I \oplus \mathbb{C}e
$$

$$
f(a)\psi = a \cdot (V + ce) - (V + ce) \cdot a \text{ for some } V \in I, c \in \mathbb{C}
$$

$$
= a \cdot V - V \cdot a
$$

$$
= \lambda(a)V - 0
$$

$$
= \lambda(a)V.
$$

Choose $f \in \mathfrak{A}^*$ such that $f(a) = 0$ but $\lambda(a) \neq 0$ for some $a \in \mathfrak{A}$. Therefore, $V = 0$ and thereof $D = 0$. This contradiction completes the proof.

Now, we turn our attention to the relation between weak amenability of a non-unital Banach algebra and its unitization. By [2, Proposition1.4] if a non-unital Banach algebra is $(2n - 1)$ -weakly amenable, then so is its unitization. By a Scalar algebra, we show its converse is not true in general. In fact, we have the following proposition.

Proposition 2.6 Let \mathfrak{A} be a Scalar algebra produced by $\lambda \in \mathfrak{A}^*$ and $I = \text{ker }\lambda$. Then $I^# \cong \mathfrak{A}$ is weakly amenable but *I* is not.

Proof. $I = \text{ker }\lambda$ is a closed two sided ideal in $\mathfrak A$ and we have the short exact sequence

$$
0 \longrightarrow I \stackrel{\iota}{\longrightarrow} \mathfrak{A} \stackrel{\lambda}{\longrightarrow} \mathbb{C} \longrightarrow 0.
$$

Clearly, λ is a non-zero character on \mathfrak{A} . Hence, $\frac{\mathfrak{A}}{I} \cong \mathbb{C}$. Define $\theta : \mathbb{C} \longrightarrow \mathfrak{A}$ by $\theta(z) = ze_0$, where e_0 is a (fixed) left identity of $\mathfrak A$. Obviously, θ is a continuous homomorphism and $\lambda \circ \theta = i_{\mathbb{C}}$. Therefore, the extension splits strongly; that is, $\mathfrak{A} \cong I \oplus \mathbb{C} = I^{\#}$. As we saw in Lemma 2.1, $I^{\#}(=\mathfrak{A})$ is weakly amenable. If *I* is weakly amenable then I^2 is dense in *I*, but $I^2 = (0)$, a contradiction. Thus, *I* is not weakly amenable.

Let us consider some examples.

Example 2.7 Suppose $\mathfrak{A} = \{a\}$ $(0, 0)$ *a*¹ *a*² \setminus *,* $a_1, a_2 \in \mathbb{C}$, the subspace of $M_{2 \times 2}$ normed $\|b\| \|a\| = |a_1| + |a_2|$. It is easy to see that $\mathfrak A$ with respect to matrix multiplication is a noncommutative Banach algebra. Meanwhile, if we define $\lambda : \mathfrak{A} \longrightarrow \mathbb{C}$ by $\lambda(a) = a_2$ then \mathfrak{A} is a Scalar algebra. $\mathfrak A$ has left identity. In fact every element as $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ *a*¹ 1 λ $, (a_1 \in \mathbb{C})$ is a left identity for \mathfrak{A} . But \mathfrak{A} has no right bounded approximate identity. If otherwise, let $\{e_{\alpha}\}$ where $e_{\alpha} =$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ *e*1*^α e*2*^α* \setminus *,* $e_{1\alpha}, e_{2\alpha} \in \mathbb{C}$ be a bounded net in \mathfrak{A} such that $ae_{\alpha} \rightarrow a$, $(a \in \mathfrak{A})$. Then $\|ae_{\alpha}-a\| = |a_2e_{1\alpha}-a_1| + |a_2||e_{2\alpha}-1|$ leads to contradiction. Obviously, \mathfrak{A} is a Scalar algebra. Thus, by Theorem 2.3 and Proposition 2.5, \mathfrak{A} is $(2m-1)$ -weakly amenable but not 2*m*-weakly amenable for any $m \in \mathbb{N}$. This example can be extended to higher dimensions square matrices space.

Example 2.8 Let *G* be a locally compact group. $M(G)$ the space of all complex regular Borel measures on *G* along with $||\mu|| = |\mu|(G)$ is a Banach space. The mapping λ : $M(G) \longrightarrow \mathbb{C}$ defined by $\lambda(\mu) = \mu(G)$ is a bounded non-zero linear functional with nonzero kernel. We define a product in $M(G)$ by $\mu \cdot \nu = \lambda(\mu)\nu = \mu(G)\nu$. With this product, *M*(*G*) is a Scalar algebra. So *M*(*G*) is $(2m - 1)$ -weakly amenable Banach algebra but not 2*m*-weakly amenable for any $m \in \mathbb{N}$.

References

- [1] F. F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag, 1973.
- [2] H. G. Dales, F. Ghahramani, N. Gronbæk, Derivations into iterated duals of Banach algebras, Studia Mathematica. 128 (1) (1998), 19-54.
- [3] Y. Zhang, Weak amenability of a class of Banach algebras, Canad. Math. Bull. 44 (4) (2001), 504-508.