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Abstract. In this work, we intend to introduce and study another algebraic structure of
single-valued neutrosophic sets called neutrosophic field as a continuation of our investigations
on neutrosophic algebraic structures. For this goal, we define the concept of neutrosophic fields
and observe some of their basic characteristics and properties. Then we give the definition of
a neutrosophic linear space over the proposed neutrosophic field and consider its fundamental
properties.
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1. Introduction

Neutrosopy is a branch of philosophy introduced by Smarandache in 1980. It is the
basis of neutrosophic logic, neutrosophic probability, neutrosophic set and neutrosophic
statistics. While neutrosophic set generalizes the fuzzy set, neutrosophic probability gen-
eralizes the classical and imprecise probability, neutrosophic statistics generalizes the
classical and imprecise statistics, neutrosophic logic however generalizes fuzzy logic, in-
tuitionistic logic, Boolean logic, multi-valued logic, paraconsistent logic and dialetheism.
In the neutrosophic logic, each proposition is estimated to have the percentage of truth in
a subset T , the percentage of indeterminacy in a subset I, and the percentage of falsity in
a subset F. The use of neutrosophic theory becomes inevitable when a situation involving
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indeterminacy is to be modeled since fuzzy set theory is limited to modeling a situation
involving uncertainty. From scientific and engineering point of view, the definition of a
neutrosophic set was specified to the single valued neutrosophic set. The single valued
neutrosophic set was introduced for the first time by Smarandache [13] and Wang et
al. [14]. The single valued neutrosophic set is a generalization of classical set, fuzzy set,
intuitionistic fuzzy set and paraconsistent set etc.

The introduction of neutrosophic theory has led to the establishment of the concept
of neutrosophic algebraic structures. Kandasamy and Smarandache [8] for the first time
introduced the concept of algebraic structures which has caused a paradigm shift in the
study of algebraic structures. Single valued neutrosophic set is also applied to algebraic
and topological structures (see [1–3, 9, 11, 12]). Çetkin and Aygün [4] proposed the
definitions of neutrosophic subgroups [3] and neutrosophic subrings [4] of a given classical
group and classical ring, respectively. Çetkin et al. [5] also defined the neutrosophic
submodules based on single valued neutrosophic sets and discussed their elementary
properties. In this study, as a continuation of our investigations on algebra of single
valued neutrosophic sets, we present the notions of neutrosophic fields and neutrosophic
linear spaces based on single-valued neutrosophic sets. The proposed notions here, are
generalizations of the known notions in the literature such as fuzzy fields [10], fuzzy linear
spaces over fuzzy fields [15], intuitionistic subfields [16], vague fields and vague vector
spaces [6].

In this paper we proceed as follows: Section 2 gives a brief summary of single-valued
neutrosophic sets and operations on these sets. In section 3, we propose the notion of
a neutrosophic field of a given classical field with examples and discuss its equivalent
characterizations. In addition, we observe its main properties. In section 4, we introduce
the notion of neutrosophic linear spaces over neutrosophic fields and investigate some of
their fundamentals.

2. Preliminaries

In this chapter, we give some preliminaries about single valued neutrosophic sets and
set operations, which will be called neutrosophic sets, for simplicity.

Definition 2.1 [13] A neutrosophic set A on the universe of X is defined by A = {<
x, tA(x), iA(x), fA(x) >, x ∈ X}, where tA, iA, fA : X →]−0, 1+[ and −0 ⩽ tA(x)+iA(x)+
fA(x) ⩽ 3+.

From philosophical point of view, the neutrosophic set takes the value from real stan-
dard or non standard subsets of ]−0, 1+[. But in real life applications in scientific and
engineering problems it is difficult to use neutrosophic set with value from real standard
or non-standard subset of ]−0, 1+[. Hence throughout this work, the following specified
definition of a neutrosophic set known as single valued neutrosophic set is considered.

Definition 2.2 [14] Let X be a space of points (objects) with a generic element in X
denoted by x. A single valued neutrosophic set (SVNS) A on X is characterized by truth-
membership function tA, indeterminacy-membership function iA and falsity-membership
function fA. For each point x in X, tA(x), iA(x), fA(x) ∈ [0, 1]. A neutrosophic set A can

be written as A =
n∑

i=1
< t(xi), i(xi), f(xi) > /xi, xi ∈ X.

Example 2.3 [14] Assume that X = {x1, x2, x3}, x1 is capability, x2 is trustworthiness
and x3 is price. The values of x1, x2 and x3 are in [0, 1]. They are obtained from the



V. Çetkin et al. / J. Linear. Topological. Algebra. 10(03) (2021) 187-198. 189

questionnaire of some domain experts, their option could be a degree of “good service”,
a degree of indeterminacy and a degree of “poor service”. A is a single valued neutrosophic
set of X defined by

A =< 0.3, 0.4, 0.5 > /x1+ < 0.5, 0.2, 0.3 > /x2+ < 0.7, 0.2, 0.2 > /x3.

Since the membership functions tA, iA and fA are defined from X into the unit interval
[0, 1] as tA, iA, fA : X → [0, 1], a (single valued) neutrosophic set A will be denoted by a
mapping defined as A : X → [0, 1] × [0, 1] × [0, 1] and A(x) = (tA(x), iA(x), fA(x)), for
simplicity.

Definition 2.4 [11, 14] Let A and B be two neutrosophic sets on X. Then

(1) A is contained in B denoted by A ⊆ B if and only if A(x) ⩽ B(x). This means that
tA(x) ⩽ tB(x), iA(x) ⩽ iB(x) and fA(x) ⩾ fB(x). Two sets A and B is called equal,
i.e., A = B iff A ⊆ B and B ⊆ A.

(2) the union of A and B is denoted by C = A ∪ B and defined as C(x) = A(x) ∨ B(x),
where A(x) ∨ B(x) = (tA(x) ∨ tB(x), iA(x) ∨ iB(x), fA(x) ∧ fB(x)) for each x ∈ X.
This means that tC(x) = max{tA(x), tB(x)}, iC(x) = max{iA(x), iB(x)} and fC(x) =
min{fA(x), fB(x)}.

(3) the intersection of A and B is denoted by C = A∩B and defined as C(x) = A(x)∧B(x),
where A(x) ∧ B(x) = (tA(x) ∧ tB(x), iA(x) ∧ iB(x), fA(x) ∨ fB(x)) for each x ∈ X.
This means that tC(x) = min{tA(x), tB(x)}, iC(x) = min{iA(x), iB(x)} and fC(x) =
max{fA(x), fB(x)}.

(4) the complement of A is denoted by Ac and defined as Ac(x) = (fA(x), 1− iA(x), tA(x))
for each x ∈ X. Here (Ac)c = A.

Proposition 2.5 [14] Let A, B and C be the neutrosophic sets on the common universe
X. Then the following properties are satisfied:

(1) A ∪B = B ∪A,A ∩B = B ∩A.
(2) A ∪ (B ∪ C) = (A ∪B) ∪ C,A ∩ (B ∩ C) = (A ∩B) ∩ C.
(3) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C), A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

(4) A ∩ ∅̃ = ∅̃, A ∪ ∅̃ = A,A ∪ X̃ = X̃, A ∩ X̃ = A, where t∅̃ = i∅̃ = 0, f∅̃ = 1 and
tX̃ = iX̃ = 1, fX̃ = 0.

(5) (A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc.

Definition 2.6 [5] Let A and B be two neutrosophic sets on X and Y , respectively.
Then the cartesian product of A and B which is denoted by A × B is a neutrosophic
set on X × Y and it is defined as (A × B)(x, y) = A(x) × B(y), where A(x) × B(y) =
(tA×B(x, y), iA×B(x, y), fA×B(x, y)), i.e., tA×B(x, y) = tA(x)∧tB(y), iA×B(x, y) = iA(x)∧
iB(y) and fA×B(x, y) = fA(x) ∨ fB(y).

Definition 2.7 [3] Let A be a neutrosophic set on X and α ∈ [0, 1]. Define the α-level
sets of A as follows:
(tA)α = {x ∈ X | tA(x) ⩾ α}, (iA)α = {x ∈ X | iA(x) ⩾ α} and (fA)

α = {x ∈ X |
fA(x) ⩽ α}.

Definition 2.8 [3] Let g : X1 → X2 be a function and A and B be the neutrosophic
sets on X1 and X2, respectively. Then

(1) the image of a neutrosophic set A is a neutrosophic set on X2 and it is defined by
follows:
g(A)(y) = (tg(A)(y), ig(A)(y), fg(A)(y)) = (g(tA)(y), g(iA)(y), g(fA)(y)) for all y ∈ X2,
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where g(tA)(y) =

{∨
tA(x), if x ∈ g−1(y);

0, otherwise
,

g(iA)(y) =

{∨
iA(x), if x ∈ g−1(y);

0, otherwise
and g(fA)(y) =

{∧
fA(x), if x ∈ g−1(y);

1, otherwise.

(2) the preimage of a neutrosophic set B is a neutrosophic set on X1 and it is defined
by g−1(B)(x) = (tg−1(B)(x), ig−1(B)(x), fg−1(B)(x)) = (tB(g(x)), iB(g(x)), fB(g(x))) =
B(g(x)) for all x ∈ X1.

Definition 2.9 [3] Let (X, ·) be a classical group and A be a neutrosophic set on X. A
is called a neutrosophic subgroup of X if the following conditions are satisfied:

(N1) A(x · y) ⩾ A(x) ∧ A(y), i.e., tA(x · y) ⩾ tA(x) ∧ tA(y), iA(x · y) ⩾ iA(x) ∧ iA(y) and
fA(x · y) ⩽ fA(x) ∨ fA(y), ∀x, y ∈ X

(N2) A(x−1) ⩾ A(x), i.e., tA(x
−1) ⩾ tA(x), iA(x

−1) ⩾ iA(x) and fA(x
−1) ⩽ fA(x) for all

x, y ∈ X.

3. Neutrosophic fields

In this section, we introduce the concept of a neutrosophic field over a given classical
field, in terms of the use of the single valued neutrosophic sets. We investigate some
fundamental properties and give characterizations of neutrosophic fields. From now on
let F = (F,+, ·) be a classical field with the unit elements Θ and e of the additive
operation “ + ” and the multiplicative operation “ · ”, respectively.

Definition 3.1 Let F be a field and A be a neutrosophic set on F . Then A is called a
neutrosophic field of F if the following conditions are satisfied:

(NF1) A(x + y) ⩾ A(x) ∧ A(y) for all x, y ∈ F i.e., tA(x + y) ⩾ tA(x) ∧ tA(y), iA(x + y) ⩾
iA(x) ∧ iA(y) and fA(x+ y) ⩽ fA(x) ∨ fA(y).

(NF2) A(−x) ⩾ A(x) for all x ∈ F i.e., tA(−x) ⩾ tA(x), iA(−x) ⩾ iA(x) and fA(−x) ⩽ fA(x).
(NF3) A(xy) ⩾ A(x)∧A(y) for all x, y ∈ F , i.e., tA(xy) ⩾ tA(x)∧tA(y), iA(xy) ⩾ iA(x)∧iA(y)

and fA(xy) ⩽ fA(x) ∨ fA(y).
(NF4) A(x−1) ⩾ A(x) for all Θ ̸= x ∈ F , i.e., tA(x

−1) ⩾ tA(x), iA(x
−1) ⩾ iA(x) and

fA(x
−1) ⩽ fA(x).

The collection of all neutrosophic fields of F is denoted by NSF (F ).

Example 3.2 Let F = Z3 = {0, 1, 2} be a field with addition modulo and mul-
tiplicative modulo operation (see [7]). A neutrosophic set A of F defined by A =
{⟨1, 1, 0⟩/0, ⟨0.8, 0.8, 0.2⟩/1, ⟨0.8, 0.8, 0.2⟩/2} is a neutrosophic filed of F .

Example 3.3 Let F = R be the set of real numbers. It is known that F is a field with
natural sum and natural multiplication operations (see [7]). Let us define a single-valued
neutrosophic set A = (tA, iA, fA) as follows:

tA(x) =


1, if x ∈ {0, 1}
0.8, if x ∈ Q \ {0, 1}
0, if x ∈ R \Q

, iA(x) =


1, if x ∈ {0, 1}
0.6, if x ∈ Q \ {0, 1}
0, if x ∈ R \Q

and

fA(x) =


0, if x ∈ {0, 1}
0.3, if x ∈ Q \ {0, 1}
1, if x ∈ R \Q

.
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Then it is easy to see that A is a neutrosophic field of F.

Theorem 3.4 Let F be a field and A be a neutrosophic set on F . Then A ∈ NSF (F )
if and only if the followings are satisfied:

(i) A is a neutrosophic additive subgroup of (F,+).
(ii) A is a neutrosophic multiplicative subgroup of (F \ {Θ}, ·).

Proof. The proof is straightforward. ■

Theorem 3.5 Let A be a neutrosophic field of F . Then the following properties are
satisfied:

(i) A(Θ) ⩾ A(x) for any x ∈ F .
(ii) A(e) ⩾ A(x) for any x ∈ F \ {Θ}.

Proof. (i) Let x ∈ F be given. tA(Θ) = tA(x− x) ⩾ tA(x) ∧ tA(−x) ⩾ tA(x) ∧ tA(x) =
tA(x) and similarly, iA(Θ) ⩾ iA(x), fA(Θ) ⩽ fA(x). So the desired inequality A(Θ) ⩾
A(x) is obtained.

(ii) Let Θ ̸= x ∈ F be given. tA(e) = tA(xx
−1) ⩾ tA(x) ∧ tA(x) = tA(x) and similarly

we have iA(e) ⩾ iA(x), fA(e) ⩽ fA(x). Hence A(e) ⩾ A(x) for any x ∈ F \ {Θ}. ■

Theorem 3.6 A neutrosophic set A on F is a neutrosophic field of F if and only if the
following conditions are satisfied:

(i) A(x− y) ⩾ A(x) ∧A(y) for each x, y ∈ F.
(ii) A(xy−1) ⩾ A(x) ∧A(y) for each x ∈ F, Θ ̸= y ∈ F .

Proof. Let A be a neutrosophic field of F and x, y ∈ F .

(i) It is clear that tA(x − y) ⩾ tA(x) ∧ tA(−y) ⩾ tA(x) ∧ tA(y). Similarly, iA(x − y) ⩾
iA(x) ∧ iA(y) and fA(x− y) ⩽ fA(x) ∧ fA(y). Hence,

A(x− y) = (tA(x− y), iA(x− y), fA(x− y))
⩾ (tA(x) ∧ tA(y), iA(x) ∧ iA(y), fA(x) ∨ fA(y))
= (tA(x), iA(x), fA(x)) ∧ (tA(y), iA(y), fA(y))
= A(x) ∧A(y).

(ii) Let x ∈ F and Θ ̸= y ∈ F be given. It is clear that tA(xy
−1) ⩾ tA(x)∧tA(y−1) ⩾ tA(x)∧

tA(y). Similarly, we obtain iA(xy
−1) ⩾ iA(x) ∧ iA(y) and fA(xy

−1) ⩽ fA(x) ∨ fA(y).
So, according to similar discussion of (i), we obtain A(xy−1) ⩾ A(x)∧A(y). The other
side of the proof is clear from the proof of Theorem 3.4 in [3].

■

Theorem 3.7 Let A be a neutrosophic field of F , then the followings are satisfied:

(i) If A(x− y) = A(Θ), then A(x) = A(y) for x, y ∈ F .
(ii) If A(xy−1) = A(e), then A(x) = A(y) for Θ ̸= x, y ∈ F .

Proof.

(i) Suppose that A(x− y) = A(Θ) for some x, y ∈ F . By Theorems 3.5 (i) and 3.6 (i),
tA(x) = tA(x− y + y)

⩾ tA(x− y) ∧ tA(y)
= tA(Θ) ∧ tA(y)
= tA(y).

and

tA(y) = tA(x− (x− y))
⩾ tA(x) ∧ tA(x− y)
= tA(x) ∧ tA(Θ)
= tA(x).

Hence we get tA(x) = tA(y). Other equalities are obtained in a similar way. Thus,
A(x) = (tA(x), iA(x), fA(x)) = (tA(y), iA(y), fA(y)) = A(y).
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(ii) Let A(xy−1) = A(e) for some x ∈ F and y ∈ F \ {Θ}. By Theorems 3.5 (ii) and 3.6
(ii), fA(x) = fA(xy

−1y) ⩽ fA(xy
−1)∨fA(y) = fA(e)∨fA(y) = fA(y). Then we obtain,

fA(x) ⩽ fA(y). Now, fA(y) = fA(x(xy
−1)−1) ⩽ fA(x) ∨ fA(xy

−1) = fA(x) ∨ fA(e) =
fA(x). Hence, we have fA(y) ⩽ fA(x). By these inequalities we see that fA(y) = fA(x).
Similarly, iA(y) = iA(x) and tA(y) = tA(x). Therefore, A(x) = A(y).

■

Theorem 3.8 If A and B are two neutrosophic field of F , then their intersection A∩B
so is.

Proof. By Theorem 3.6, it is sufficient to show the following conditions are true.

(i) (A ∩B)(x− y) ⩾ (A ∩B)(x) ∧ (A ∩B)(y).
(ii) (A ∩B)(xy−1) ⩾ (A ∩B)(x) ∧ (A ∩B)(y).

(i) Let x, y ∈ F be given.
tA∩B(x− y) = tA(x− y) ∧ tB(x− y)

⩾ (tA(x) ∧ tA(y)) ∧ (tB(x) ∧ tB(y))
= (tA(x) ∧ tB(x)) ∧ (tA(y) ∧ tB(y))
= tA∩B(x) ∧ tA∩B(y).

Similarly, the other inequalities are satisfied. Hence, (A ∩ B)(x − y) ⩾ (A ∩ B)(x) ∧
(A ∩B)(y).

(ii) Let x ∈ F and y ∈ F \ {Θ}.
fA∩B(x · y−1) = fA(x · y−1) ∨ fB(x · y−1)

⩽ (fA(x) ∨ fA(y)) ∨ (fB(x) ∨ fB(y))
= (fA(x) ∨ fB(x)) ∨ (fA(y) ∨ fB(y))
= fA∩B(x) ∨ fA∩B(y).

The other inequalities are similarly proved. Therefore, (A ∩B)(xy−1) ⩾ (A ∩B)(x) ∧
(A ∩B)(y). Hence, A ∩B ∈ NSF (F ).

■

Proposition 3.9 If A is a neutrosophic field of F , then the followings are satisfied:

(i) A(−x) = A(x) for all x ∈ F
(ii) A(x−1) = A(x) for all Θ ̸= x ∈ F .

Proof. (i) Since A ∈ NSF (F ) , we have A(−x) ⩾ A(x) for all x ∈ F , and also we have
A(x) = A(−(−x)) ⩾ A(−x). Hence, (i) is satisfied.

(ii) is similarly proved, for any Θ ̸= x ∈ F . ■

Theorem 3.10 If A ∈ NSF (F ), then A(x+y) = A(x)∧A(y) and A(xy) = A(x)∧A(y)
with A(x) ̸= A(y) for each x, y ∈ F .

Proof. Let x, y ∈ F . Assume that A(x) > A(y), i.e., tA(x) > tA(y), iA(x) > iA(y),
fA(x) < fA(y). tA(y) = tA(−x + x + y) ⩾ tA(−x) ∧ tA(x + y) ⩾ tA(x) ∧ tA(x + y) ⩾
tA(x)∧tA(x)∧tA(y) = tA(y). Therefore, tA(x+y) = tA(y) = tA(x)∧tA(y) for all x, y ∈ F .
Now, tA(y) = tA(x

−1xy) ⩾ tA(x
−1) ∧ tA(xy) ⩾ tA(x) ∧ tA(xy) ⩾ tA(x) ∧ tA(y) = tA(y).

Therefore, tA(xy) = tA(y) = tA(x)∧ tA(y) for all x, y ∈ F . Similarly, the other equalities
are satisfied. ■

Theorem 3.11 Let A ∈ NSF (F ). If A(x) < A(y) for some x, y ∈ F , then the followings
are satisfied:
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(i) A(x+ y) = A(x) = A(y + x).
(ii) A(xy) = A(x) = A(yx).

Proof. Let A ∈ NSF (F ) and A(x) < A(y) for some x, y ∈ F , i.e., tA(x) <
tA(y), iA(x) < iA(y), fA(x) > fA(y). Then tA(x + y) ⩾ tA(x) ∧ tA(y) = tA(x) and
tA(x) = tA(x + y − y) ⩾ tA(x + y) ∧ tA(y) = tA(x + y). Therefore, tA(x + y) = tA(x).
Similarly other equalities are obtained.

(ii) tA(xy) ⩾ tA(x) ∧ tA(y) = tA(x) and tA(x) = tA(xyy
−1) ⩾ tA(xy) ∧ tA(y

−1) ⩾
tA(xy) ∧ tA(y) = tA(xy). Therefore, tA(xy) = tA(x). Similarly other equalities are satis-
fied. ■

The following proposition gives the characterizations of a neutrosophic field in terms
of α-level sets.

Proposition 3.12 A ∈ NSF (F ) if and only if for all α ∈ [0, 1], α-level sets
(tA)α, (iA)α, (fA)

α of A are classical subfields of F , which are not trivial subfields.

Proof. Assume that (tA)α, (iA)α, (fA)
α have at least one element different from Θ. Let

x, y ∈ (tA)α (similarly, x, y ∈ (iA)α, (fA)
α). Then tA(x), tA(y) ⩾ α. So, tA(x − y) ⩾

tA(x)∧ tA(y) ⩾ α (and similarly, iA(x−y) ⩾ α, fA(x−y) ⩽ α), which gives x−y ∈ (tA)α
(and x − y ∈ (iA)α, (fA)

α). By the similar observation, we can see that tA(xy
−1) ⩾ α

(and iA(xy
−1) ⩾ α, fA(xy

−1) ⩽ α) and so xy−1 ∈ (tA)α (xy−1 ∈ (iA)α, (fA)
α). Hence,

(tA)α (and (iA)α, (fA)
α) is a classical subfield of F .

Conversely, let (tA)α be a classical subfield of F , for each α ∈ [0, 1]. Let x, y ∈ F . If
x = Θ or y = Θ, the proof is clear. Suppose that x, y ̸= Θ. Choose α = tA(x)∧ tA(y) and
β = tA(x). Thus, x, y ∈ (tA)α and x ∈ (tA)β. Since (tA)α, (tA)β are classical subfields of F ,
x+y, xy ∈ (tA)α and −x, x−1 ∈ (tA)β. This gives tA(x+y) ⩾ α = tA(x)∧tA(y), tA(xy) ⩾
α = tA(x) ∧ tA(y), tA(−x) ⩾ β = tA(x) and tA(x

−1) ⩾ β = tA(x) for all x ∈ F \ {Θ}.
The other inequalities are similarly proved. Therefore A ∈ NSF (F ). ■

Theorem 3.13 Let F1 and F2 be two classical fields and g : F1 → F2 be a homomor-
phism of fields which preserves the additive and multiplicative operations. Let A be a
neutrosophic field of F1, then the image g(A) of A, is a neutrosophic field of F2.

Proof. Let A ∈ NSF (F1) and y1, y2 ∈ F2. If either g−1(y1) or g−1(y2) is empty, then
it is obvious that g(A) ∈ NS(F2). Suppose g−1(y1), g−1(y2) ̸= ∅. Let x1, x2 ∈ F1 such
that g(x1) = y1 and g(x2) = y2. Since g is a homomorphism of fields, then

g(tA)(y1 − y2) =
∨

y1−y2=g(x)

tA(x) ⩾ tA(x1 − x2),

g(iA)(y1 − y2) =
∨

y1−y2=g(x)

iA(x) ⩾ iA(x1 − x2),

g(fA)(y1 − y2) =
∧

y1−y2=g(x)

fA(x) ⩽ fA(x1 − x2).

By using these inequalities, we show that g(A)(y1 − y2) ⩾ g(A)(y1) ∧ g(A)(y2).
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g(A)(y1 − y2) = (g(tA)(y1 − y2), g(iA)(y1 − y2), g(fA)(y1 − y2))

= (
∨

y1−y2=g(x)

tA(x),
∨

y1−y2=g(x)

iA(x),
∧

y1−y2=g(x)

fA(x))

⩾ (tA(x1 − x2), iA(x1 − x2), fA(x1 − x2))
⩾ (tA(x1) ∧ tA(x2), iA(x1) ∧ iA(x2), fA(x1) ∨ fA(x2))
= (tA(x1), iA(x1), fA(x1)) ∧ (tA(x2), iA(x2), fA(x2)).

This inequality is satisfied for each x1, x2 ∈ F1 with g(x1) = y1 and g(x2) = y2,.
Now, it is clear that

g(A)(y1 − y2) ⩾ (
∨

y1=g(x1)

tA(x1),
∨

y1=g(x1)

iA(x1),
∧

y1=g(x1)

fA(x1))

∧ (
∨

y2=g(x2)

tA(x2),
∨

y2=g(x2)

iA(x2),
∧

y2=g(x2)

fA(x2))

= (g(tA)(y1), g(iA)(y1), g(fA)(y1)) ∧ (g(tA)(y2), g(iA)(y2), g(fA)(y2))
= g(A)(y1) ∧ g(A)(y2).

By the similar discussion,

g(A)(y1 · y−1
2 ) ⩾ g(A)(y1) ∧ g(A)(y2)

is obtained for any y1 ∈ F2 and Θ ̸= y2 ∈ F2. Hence, the claim g(A) ∈ NSF (F2) is true.
■

Theorem 3.14 Let F1 and F2 be two classical fields and g : F1 → F2 be a homo-
morphism of fields. Let B be a neutrosophic field of F2, then the preimage g−1(B) is a
neutrosophic field of F1.

Proof. Let B ∈ NSF (F2) and x1, x2 ∈ F1. Then

g−1(B)(x1 − x2) = (tB(g(x1 − x2)), iB(g(x1 − x2)), fB(g(x1 − x2)))
= (tB(g(x1)− g(x2)), iB(g(x1)− g(x2)), fB(g(x1)− g(x2)))
⩾ (tB(g(x1)) ∧ tB(g(x2)), iB(g(x1))

∧iB(g(x2)), fB(g(x1)) ∨ fB(g(x2)))
= (tB(g(x1)), iB(g(x1)), fB(g(x1)))

∧(tB(g(x2)), iB(g(x2)), fB(g(x2)))
= g−1(B)(x1) ∧ g−1(B)(x2).

Also, for x1 ∈ F1 and Θ ̸= x2 ∈ F1, following inequality is valid:

g−1(B)(x1 · x−1
2 ) = (tB(g(x1 · x−1

2 )), iB(g(x1 · x−1
2 )), fB(g(x1 · x−1

2 )))
= (tB(g(x1) · g(x2)−1), iB(g(x1) · g(x2)−1), fB(g(x1) · g(x2)−1))
⩾ (tB(g(x1)) ∧ tB(g(x2)), iB(g(x1))

∧iB(g(x2)), fB(g(x1)) ∨ fB(g(x2)))
= (tB(g(x1)), iB(g(x1)), fB(g(x1)))

∧(tB(g(x2)), iB(g(x2)), fB(g(x2)))
= g−1(B)(x1) ∧ g−1(B)(x2).

Hence, g−1(B) is a neutrosophic field of F1 as claimed. ■

Theorem 3.15 If A and B are neutrosophic fields of F1 and F2, respectively, then A×B
is a neutrosophic field of F1 × F2.

Proof. Let A and B be the neutrosophic fields of F1 and F2, respectively. Let x1, y1 ∈ F1

and x2, y2 ∈ F2. Then (x1, x2), (y1, y2) ∈ F1 × F2.
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tA×B((x1, x2)− (y1, y2)) = tA×B(x1 − y1, x2 − y2)
= tA(x1 − y1) ∧ tB(x2 − y2)
⩾ (tA(x1) ∧ tA(y1)) ∧ (tB(x2) ∧ tB(y2))
= (tA(x1) ∧ tB(x2)) ∧ (tA(y1) ∧ tB(y2))
= tA×B(x1, x2) ∧ tA×B(y1, y2).

Similarly, we obtain iA×B((x1, x2) − (y1, y2)) ⩾ iA×B(x1, x2) ∧ iA×B(y1, y2) and
fA×B((x1, x2) − (y1, y2)) ⩽ fA×B(x1, x2) ∨ fA×B(y1, y2). Hence, (A × B)((x1, x2) −
(y1, y2)) ⩾ (A × B)(x1, x2) ∧ (A × B)(y1, y2). So, the condition (i) of Theorem 3.6 is
satisfied. Now, let us show that the condition (ii) of Theorem 3.6 is true. Let x1 ∈ F1,
Θ ̸= y1 ∈ F1 and x2 ∈ F2, Θ ̸= y2 ∈ F2.

tA×B((x1, x2)(y1, y2)
−1) = tA×B(x1y

−1
1 , x2y

−1
2 )

= tA(x1y
−1
1 ) ∧ tB(x2y

−1
2 )

⩾ (tA(x1) ∧ tA(y1)) ∧ (tB(x2) ∧ tB(y2))
= (tA(x1) ∧ tB(x2)) ∧ (tA(y1) ∧ tB(y2))
= tA×B(x1, x2) ∧ tA×B(y1, y2).

Similarly, other inequalities are satisfied. Hence, A × B is a neutrosophic field of
F1 × F2. ■

4. Neutrosophic linear spaces over neutrosophic fields

In this section, we introduce the notion of a neutrosophic linear (vector) space over the
neutrosophic fields as an extension of the fuzzy linear spaces given in [15] and investigate
some of its elementary properties.

Definition 4.1 Let F be a classical field, V be a classical linear (vector) space over F ,
A be a neutrosophic field on F , and B be a neutrosophic set on V . Then B is called
a neutrosophic linear space over the neutrosophic field A if the following conditions are
satisfied:

(NL1) B(x + y) ⩾ B(x) ∧ B(y) for all x, y ∈ V i.e., tB(x + y) ⩾ tB(x) ∧ tB(y), iB(x + y) ⩾
iB(x) ∧ iB(y) and fB(x+ y) ⩽ fB(x) ∨ fB(y);

(NL2) B(−x) ⩾ B(x) for all x ∈ V , i. e., tB(−x) ⩾ tB(x), iB(−x) ⩾ iB(x) and fB(−x) ⩽
fB(x);

(NL3) B(λx) ⩾ A(λ) ∧ B(x) for all λ ∈ F, x ∈ V i.e., tB(λx) ⩾ tA(λ) ∧ tB(x), iA(λx) ⩾
iA(λ) ∧ iB(x) and fB(λx) ⩽ fA(λ) ∨ fB(x);

(NL4) A(e) ⩾ B(Θ) i.e., tA(e) ⩾ tB(Θ), iA(e) ⩾ iB(Θ) and fA(e) ⩽ fB(Θ).

Proposition 4.2 Let B be a neutrosophic linear space over a neutrosophic field A. Then
B(−y) = B(y) for any y ∈ V .

Proof. The proof is straightforward. ■

Proposition 4.3 If B is a neutrosophic linear space over a neutrosophic field A, then
the followings are satisfied:

(i) A(Θ) ⩾ B(Θ).
(ii) B(Θ) ⩾ B(x) for x ∈ V .
(iii) A(Θ) ⩾ B(x) for x ∈ V .

Proof. It is similar to the proof of Theorem 3.5. ■
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Theorem 4.4 Let A ∈ NSF (F ), V be a linear space over F and B be a neutrosophic
set of V . Then B is a neutrosophic linear space over A if and only if (i) and (ii) are
satisfied:

(i) B(λx+µy) ⩾ (A(λ)∧B(x))∧(A(µ)∧B(y)) for λ, µ ∈ F and x, y ∈ V , i.e., tB(λx+µy) ⩾
(tA(λ)∧ tB(x))∧ (tA(µ)∧ tB(y)), iB(λx+ µy) ⩾ (iA(λ)∧ tB(x))∧ (iA(µ)∧ tB(y)) and
fB(λx+ µy) ⩽ (fA(λ) ∨ fB(x)) ∨ (fA(µ) ∨ fB(y)).

(ii) A(e) ⩾ B(x) for x ∈ V , i. e., tA(e) ⩾ tB(x), iA(e) ⩾ iB(x) and fA(e) ⩽ fB(x).

Proof. (i) Let B be a neutrosophic linear space over A. Then we have tB(λx) ⩾ tA(λ)∧
tB(x), iB(λx) ⩾ iA(λ) ∧ iB(x) and fB(λx) ⩽ fA(λ) ∨ fB(x) for all x ∈ V, λ ∈ F and
tB(µy) ⩾ tA(µ) ∧ tB(y), iB(µy) ⩾ iA(µ) ∧ iB(y) and fB(µy) ⩽ fA(µ) ∨ fB(y) for all
y ∈ V, µ ∈ F . Hence,

tB(λx+ µy) ⩾ tB(λx) + tB(µy)
⩾ (tA(λ) ∧ tB(x)) ∧ (tA(µ) ∧ tB(y))
= tA(λ) ∧ tA(µ) ∧ tB(x) ∧ tB(y).

and similarly, iB(λx + µy) ⩾ iA(λ) ∧ iA(µ) ∧ iB(x) ∧ iB(y) and fB(λx + µy) ⩽
fA(λ)∨ fA(µ)∨ fB(x)∨ fB(y). Therefore, B(λx+ µy) ⩾ (A(λ)∧B(x))∧ (A(λ)∧B(y)).

(ii) It is clear from the Definiiton 4.1 (NL4) and Proposition 4.3 (ii). Conversely, let
the inequalities of Theorem 4.4 are hold. For x, y ∈ V ,

(NL1) If λ = µ = e, then
tB(x+ y) ⩾ tB(ex) ∧ tB(x) ∧ tA(e) ∧ tB(y)

= tA(e) ∧ tB(x) ∧ tB(y)
= tB(x) ∧ tB(y).

(NL2)
tB(−x) = tB(θx+ (−e)x)

⩾ tA(Θ) ∧ tB(x) ∧ tA(−e) ∧ tB(x)
= tB(x) ∧ tB(x)
= tB(x).

(NL3) If µ = Θ,
tB(λx) = tB(λx+Θx)

⩾ tA(λ) ∧ tB(x) ∧ tA(Θ) ∧ tB(x)
= tA(λ) ∧ tB(x)
= tB(x).

(NL4) Obvious.
Hence, B is a neutrosophic linear space over A. ■

Proposition 4.5 If B and C are two neutrosophic linear spaces over A, then their
intersection B ∩ C so is.

Proof. Let x, y ∈ V , λ, µ ∈ F be given.
tB∩C(λx+ µy) = tB(λx+ µy) ∧ tC(λx+ µy)

⩾ (tA(λ) ∧ tB(x) ∧ tA(µ) ∧ tB(y)) ∧ (tA(λ) ∧ tC(x) ∧ tA(µ) ∧ tC(y))
= (tA(λ) ∧ tB(x) ∧ tA(λ) ∧ tC(x)) ∧ (tA(µ) ∧ tB(y) ∧ tA(µ) ∧ tC(y))
= tA(λ) ∧ tB∩C(x) ∧ tA(µ) ∧ tB∩C(y).

The other inequalities are similarly satisfied. Hence,

(B ∩ C)(λx+ µy) ⩾ A(λ) ∧ (B ∩ C)(x) ∧A(µ) ∧ (B ∩ C)(y).

■

Theorem 4.6 Let V and Z be two linear spaces over the field F and g : V → Z be a
linear transformation and A ∈ NSF (F ). If B is a neutrosophic linear space of A, then
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the image g(B) is a neutrosophic linear space of A.

Proof. Let B be a neutrosophic linear space over A, λ, µ ∈ F and z1, z2 ∈ Z. If neither
g−1(z1) or g−1(z2) is empty, then it is obvious that g(B) is a neutrosophic linear space
over A. Suppose g−1(z1), g

−1(z2) ̸= ∅. Then g−1(λz1 + µz2) ̸= ∅. Let v1, v2 ∈ V such
that g(v1) = z1, g(v2) = z2. Then g(λv1 + µv2) = λg(v1) + µg(v2) = λz1 + µz2.

g(tB)(λz1 + µz2) =
∨

w∈g−1(λz1+µz2)

tB(w)

⩾
∨

v1∈g−1(z1),v2∈g−1(z2)

tB(λv1 + µv2)

⩾
∨

v1∈g−1(z1),v2∈g−1(z2)

{tA(λ) ∧ tB(v1) ∧ tA(µ) ∧ tB(v2)}

=

tA(λ) ∧
∨

v1∈g−1(z1)

tB(v1)

 ∧

tA(µ) ∧
∨

v2∈g−1(z2)

tB(z2)


= tA(λ) ∧ tg(B)(z1) ∧ tA(µ) ∧ tg(B)(z2))
= tA(λ) ∧ tA(µ) ∧ tg(B)(z1) ∧ tg(B)(z2)).

Similarly, we obtain
ig(B)(λz1+µz2) ⩾ iA(λ)∧ iA(µ)∧ ig(B)(z1)∧ ig(B)(z2)) and fg(B)(λz1+µz2) ⩽ fA(λ)∨

fA(µ) ∨ fg(B)(z1) ∨ fg(B)(z2)).
By using these inequalities,
g(B)(λz1 + µz2) = (g(tB)(λz1 + µz2), g(iB)(λz1 + µz2), g(fB)(λz1 + µz2))

=
(
tg(B)(λz1 + µz2), ig(B)(λz1 + µz2), fg(B)(λz1 + µz2)

)
⩾ (tA(λ) ∧ tA(µ) ∧ tg(B)(z1) ∧ tg(B)(z2),

iA(λ) ∧ iA(µ) ∧ ig(B)(z1) ∧ ig(B)(z2),
fA(λ) ∨ fA(µ) ∨ fg(B)(z1) ∨ fg(B)(z2))

= A(λ) ∧A(µ) ∧ g(B)(z1) ∧ g(B)(z2).

Obviously, for z ∈ Z tA(e) ⩾ tg(B)(z), iA(e) ⩾ ig(B)(z) and fA(e) ⩽ fg(B)(z). So,
A(e) ⩾ g(B)(z). Thus, g(B) is a neutrosophic linear space over A. ■

Theorem 4.7 Let V and Z be two linear spaces over the field F and g : V → Z be a
linear transformation and A ∈ NSF (F ). If D is a neutrosophic linear space of A, then
the preimage g−1(D) is a neutrosophic linear space of A.

Proof. Let x, y ∈ V , λ, µ ∈ F be given.

g−1(D)(λx+ µy) = tD(g(λx+ µy)), iD(g(λx+ µy)), fD(g(λx+ µy))
= (tD(λg(x) + µg(y)), iD(λg(x) + µg(y)), fD(λg(x) + µg(y)))
⩾ (tA(λ) ∧ tD(g(x)) ∧ tA(µ) ∧ tD(g(y)),

iA(λ) ∧ iD(g(x)) ∧ iA(µ) ∧ iD(g(y)),
fA(λ) ∨ fD(g(x)) ∨ fA(µ) ∨ fD(g(y)))

= (tA(λ), iA(λ), fA(λ)) ∧ (tD(g(x)), iD(g(x)), fD(g(x)))
∧(tA(µ), iA(µ), fA(µ)) ∧ (tD(g(y)), iD(g(y)), fD(g(y)))

= A(λ) ∧ g−1(D)(x) ∧A(µ) ∧ g−1(D)(y).

■

Proposition 4.8 Let A ∈ NSF (F ) and the neutrosophic sets B1, B2, , ..., Bn of the
vector space V1, V2, ..., Vn, respectively, be the neutrosophic linear spaces over A. Then
B1 ×B2 × ...×Bn is a neutrosophic linear space over A.

Proof. Let B = B1 ×B2 × ...×Bn, x = (x1, ..., xn), y = (y1, ..., yn) ∈ V1 × V2 × ...× Vn
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and λ, µ ∈ F .
(i)
tB(λx+ µy) = tB1×...×Bn

(λx1 + µy1, ..., λxn + µyn)

=
∧

j=1,...,n

tBj
(λxj + µyj)

⩾
∧

j=1,...,n

{tA(λ) ∧ tBj
(xj) ∧ tA(µ) ∧ tBj

(yj)}

= tA(λ) ∧
∧

j=1,...,n

tBj
(xj) ∧ tA(µ)

∧
j=1,...,n

tBj
(yj)

= tA(λ) ∧ tB(x) ∧ tA(µ) ∧ tB(y).

Similarly, the other inequalities are hold.

(ii) tA(e) ⩾ tBj
(xj) for all j = 1, ..., n. So tA(e) ⩾

∧
j

tBj
(xj) = tB(x) for all x ∈

V1 × V2 × ...× Vn.
Hence, B1 ×B2 × ...×Bn is a neutrosophic linear space over A. ■

5. Conclusion

In this paper, the notion of a neutrosophic field, which based on single-valued neutro-
sophic sets, over a classical field has been presented. Some of its main properties have
been discussed and its equivalent characterizations have been studied. At the same time,
the concept of neutrosophic linear spaces over neutrosophic fields have been introduced
and it is expected that several results from linear algebra and functional analysis can
be extended to the notion of single-valued neutrosophic sets. Particularly, it is hoped
that the concept of neutrosophic linear spaces will give rise to the notion of neutrosophic
normed spaces.
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