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Abstract. A double cyclic code (or DC code) of length n = k + l over Z2 is a binary linear
code, where any cyclic shift of the first k coordinates and the last l coordinates of a codeword is
also a codeword. In this paper, we study the relationship between separability and self-duality
of these codes. Also, we obtain the shadow code by determining the generator polynomials
of the doubly even subcode of the self-dual code.
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1. Introduction and preliminaries

Linear codes and cyclic codes play important roles in algebraic coding theory and
error-correcting codes. Many researchers have been interested in these codes over fi-
nite rings. Let R = Z2 and Rn be the set of all n−tuples vectors over R. A bi-
nary linear code Ψ of length n is an additive subgroup of Rn. The dual code of Ψ is
Ψ⊥ = {ν ∈ Rn| υ · ν = 0 (mod 2), ∀υ ∈ Ψ} where υ · ν =

∑n−1
i=0 υiνi (mod 2) is the

inner product for υ = (υ0, υ1, . . . , υn−1),ν = (ν0, ν1, . . . , νn−1) ∈ Rn. A code Ψ is self-
orthogonal, if Ψ ⊆ Ψ⊥. If Ψ = Ψ⊥, Ψ is self-dual. A binary linear code Ψ is cyclic, if the
cyclic shift of a codeword is also a codeword. Among the cyclic codes, the self-dual codes
have been specially investigated. Sloane and Thompson have given the shortest length
of nontrivial self-dual binary cyclic codes [7]. The construction of binary self-dual cyclic
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codes of a large minimal distance has been studied via Heijne and Top [5].
A binary double cyclic code (or DC code in short form) Ψ of length n = k+l is a binary lin-
ear code if (α0, ..., αk−1|α′

0, ..., α
′
l−1) ∈ Ψ, then (αk−1, α0, ..., αk−2|α′

l−1, α
′
0, .., α

′
l−2) ∈ Ψ.

If Ψk = {(α0, .., αk−1) ∈ Rk| (α0, .., αk−1|α′
0, ..., α

′
l−1) ∈ Ψ} and Ψl = {(α′

0, .., α
′
l−1) ∈

Rl| (α0, .., αk−1|α′
0, .., α

′
l−1) ∈ Ψ}, then Ψk, Ψl are some cyclic linear codes and Ψ is a

subcode of Ψk ×Ψl. Also, if a subcode Ψ of Ψk ×Ψl coincides with Ψk ×Ψl, we say that
Ψ is a separable code.
Abualrub et al. introduced that Z2Z4−additive cyclic codes are as Z4−sub modules
and obtained a set of generator polynomials for these codes [1]. Also, properties for
Z2Z4−additive cyclic codes were found [1, 3]. The ring R[u]/(uk − 1) × R[u]/(ul − 1)
with η(u) ∗ (α(u)|α′(u)) = (η(u)α(u)|η(u)α′(u)) where η(u) ∈ R[u] is an R[u]−module
which is denoted by Rk,l. Borges et al. studied R−DC codes as R[u]−submodules of Rk,l

and determined the structure of these codes [4]. In this note, we study and classify the
self-dual R−DC codes for finding the shadow codes.

2. Self-duality

In this section, we investigate some properties of self-dual R−DC codes. We determine
the relationship between self-duality and separability of these codes. If Ψ is a self-dual
R−DC code of length n = k + l, then n is even and r, s have the same parity. Clearly if
k and l are odd, then Ψk and Ψl are not self-dual. The following lemma states when an
R−DC code is self-orthogonal.

Lemma 2.1 Let Ψ be an R−DC code of length n = k + l. If Ψk and Ψl are self-
orthogonal, then Ψk ×Ψl and Ψ are both self-orthogonal.

Proof. For any codewords

α = (α0, .., αk−1|α′
0, .., α

′
l−1), β = (β0, .., βk−1|β′

0, .., β
′
l−1) ∈ Ψk ×Ψl,

we have (α0, .., αk−1), (β0, .., βk−1) ∈ Ψk and (α′
0, .., α

′
l−1), (β

′
0, .., β

′
l−1) ∈ Ψl. Since Ψk

and Ψl are self-orthogonal,
∑k−1

i=0 αiβi = 0 (mod 2) and
∑l−1

j=0 α
′
jβ

′
j = 0 (mod 2). Then

α · β =
∑k−1

i=0 αiβi +
∑l−1

j=0 α
′
jβ

′
j = 0 (mod 2) and so Ψk ×Ψl is self-orthogonal.

Also since Ψ ⊆ Ψk ×Ψl, for every α, β ∈ Ψ we have α · β = 0 (mod 2). Therefore Ψ is
self-orthogonal. ■

Lemma 2.2 If Ψ is an R−DC code of length n = k + l, then (Ψk)
⊥ × (Ψl)

⊥ ⊆ Ψ⊥.
Moreover if Ψ is separable, then (Ψk)

⊥ × (Ψl)
⊥ = Ψ⊥.

Proof. Suppose that (β0, β1, . . . , βk−1|β′
0, β

′
1, . . . , β

′
l−1) ∈ (Ψk)

⊥ × (Ψl)
⊥. Since Ψ ⊆

Ψk × Ψl, for every (α0, α1, . . . , αk−1|α′
0, α

′
1, . . . , α

′
l−1) ∈ Ψ, we have

∑k−1
i=0 αiβi = 0

(mod 2) and
∑l−1

j=0 α
′
jβ

′
j = 0 (mod 2). Hence

∑k−1
i=0 αiβi +

∑l−1
j=0 α

′
jβ

′
j = 0 (mod 2).

Therefore, (β0, β1, . . . , βr−1|β′
0, β

′
1, . . . , β

′
s−1) ∈ Ψ⊥ (i.e., (Ψk)

⊥ × (Ψl)
⊥ ⊆ Ψ⊥). Now, if

Ψ is separable, dim(Ψ = Ψk ×Ψl) = dim(Ψk) + dim(Ψl). So

dim(Ψ⊥) = n− dim(Ψ) = k + l − dim(Ψk)− dim(Ψl)

= [k − dim(Ψk)] + [l − dim(Ψl)] = dim((Ψk)
⊥) + dim((Ψl)

⊥).

Therefore (Ψk)
⊥ × (Ψl)

⊥ = Ψ⊥. ■
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Proposition 2.3 Let Ψ be an R−DC code of length n = k + l and let Ψk and Ψl be
self-dual, then
(i) Ψk ×Ψl is self-dual;
(ii) Ψ is separable if and only if Ψ is self-dual;
(iii) Ψ is non separable if and only if Ψ ⫋ Ψ⊥.

Proof. Since Ψk and Ψl are self-dual, Ψk = (Ψk)
⊥, Ψl = (Ψl)

⊥ and so

Ψk ×Ψl = (Ψk)
⊥ × (Ψl)

⊥. (1)

(i) We have Ψk ×Ψl ⊆ (Ψk ×Ψl)
⊥ by Lemma 2.1. Self-duality of Ψk and Ψl implies that

dim(Ψk) =
k

2
= dim((Ψk)

⊥) and dim(Ψl) =
l

2
= dim((Ψl)

⊥). Then dim(Ψk × Ψl) =

dim(Ψk) + dim(Ψl) =
k + l

2
, so

dim((Ψk ×Ψl)
⊥) = n− dim(Ψk ×Ψl) =

k + l

2
= dim(Ψk ×Ψl).

Therefore Ψk ×Ψl is self-dual.
(ii) If Ψ is separable, Ψ = Ψk ×Ψl. Then by (i), Ψ is self-dual.
Conversely, if Ψ is self-dual, then Ψ = Ψ⊥. By Lemma 2.2 and Eq. (1), we conclude that
Ψ ⊆ Ψk ×Ψl = (Ψk)

⊥ × (Ψl)
⊥ ⊆ Ψ⊥ = Ψ. Hence Ψ = Ψk ×Ψl.

(iii) If Ψ is non separable, Ψ ⫋ Ψk×Ψl = (Ψk)
⊥×(Ψl)

⊥ by Eq. (1) and (Ψk)
⊥×(Ψl)

⊥ ⫋
Ψ⊥ by Lemma 2.2. Hence Ψ ⫋ Ψ⊥.
Conversely, Suppose that Ψ ⫋ Ψ⊥. If Ψ is a separable code, Ψ = Ψ⊥ by (ii), which is a
contradiction. ■

We denote the reciprocal polynomial of a polynomial g(u) by g∗(u) = udeg(g(u))g(u−1).

Corollary 2.4 Let Ψ be a separable R−DC code of length n = k + l, then Ψk and Ψl

are self-dual codes if and only if the code Ψ is self-dual.

Proof. Suppose that Ψk and Ψl are self-dual codes, then Ψ = Ψk × Ψl is a self-dual
code by Proposition 2.3.
Conversely, Suppose that Ψ is self-dual and Ψk or Ψl are not self-dual codes. Then
Ψk ̸= (Ψk)

⊥ or Ψl ̸= (Ψl)
⊥ and so Ψk×Ψl ̸= (Ψk)

⊥× (Ψl)
⊥. On the other hand the self-

duality of Ψ implies that Ψk×Ψl = (Ψk)
⊥×(Ψl)

⊥ by Lemma 2.2. That is a contradiction.
■

Corollary 2.5 If Ψ is a separable self-dual R−DC code of length n = k+ l where k and
l are even, then

[
Ik/2 M | 0 0
0 0 | N Il/2

]

is the generator matrix of Ψ where
[
Ik/2 Mk/2×k/2

]
and

[
Nl/2×l/2 Il/2

]
are generator

matrices of Ψk and Ψl in standard forms, respectively.

Proof. Suppose that Ψ = Ψk × Ψl. Since Ψk and Ψl are self-dual codes, we have
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dim(Ψk) =
k

2
= dim((Ψk)

⊥) and dim(Ψl) =
l

2
= dim((Ψl)

⊥)). Then

[
Ik/2 M | 0 0
0 0 | N Il/2

]
.

is a generator matrix for Ψk ×Ψl = Ψ. ■

Consider (g(u), h(u)) as the greatest common divisor of polynomials g(u) ̸= 0 and
h(u) ̸= 0. If Ψ = ⟨(p(u)|0), (q(u)|r(u))⟩ is a non separable self-dual R−DC code, then

(i) p(u) =
(uk − 1)

(p(u), q(u))∗
,

(ii) r(u) =
(ul − 1)(p(u), q(u))∗

r∗(u)p∗(u)
,

(iii) q(u) =
uk − 1

p∗(u)
µ(u) where deg(µ(u)) < deg(p(u))− deg((p(u), q(u))) and

µ(u)µ∗(u) = ut−deg(r(u))+deg((p(u),q(u)))+deg(µ(u))) (mod
p∗(u)

(p(u), q(u))∗
) for the least com-

mon multiple t of k and l (see [4], Theorem 4.20). This notification and the following
conditions are useful for giving some examples.

Proposition 2.6 If Ψ = ⟨(p(u)|0), (q(u)|r(u))⟩ is a non separable self-dual R−DC code
of even length n = k + l, then
(i) Ψk and Ψl are not self-dual codes;

(ii) deg(p(u)) > ⌊k
2
⌋ and wt(p(u)) = 0 (mod 2);

(iii) wt(q(u)) = wt(r(u)) (mod 2).

Proof. (i) Clearly if k and l are odd, then Ψk and Ψl are not self-dual. Suppose that k
and l are even, since Ψ is a self-dual code, we show that Ψk is self-dual if and only if Ψl

is self-dual. Ψk = ⟨(p(u), q(u))⟩ is self-dual if and only if

(p(u), q(u)) =
uk − 1

(p(u), q(u))∗
= p(u)

if and only if

r(u) =
(ul − 1)(p(u), q(u))∗

r∗(u)p∗(u)
=

ul − 1

r∗(u)

if and only if Ψl = ⟨r(u)⟩ is self-dual (see [7]). Therefore by Proposition 2.3, Ψ is sepa-
rable, which is a contradiction.
(ii) Suppose that α = (α0, . . . , αr−1), β = (β0, . . . , βr−1) ∈ ⟨p(u)⟩ and γ = (α|0), γ′ =
(β|0) ∈ ⟨(p(u)|0)⟩, then γ, γ′ ∈ Ψ. Since Ψ is self-dual, γ · γ′ = α · β = 0 (mod 2),
i.e., ⟨p(u)⟩ ⊆ ⟨p(u)⟩⊥. Hence dim(⟨p(u)⟩⊥) = k − dim(⟨p(u)⟩) ⩾ dim(⟨p(u)⟩) and so

k ⩾ 2dim(⟨p(u)⟩) = 2(k − deg(p(u))), thus deg(p(u)) ⩾ ⌈k
2
⌉.

We know that dim(Ψ) = k + l − deg(p(u)) − deg(r(u)) and dim(Ψ) =
k + l

2
. On the

other hand Ψl is not self-dual code, then deg(r(u)) ̸= l

2
and so deg(p(u)) ̸= k

2
where
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k, l are even. Therefore deg(p(u)) > ⌊k
2
⌋. Also self-duality implies that wt((p(u)|0)) = 0

(mod 2), then wt(p(u)) = 0 (mod 2).
(iii) By self-duality of Ψ, we have wt((q(u)|r(u))) = 0 (mod 2). Then wt(r(u)) =
wt(q(u)) (mod 2). ■

Proposition 2.7 If Ψ = ⟨(p(u)|0), (q(u)|r(u))⟩ is a non separable self-dual R−DC code
of even length n = k + l and p(u) ̸= 0, then wt(q(u)) = wt(r(u)) = 0 (mod 2).

Proof. The code Ψ is self-dual, then (p(u)|0) · (q(u)|r(u)) = 0 (mod 2) and so p(u) ·
q(u) = 0 (mod 2). Since wt(p(u)) = 0 (mod 2), then wt(q(u)) = 0 (mod 2) or p(u) = 0.
By Proposition 2.6, (iii), we have wt(r(u)) = wt(q(u)) = 0 (mod 2) for p(u) ̸= 0. ■

Proposition 2.8 If Ψ = ⟨(p(u)|0), (q(u)|r(u))⟩ is a non separable self-dual R−DC code
of even length n = k + l and p(u) = 0, then
(i) l ⩾ k;
(ii) wt(q(u)) = wt(r(u)) = 1 (mod 2);
(iii) If k and l are odd, then k = l.

Proof. (i) p(u) = 1 + uk = 0 implies that (p(u), q(u)) = 1 and so

r(u)r∗(u) =
ul − 1

uk − 1
. (2)

We have r(u) ∈ R[u]/(ul − 1), then l ⩾ k.
(ii) Suppose that wt(q(u)) = 0 (mod 2), then

q(u) = uj1 + uj2 + ...+ uj2k′−1 + uj2k′

= (1 + u)
[
uj1(1 + u+ ...+ uj2−j1−1)+

...+ uj2k′−1(1 + u+ ...+ uj2k′−j2k′−1−1)
]

where j1, j2, ..., j2k′−1, j2k′ , k′ ∈ Z+ such that 0 ⩽ j1 < j2 < ... < j2k′−1 < j2k′ <
deg(p(u)) = k. Hence (p(u), q(u)) ̸= 1 and so p(u) ̸= 0, this is a contradiction. Therefore
wt(r(u)) = wt(q(u)) = 1 (mod 2) by Proposition 2.6, (iii).
(iii) Let k and l be odd and k ̸= l, by (i), k = 2k′ + 1 < l. By Eq. (2), we conclude that
l = (2k′ + 1)2k′′ for k′′ ∈ Z+ which is a contradiction. Then k = l for k, l odd. ■

3. Types of self-dual codes

Consider a code Ψ, if the Hamming weights of all codewords are even, Ψ is even and
otherwise is odd. For even code Ψ, if the Hamming weights of all codewords are divisible by
4, Ψ is doubly-even and it is singly-even, if there exists at least one codeword α such that
wt(α) = 2 (mod 4). The Euclidean weight wtE(α) of a vector α = (α1, . . . , αn) ∈ Zn

2k′

is
∑n

i=1min
{
α2
i , (2k

′ − αi)
2
}
. For a self-dual code Ψ, if the Euclidean weights of all

codewords are multiple of 4k′, then Ψ is Type II, otherwise is Type I. If k′ = 1, the
Euclidean weight is equivalent to the Hamming weight. Also the self-dual R−singly even
codes are equivalent to Type I codes and the self-dualR−doubly even codes are equivalent
to Type II codes.
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Lemma 3.1 Let Ψ be an R−DC code of length n = r + s.
(i) If Ψk and Ψl are even codes, then Ψk ×Ψl and Ψ are even codes;
(ii) If Ψk and Ψl are singly even codes, then Ψk ×Ψl is a singly even code;
(iii) If Ψk and Ψl are doubly even codes, then Ψk ×Ψl and Ψ are doubly even codes.

Proof. (i) For every α = (α0, α1, . . . , αk−1|α′
0, α

′
1, . . . , α

′
l−1) ∈ Ψk × Ψl, we have

(α0, α1, . . . , αk−1) ∈ Ψk and (α′
0, α

′
1, . . . , α

′
l−1) ∈ Ψs. Since Ψk and Ψl are even codes,∑k−1

i=0 αi = 0 (mod 2),
∑l−1

j=0 α
′
j = 0 (mod 2) and so wt(α) = (

∑k−1
i=0 αi+

∑l−1
j=0 α

′
j) = 0

(mod 2), then Ψk×Ψl is even. On the other hand, since Ψ ⊆ Ψk×Ψl, wt(α) = 0 (mod 2)
for every α ∈ Ψ. We conclude that Ψ is even.
(ii) Let Ψk and Ψl be singly even, then Ψk, Ψl and Ψk ×Ψl are even. Also there exists

(α0, . . . , αr−1) ∈ Ψk such that
∑k−1

i=0 αi = 2 (mod 4). For α = (α0, . . . , αk−1|0, . . . , 0) ∈
Ψk ×Ψl, we have wt(α) =

∑k−1
i=0 αi = 2 (mod 4), thus Ψk ×Ψl is singly even.

(iii) Let Ψk and Ψl be doubly even, then Ψk, Ψl and Ψk × Ψl are even. Also for
every = (α0, . . . , αk−1|α′

0, . . . , α
′
l−1) ∈ Ψk × Ψl, we have (α0, . . . , αl−1) ∈ Ψk and

(α′
0, . . . , α

′
l−1) ∈ Ψl. Then

∑k−1
i=0 αi = 0 (mod 4),

∑l−1
j=0 α

′
j = 0 (mod 4). So wt(α) =

(
∑k−1

i=0 αi +
∑l−1

j=0 α
′
j) = 0 (mod 4). Then Ψk ×Ψl is doubly even. On the other hand, if

α ∈ Ψ, wt(α) = 0 (mod 4) since Ψ ⊆ Ψk ×Ψl. Therefore Ψ is doubly even. ■

Notice that if Ψk and Ψl are self-dual codes, then Ψk and Ψl are Type I (see [5], Lemma
4.1). Hence Ψk × Ψl is Type I by Proposition 2.3 and Lemma 3.1. Moreover, if Ψk and
Ψl are self-dual, then the R−DC code Ψ is Type I if and only if Ψ is separable. Also, if
Ψ is a separable self-dual R−DC code of length n = k + l where k, l are even, then Ψ is
Type I.

Proposition 3.2 Let Ψ be an R−DC code of length n = k+ l, where n is a multiple of
8. If Ψ is Type II, then Ψ is non separable.

Proof. Since Ψ is Type II, Ψ is self-dual. If Ψ is separable, then by Corollary 2.4 and
Lemma 3.1, Ψ is Type I. This is a contradiction. ■

Proposition 3.3 Let Ψ = ⟨(p(u)|0), (q(u)|r(u))⟩ be a non separable self-dual R−DC
code of even length n = k + l.
(i) If wt(p(u)) = 2 (mod 4) or wt((q(u)|r(u))) = 2 (mod 4), then Ψ is Type I;
(ii) If wt(p(u)) = 0 (mod 4) and wt((q(u)|r(u))) = 0 (mod 4), then Ψ is Type II.

Proof. (i) If wt(p(u)) = 2 (mod 4), we have wt((p(u)|0)) = 2 (mod 4). Then the self-
dual code Ψ with wt((p(u)|0)) = 2 (mod 4) or wt((q(u)|r(u))) = 2 (mod 4) is Type I.
(ii) If wt(p(u)) = 0 (mod 4), we have wt((p(u)|0)) = 0 (mod 4). Since Ψ is self-dual,
for every c, c′ ∈ Ψ we have α · α′ = 0 (mod 2) and so wt(α+ α′) = wt(α) + wt(α′) = 0
(mod 4). Therefore the self-dual code Ψ is Type II. ■

Example 3.4 (i) Suppose that k = 2, Ψk = ⟨1 + u⟩ = ⟨11⟩ and l = 4, Ψs = ⟨1 + u2⟩ =
⟨1010, 0101⟩. It is clear that Ψk and Ψl are trivial Type I cyclic codes. Then the separable
code

Ψ = Ψk ×Ψl = ⟨(1 + u|0), (0|1 + u2)⟩ = ⟨(11|0000), (00|1010), (00|0101)⟩.

is Type I.
(ii) Consider the trivial binary self-dual cyclic code Ψ = ⟨1 + un/2⟩.
Suppose that k = l = n/2, p(u) = 1 + uk = 0, q(u) = 1 and r(u) = 1. Then Ψ =
⟨(q(u)|r(u))⟩ is a non separable Type I R−DC code. In addition, Ψk = ⟨(1+uk, 1)⟩ = ⟨1⟩
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Table 1. Types of the non separable self-dual R−DC codes of length n = k + l where 1 ⩽ k, l ⩽ 10.

k p(u) l r(u) q(u) Type

1 1 + u = 0 1 1 1 I

2 1 ui (i ∈ Z2) I

2 1 + u2 = 0 6 1 + u+ u2 ui (i ∈ Z2) II

10 1 + u+ u2 ui (i ∈ Z2) I

+u3 + u4

3 1 + u3 = 0 3 1 ui (i ∈ Z3) I

4 1 + u4 = 0 4 1 ui (i ∈ Z4) I

(1 + u)3 4 1 + u (1 + u)ui (i ∈ Z2) II

8 (1 + u)3 (1 + u)ui (i ∈ Z2) I

5 1 + u5 = 0 5 1 ui (i ∈ Z5) I

1 + u6 = 0 6 1 ui (i ∈ Z6) I

6 (1 + u)(1 + u+ u2)2 6 1 + u (1 + u)ui (i ∈ Z4) I

(1 + u)2(1 + u+ u2) 4 1 + u - -

8 (1 + u)3 - -

1 + u7 = 0 7 1 ui (i ∈ Z7) I

7 (1 + u)(1 + u+ u3) - - - -

(1 + u)(1 + u2 + u3) - - - -

1 + u8 = 0 8 1 ui (i ∈ Z8) I

(1 + u)7 8 1 + u (1 + u)ui (i ∈ Z6) II

8 (1 + u)6 8 (1 + u)2 (1 + u)2ui (i ∈ Z4) II

(1 + u)5 4 1 + u (1 + u)3ui (i ∈ Z2) I

8 (1 + u)3 (1 + u)3ui (i ∈ Z2) II

9 1 + u9 = 0 9 1 ui (i ∈ Z9) I

(1 + u)(1 + u3 + u6) - - - -

1 + u10 = 0 10 1 ui (i ∈ Z10) I

10 (1 + u)× 10 1 + u (1 + u)ui (i ∈ Z8) I

(1 + u+ u2 + u3 + u4)2

(1 + u)2× 4 1 + u - -

(1 + u+ u2 + u3 + u4) 8 (1 + u)3 - -

and Ψl = ⟨1⟩ are not self-dual.
(iii) Suppose that k = 12, l = 6, then the code

Ψ = ⟨(1 + u+ u2 + u6 + u7 + u8|0), (1 + u2 + u3 + u5|1 + u)⟩,

is a non separable R−DC code of Type I. On the other hand Ψl = ⟨1 + u⟩ and Ψk =
⟨(1 + u)2(1 + u+ u2)⟩ are not self-dual codes.
(v) Consider k = 4, l = 12. The non separable R−DC code

Ψ = ⟨(1 + u+ u2 + u3|0), (1 + u|1 + u+ u2 + u3 + u4 + u5)⟩

is Type II, although Ψk = ⟨(1 + u)⟩ and Ψl = ⟨(1 + u)(1 + u2 + u4)⟩ are not self-dual.
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4. Shadow codes

Let Ψ be a self-dual R−code, then the subset Ψ0 of Ψ consisting of all doubly even
codewords is a subcode of Ψ (see [6]). Suppose Ψ2 := Ψ −Ψ0. The set S(Ψ) consists of
all vectors α such that α · β = 0 for all β ∈ Ψ0 and α · β = 1 for all β ∈ Ψ2 is called
a shadow code. For a Type II code Ψ, we have Ψ2 = 0 and S(Ψ) = Ψ. For a Type I
code Ψ, we have S(Ψ) = Ψ⊥

0 −Ψ and so S(Ψ) is not a subcode of Ψ⊥
0 . We determine the

generators of the doubly even subcode of a self-dual R−DC code based on the generators
of the code to find the shadow code.

Lemma 4.1 Let Ψ = ⟨(p(u)|0), (q(u)|r(u))⟩ be an R−DC code of length n = k + l.
Consider the subcode Ψ′ = ⟨(p′(u)|0), (q′(u)|r′(u))⟩ of Ψ, then p(u) | p′(u) and r(u) |
r′(u). Moreover, if Ψ is a separable code, then p(u) | q′(u).

Proof. Since (p′(u)|0) ∈ Ψ′ ⊆ Ψ, there are γ1(u), ν1(u) ∈ R[u] such that

(p′(u)|0) = ν1(u) ∗ (p(u)|0) + γ1(u) ∗ (q(u)|r(u))

= (ν1(u)p(u) + γ1(u)q(u)|γ1(u)r(u)).

So p′(u) = ν1(u)p(u)+γ1(u)q(u) and γ1(u)r(u) = 0 (i.e., γ1(u) = 0 or (ul−1) | γ1(u)r(u)).

We have p(u) | u
l − 1

r(u)
q(u) (see [4], Proposition 3.6) and so p(u) | γ1(u)q(u). Hence

p(u) | ν1(u)p(u) + γ1(u)q(u) = p′(u).

Since (q′(u)|r′(u)) ∈ C ′ ⊆ C, there are γ2(u), ν2(u) ∈ R[u] such that

(q′(u)|r′(u)) = ν2(u) ∗ (p(u)|0) + γ2(u) ∗ (q(u)|r(u))

= (ν2(u)p(u) + γ2(u)q(u)|γ2(u)r(u)).

Thus r′(u) = γ2(u)r(u).
If Ψ is separable, we conclude that

(q′(u)|r′(u)) ∈ Ψ′ ⊆ Ψ = ⟨(p(u)|0), (0|r(u))⟩.

Hence there are γ3(u), ν3(u) ∈ R[u] such that

(q′(u)|r′(u)) = ν3(u) ∗ (p(u)|0) + γ3(u) ∗ (0|r(u)) = (ν3(u)p(u)|γ3(u)r(u)).

Therefore q′(u) = ν3(u)p(u). ■

We know that for an R−DC code Ψ of Type I, |Ψ| = 2(k+l)/2. Therefore the generator
polynomials of the subcode Ψ0 consisting of all doubly even codewords and the generator
polynomials of its dual, help us to find the shadow code, when k, l are large.

Proposition 4.2 Let Ψ0 = ⟨(p0(u)|0), (q0(u)|r0(u))⟩ be the subcode of an R−DC code
Ψ = ⟨(p(u)|0), (q(u)|r(u))⟩ of Type I and even length n = k + l such that Ψ0 consists of
all doubly even codewords.
(i) If wt(p(u)) = 0 (mod 4), then p0(u) = p(u) and r0(u) = (u+ 1)r(u);
(ii) If wt(p(u)) = 2 (mod 4), then p0(u) = (u+ 1)p(u) and r0(u) = r(u).
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Proof. We have |Ψ0| =
|Ψ|
2

=
2dim(Ψ)

2
= 2dim(Ψ)−1 (see [2], Lemma 2.3) and so

dim(Ψ0) = dim(Ψ)− 1. Then

dim(Ψ0) = n− deg(p0(u))− deg(r0(u)) = n− deg(p(u))− deg(r(u))− 1.

Therefore

deg(p0(u)) + deg(r0(u)) = deg(p(u)) + deg(r(u)) + 1. (3)

(i) If wt(p(u)) = 0 (mod 4), then (p(u)|0) ∈ Ψ0. Since Ψ is Type I,

(q(u)|r(u)) /∈ Ψ0.

Hence r0(u) ̸= r(u). Lemma 4.1 and Eq. (3) imply that p0(u) = p(u) and r0(u) =
(u+ 1)r(u).
(ii) If wt(p(u)) = 2 (mod 4), then (p(u)|0) /∈ Ψ0 and so p0(u) ̸= p(u). By Lemma 4.1
and Eq. (3), we have p0(u) = (u+ 1)p(u) and r0(u) = r(u). ■

Theorem 4.3 Let Ψ0 = ⟨(p0(u)|0), (q0(u)|r0(u))⟩ be the subcode of a separable self-dual
R−DC code Ψ = ⟨(p(u)|0), (q(u)|r(u))⟩ of even length n = k+ l such that Ψ0 consists of
all doubly even codewords with the dual code Ψ⊥

0 = ⟨(p̄0(u)|0), (q̄0(u)|r̄0(u))⟩, then
(i) p0(u) = (u+ 1)p(u), r0(u) = r(u), q0(u) = p(u) and Ψ0 is non separable;

(ii) p̄0(u) = p(u), r̄0(u) =
r(u)

u+ 1
, q̄0(u) =

p(u)

u+ 1
and Ψ⊥

0 is non separable.

Proof. The separable self-dual R−DC code Ψ is a code of Type I (see Sect. 3).
(i) By Corollary 2.4, Ψk = ⟨p(u)⟩ is self-dual and so Ψk is Type I (see [5], Lemma 4.1),
i.e., wt(p(u)) = 2 (mod 4). By Proposition 4.2, p0(u) = (u+1)p(u) and r0(u) = r(u). By
Lemma 4.1, p(u) | q0(u), then deg(p(u)) ⩽ deg(q0(u)). Since deg(q0(u)) < deg(p0(u)) =
deg(p(u)) + 1, we have deg(p(u)) ⩽ deg(q0(u)) < deg(p(u)) + 1. Hence deg(p(u)) =
deg(q0(u)) and so p(u) = q0(u). Therefore Ψ0 is non separable.
(ii) By Corollary 2.4, Ψk = ⟨p(u)⟩ and Ψl = ⟨r(u)⟩ are self-dual. Then p(u)p∗(u) = uk−1
and r(u)r∗(u) = ul − 1 (see [7]). Hence we have

p̄0(u) =
uk − 1

(p0(u), q0(u))∗
=

uk − 1

p∗(u)
= p(u),

r̄0(u) =
(ul − 1)(p0(u), q0(u))

∗

r∗0(u)p
∗
0(u)

=
ul − 1

(u+ 1)r∗(u)
=

r(u)

u+ 1
.

There exists γ(u) ∈ R[u] such that

q̄0(u) =
uk − 1

p∗0(u)
γ(u) =

uk − 1

(u+ 1)p∗(u)
γ(u) =

p(u)

u+ 1
γ(u),

then p̄0(u) = p(u) | (u+1)q̄0(u) and so deg(p̄0(u)) ⩽ deg((u+1)q̄0(u)). Since deg(q̄0(u)) <

deg(p̄0(u)), we have q̄0(u) =
p(u)

u+ 1
. Therefore Ψ⊥

0 is non separable. ■
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Now by applying Proposition 3.3, the following cases for the subcodes Ψ0 of the non
separable R−DC codes Ψ of Type I are considered.

Theorem 4.4 Let Ψ0 = ⟨(p0(u)|0), (q0(u)|r0(u))⟩ be the subcode of a non separable
R−DC code Ψ = ⟨(p(u)|0), (q(u)|r(u))⟩ of Type I and even length n = k + l such that
Ψ0 consists of all doubly even codewords.
(i) If wt(p(u)) = 0 (mod 4), wt((q(u)|r(u))) = 2 (mod 4) and deg(q(u))+1 < deg(p(u)),
then p0(u) = p(u), r0(u) = (u+ 1)r(u) and q0(u) = (u+ 1)q(u);
(ii) If wt(p(u)) = 2 (mod 4) and wt((q(u)|r(u))) = 0 (mod 4), then p0(u) = (u+1)p(u),
r0(u) = r(u) and q0(u) = q(u);
(iii) If wt(p(u)) = 2 (mod 4) and wt((q(u)|r(u))) = 2 (mod 4), then p0(u) = (u +
1)p(u), r0(u) = r(u) and q0(u) = p(u) + q(u).

Proof. (i) By Proposition 4.2, p0(u) = p(u) and r0(u) = (u + 1)r(u). We know that
(q0(u)|r0(u)) ∈ Ψ. So, there are ν1(u), γ1(u) ∈ R[u] such that

(q0(u)|r0(u)) = ν1(u) ∗ (p(u)|0) + γ1(u) ∗ (q(u)|r(u))

= (ν1(u)p(u) + γ1(u)q(u)|γ1(u)r(u)).

Hence γ1(u) =
r0(u)

r(u)
= u+1 and so q0(u) = ν1(u)p(u)+ (u+1)q(u). Since deg(q0(u)) <

deg(p0(u)) = deg(p(u)) and deg(q(u)) + 1 < deg(p(u)), ν1(u) = 0. Then q0(u) = (u +
1)q(u).
(ii) By Proposition 4.2, p0(u) = (u+1)p(u) and r0(u) = r(u). So there are ν2(u), γ2(u) ∈
R[u] such that

(q0(u)|r0(u)) = ν2(u) ∗ (p(u)|0) + γ2(u) ∗ (q(u)|r(u))

= (ν2(u)p(u) + γ2(u)q(u)|γ2(u)r(u)).

Hence γ2(u) =
r0(u)

r(u)
= 1 and so q0(u) = ν2(u)p(u) + q(u). Since deg(q0(u)) <

deg(p0(u)) = deg(p(u)) + 1 and deg(q(u)) < deg(p(u)), ν2(u) ∈ {0, 1}. By self-duality of
Ψ, (p(u)|0) · (q(u)|r(u)) = p(u) · q(u) = 0 (mod 2) and so

wt(p(u) + q(u)) = wt(p(u)) + wt(q(u)) (mod 4).

If wt(q(u)) = 2 (mod 4) and wt(r0(u)) = wt(r(u)) = 2 (mod 4), then wt(q0(u)) = 2
(mod 4) and wt(p(u) + q(u)) = 0 (mod 4).
If wt(q(u)) = 0 (mod 4) and wt(r0(u)) = wt(r(u)) = 0 (mod 4), then wt(q0(u)) = 0
(mod 4) and wt(p(u) + q(u)) = 2 (mod 4).
Therefore q0(u) ̸= p(u) + q(u) and we conclude that q0(u) = q(u) by this fact that
ν2(u) = 0.
(iii) Similar (ii): p0(u) = (u + 1)p(u) and r0(u) = r(u) and there exists ν3(u) ∈ {0, 1}
such that q0(u) = ν3(u)p(u) + q(u).
If wt(q(u)) = 2 (mod 4) and wt(r0(u)) = wt(r(u)) = 0 (mod 4), then wt(q0(u)) = 0
(mod 4).
If wt(q(u)) = 0 (mod 4) and wt(r0(u)) = wt(r(u)) = 2 (mod 4), then wt(q0(u)) = 2
(mod 4).
Therefore q0(u) ̸= q(u) and so ν3(u) = 1, i.e., q0(u) = p(u) + q(u). ■
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Example 4.5 (i) Consider Example 3.4,(i): The separable self-dual code

Ψ = Ψk ×Ψl = ⟨(1 + u|0), (0|1 + u2)⟩ = ⟨(11|0000), (00|1010), (00|0101)⟩.

Hence Ψ0 = ⟨(p(u)(u+ 1)|0), (p(u)|r(u))⟩ = ⟨(1 + u|1 + u2)⟩,

Ψ⊥
0 = ⟨(p(u)|0), ( p(u)

u+ 1
| r(u)
u+ 1

)⟩ = ⟨(1 + u|0), (1|1 + u)⟩

= ⟨(11|0000), (10|1100), (01|0110), (10|0011)⟩,

S(Ψ) = Ψ⊥
0 −Ψ = {(10|1100), (01|0110), (10|0011), (10|1010),

(01|1100), (10|0110), (01|0011), (01|1010)}.

(ii) Consider Example 3.4,(iii): The non separable Type I code

Ψ = ⟨(1 + u+ u2 + u6 + u7 + u8|0), (1 + u2 + u3 + u5|1 + u)⟩,

thus

Ψ0 = ⟨(p(u)(u+ 1)|0), (p(u) + q(u)|r(u))⟩

= ⟨(1 + u3 + u6 + u9|0), (u+ u3 + u5 + u6 + u7 + u8|1 + u)⟩.

Hence Ψ⊥
0 = ⟨(1 + u+ u2 + u6 + u7 + u8|0), (1 + u+ u4 + u6|1)⟩.

Therefore we can find S(Ψ) = Ψ⊥
0 −Ψ.

5. Conclusion

In this work, binary self-dual DC codes are studied and the structure of them is deter-
mined. Also the relationship between the self-duality and the separability is investigated
and the Types of these codes are shown. Further, their shadow codes are obtained. The
shadow code will be helpful for determining possible minimal distance for each length
of binary self-dual DC codes. Therefore the highest minimal distance and the extremal
code can consider for each length. On the other hand, a similar method can generalize
for self-dual additive cyclic codes over some other rings.
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[4] J. Borges, C. Fernández-Córdoba, R. Ten-Valls, Z2−double cyclic codes, Des. Codes Cryptogr. 86 (2018),
463-479.

[5] B. Heijne, J. Top, On the minimal distance of binary self-dual cyclic codes, IEEE Trans. Inform. Theory. 55
(2009), 4860-4863.

[6] E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inform. Theory. 44 (1998), 134-139.
[7] N. J. A. Sloane, J. G. Thompson, Cyclic self-dual codes, IEEE Trans. Inform. Theory. 29 (1983), 364-366.


