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Abstract. Frame theory has been rapidly generalized and various generalizations have been
developed. In this paper, we present a brief survey of the frames in Hilbert C∗-modules includ-
ing frames, ∗-frames, g-frames, ∗-g-frames, ∗-K-g-frame, operator frame and ∗-K-operator
frame in Hilbert C∗-modules. Various proofs are given for some results. We will also provide
some new results. Moreover, non-trivial examples are presented.
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1. Introduction

One of the important concepts in the study of vector spaces is the concept of a basis
for the vector space, which allows every vector to be uniquely represented as a linear
combination of the basis elements. However, the linear independence property for a basis
is restrictive; sometimes it is impossible to find vectors that both fulfill the basis re-
quirements and also satisfy external conditions demanded by applied problems. For such
purposes, we need to look for more flexible types of spanning sets. Frames provide these
alternatives. They not only have a great variety for use in applications but also have a
rich theory from a pure analysis point of view.

A frame is a set of vectors in a Hilbert space that can be used to reconstruct each
vector in the space from its inner products with the frame vectors. These inner products
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are generally called the frame coefficients of the vector. But unlike an orthonormal basis,
each vector may have infinitely many different representations in terms of its frame coef-
ficients. In 1952, frames for Hilbert spaces were introduced by Duffin and Schaefer [9] to
study some deep problems in nonharmonic Fourier series by abstracting the fundamen-
tal notion of Gabor [11] for signal processing. In fact, Gabor showed that any function
f ∈ L2(R) can be reconstructed via a Gabor system {g(x−ka)e2πimbx : k,m ∈ Z} where
g is a continuous compact support function. These ideas did not generate much interest
outside of nonharmonic Fourier series and signal processing until the landmark paper of
Daubechies et al. [8], where they developed the class of tight frames for signal reconstruc-
tion and they showed that frames can be used to find series expansions of functions in
L2(R) which are very similar to the expansions using orthonormal bases. After this inno-
vative work, the theory of frames began to be widely studied. While orthonormal bases
have been widely used for many applications, it is the redundancy that makes frames
useful in applications. Formally, a frame in a separable Hilbert space H is a sequence
{fi}i∈I for which there exist positive constants A,B > 0 called frame bounds such that
A∥x∥2⩽

∑
i∈I |⟨x, fi⟩|2 ⩽ B∥x∥2 for all x ∈ H. It is remarkable that this inequalities

imply the existence of a dual frame {f̃i}i∈I , such that the following reconstruction for-
mula holds for every x ∈ H: x =

∑
i∈I⟨x, f̃i⟩fi. In particular, any orthonormal basis for

H is a frame. However, in general, a frame need not be a basis and most useful frames
are over-complete. The redundancy that frames carry is what makes them very useful in
many applications.

Hilbert space frames have been traditionally used in signal processing because of their
resilience to additive noise, resilience to quantization, the numerical stability of recon-
struction, and their ability to capture important signal characteristics. Today, frame
theory is an exciting, dynamic, and fast-paced subject with applications to a wide vari-
ety of areas in mathematics and engineering, including sampling theory, operator theory,
harmonic analysis, nonlinear sparse approximation, pseudodifferential operators, wavelet
theory, wireless communication, data transmission with erasures, filter banks, signal pro-
cessing, image processing, geophysics, quantum computing, sensor networks, and more.
The last decades have seen tremendous activity in the development of frame theory and
many generalizations of frames have come into existence [18, 20]. Hilbert C∗-modules
is a generalization of Hilbert spaces by allowing the inner product to take values in a
C∗-algebra rather than in the field of complex numbers.

2. Preliminaries

2.1 C∗-algebra

Definition 2.1 [5] If A is a Banach algebra, an involution is a map a → a∗ of A into
itself such that for all a and b in A and all scalars α the following conditions hold:

(1) (a∗)∗ = a.
(2) (ab)∗ = b∗a∗.
(3) (αa+ b)∗ = ᾱa∗ + b∗.

Definition 2.2 [5] A C∗-algebraA is a Banach algebra with involution such that ∥a∗a∥ =
∥a∥2 for every a in A.

Example 2.3

(1) The algebra of bounded operators on a Hilbert space H, that is B(H), is a C∗-
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algebra, where for each operator A, A∗ is the adjoint of A.
(2) The algebra of continuous functions on a compact space X, that is C(X), is an

abelian C∗-algebra, where f∗(x) := f(x).
(3) The algebra of continuous functions on a locally compact space X that vanish at

infinity, that is C0(X), is an abelian C∗-algebra, where f∗(x) := f(x).

Definition 2.4 [5] An element a in a C∗-algebra A is positive if a∗ = a and sp(a) ⊂ R+.
We write a ⩾ 0 if a is positive. The set of all positive elements in A will be denoted by
A+.

Lemma 2.5 [25] Let T ∈ End∗A(H,K) be a bounded operator with closed range R(T ).
Then there exists a bounded operator U † ∈ End∗A(K,H) for which TT †x = x for x ∈
R(T ).

Lemma 2.6 [19] Let H be a Hilbert A-module. If T ∈ End∗A(H), then ⟨Tx, Tx⟩ ⩽
∥T∥2⟨x, x⟩ for all x ∈ H.

Lemma 2.7 [3] Let H and K be two Hilbert A-modules and T ∈ End∗A(H,K). Then
the following statements are equivalent:

(i) T is surjective.
(ii) T ∗ is bounded below with respect to norm, i.e., there exists m > 0 such that ∥T ∗x∥ ⩾

m∥x∥ for all x ∈ K.
(iii) T ∗ is bounded below with respect to the inner product, i.e., there exists m′ > 0 such

that ⟨T ∗x, T ∗x⟩ ⩾ m′⟨x, x⟩ for all x ∈ K.

Lemma 2.8 [2] Let H and K be two Hilbert A-modules and T ∈ End∗A(H,K).

(i) If T is injective and T has closed range, then the adjointable map T ∗T is invertible
and ∥(T ∗T )−1∥−1 ⩽ T ∗T ⩽ ∥T∥2.

(ii) If T is surjective, then the adjointable map TT ∗ is invertible and ∥(TT ∗)−1∥−1 ⩽
TT ∗ ⩽ ∥T∥2.

2.2 Hilbert C∗-modules

Definition 2.9 [13] Let A be a unital C∗-algebra and H be a left A-module, such that
the linear structures of A and H are compatible. H is a pre-Hilbert A-module if H is
equipped with an A-valued inner product ⟨., .⟩ : H × H → A such that is sesquilinear,
positive definite and respects the module action. In the other words,

(1) ⟨x, x⟩ ⩾ 0 for all x ∈ H and ⟨x, x⟩ = 0 if and only if x = 0;
(2) ⟨ax+ y, z⟩ = a⟨x, z⟩+ ⟨y, z⟩ for all a ∈ A and x, y, z ∈ H;
(3) ⟨x, y⟩ = ⟨y, x⟩∗ for all x, y ∈ H.

For x ∈ H, we define ||x|| = ||⟨x, x⟩||
1

2 . If H is complete with ||.||, it is called a
Hilbert A-module or a Hilbert C∗-module over A. For every a in C∗-algebra A, we have
|a| = (a∗a)

1

2 and the A-valued norm on H is defined by |x| = ⟨x, x⟩
1

2 for x ∈ H.

Example 2.10

(1) Let H be a Hilbert space, then B(H) is a Hilbert C∗-module with the inner
product ⟨T, S⟩ = TS∗ for all T, S ∈ B(H).

(2) LetH and K be separable Hilbert spaces and let B(H,K) be the set of all bounded
linear operators from H into K. Then B(H,K) is a Hilbert B(K)-module with
the inner product ⟨T, S⟩ = TS∗ for all T, S ∈ B(H,K).
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(3) Let X be a locally compact Hausdorff space and H a Hilbert space, the Banach
space C0(X,H) of all continuous H-valued functions vanishing at infinity is a
Hilbert C∗-module over the C∗-algebra C0(X) with inner product ⟨f, g⟩(x) :=
⟨f(x), g(x)⟩ and module operation (ϕf)(x) = ϕ(x)f(x) for all ϕ ∈ C0(X) and
f ∈ C0(X,H).

(4) If {Hk}k∈N is a countable set of Hilbert A-modules, then one can define their
direct sum ⊕k∈NHk. On the A-module ⊕k∈NHk of all sequences x = (xk)k∈N :
xk ∈ Hk, such that the series

∑
k∈N⟨xk, xk⟩A is norm-convergent in the C∗-algebra

A, we define the inner product by ⟨x, y⟩ :=
∑

k∈N⟨xk, yk⟩A for x, y ∈ ⊕k∈NHk.
Then ⊕k∈NHk is a Hilbert A-module. The direct sum of a countable number of
copies of a Hilbert C∗-module H is denoted by l2(H).

Let H and K be two Hilbert A-modules, A map T : H → K is said to be adjointable if
there exists a map T ∗ : K → H such that ⟨Tx, y⟩A = ⟨x, T ∗y⟩A for all x ∈ H and y ∈ K.
We also reserve the notation End∗A(H,K) for the set of all adjointable operators from H
to K and End∗A(H,H) is abbreviated to End∗A(H). Throughout the paper, we consider
a unital C∗-algebra.

3. Frames in Hilbert A-modules

Definition 3.1 [10]. Let H be a Hilbert A-module. A family {xi}i∈I of elements of H
is a frame for H, if there exist two positive constants A and B such that for all x ∈ H,

A⟨x, x⟩A ⩽
∑
i∈I

⟨x, xi⟩A⟨xi, x⟩A ⩽ B⟨x, x⟩A. (1)

The numbers A and B are called lower and upper bounds of the frame, respectively. If
A = B = λ, the frame is λ-tight. If A = B = 1, it is called a normalized tight frame or a
Parseval frame. If the sum in the middle of (1) is convergent in norm, the frame is called
standard.

Example 3.2 For a ∈ R, define the translation operator Ta : L2(R) → L2(R) by
Taf(x) = f(x − a). For b ∈ R, define the modulation operator Eb : L2(R) → L2(R)
by Ebf(x) = e2πibxf(x) A frame for L2(R) of the form

{EmbTnag}m,n∈Z = {e2πimbxg(x− na)}m,n∈Z

is called a Gabor frame.

Let {xi}i∈I be a frame of a finitely or countably generated Hilbert A-module H over a
unital C∗-algebra A. The operator T : H → l2(A) defined by Tx = {⟨x, xi⟩}i∈I is called
the analysis operator. The adjoint operator T ∗ : l2(A) → H is given by T ∗{ci}i∈I =∑

i∈I cixi. T
∗ is called pre-frame operator or the synthesis operator. By composing T

and T ∗, we obtain the frame operator S : H → H given by Sx = T ∗Tx =
∑

i∈I⟨x, xi⟩xi.

Proposition 3.3 The frame operator S is positive, selfadjoint, bounded and invertible.

Proof. For all x ∈ H, we have

⟨Sx, x⟩A = ⟨T ∗Tx, x⟩A = ⟨
∑
i∈I

⟨x, xi⟩xi, x⟩A =
∑
i∈I

⟨x, xi⟩⟨xi, x⟩A.
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and 0 ⩽ A⟨x, x⟩A ⩽ ⟨Sx;x⟩ ⩽ B⟨x, x⟩A. Then S is a positive and sefladjoint operator.
Now, we have A⟨x, x⟩A ⩽ ⟨Sx, x⟩A ⩽ B⟨x, x⟩A for x ∈ H. So, A.IH ⩽ SC ⩽ B.IH. Then
SC is a bounded operator. Moreover, 0 ⩽ IH −B−1SC ⩽ B−A

B .IH. Consequently,

∥IH −B−1SC∥ = sup
x∈H,∥x∥=1

∥⟨(IH −B−1SC)x, x⟩A∥ ⩽ B −A

B
< 1.

The shows that S is invertible. ■

The frame operator is positive, invertible, and is the unique operator in End∗A(H) such
that the reconstruction formula

x =
∑
i∈I

⟨x, S−1xi⟩xi =
∑
i∈I

⟨x, xi⟩S−1xi

holds for all x ∈ H. The sequences {S−1xi}i∈I and {S− 1

2xi}i∈I are frames for H.
The frame {S−1xi}i∈I is said to be the canonical dual frame of {xi}i∈I and the frame

{S− 1

2xi}i∈I is said to be the canonical Parseval frame of {xi}i∈I . The following theorem
gives a characterization of standard frame.

Theorem 3.4 Let H be a finitely or countably generated Hilbert A-module over a
unital C∗-algebra A, and {xi}i ⊂ H a sequence such that

∑
i∈I⟨x, xi⟩A⟨xi, x⟩A converges

in norm for every x ∈ H. Then {xi}i is a frame of H with bounds A and B if and only if

A∥x∥2 ⩽
∥∥∥∥∥∑

i∈I
⟨x, xi⟩A⟨xi, x⟩A

∥∥∥∥∥ ⩽ B∥x∥2 (2)

for all x ∈ H.

Proof. Suppose that {xi : i ∈ I} is a frame in Hilbert A-module H with bounds A and
B. We have A⟨x, x⟩A ⩽

∑
i∈I⟨x, xi⟩A⟨xi, x⟩A ⩽ B⟨x, x⟩A. Since ⟨x, x⟩ ⩾ 0, we get

A∥⟨x, x⟩A∥⩽ ∥
∑
i∈I

⟨x, xi⟩A⟨xi, x⟩A∥⩽ B∥⟨x, x⟩A∥.

Also, we have A∥x∥2⩽ ∥
∑

i∈I⟨x, xi⟩A⟨xi, x⟩A∥⩽ B∥x∥2. Now, suppose that (2) holds. We
know that the frame operator S is positive, self-adjoint and inversible and

⟨S1/2x, S1/2x⟩ = ⟨Sx, x⟩ = ⟨
∑
i∈I

⟨x, xi⟩Axi, x⟩ =
∑
i∈I

⟨x, xi⟩A⟨xi, x⟩A.

Hence,
√
A∥x∥⩽ ∥S1/2x∥⩽

√
B∥x∥ and A1⟨x, x⟩A ⩽

∑
i∈I⟨x, xi⟩A⟨x, xi⟩A ⩽ B1⟨x, x⟩A,

which implies that {xi : i ∈ I} is a frame in Hilbert A-module H. ■

Theorem 3.5 Let {xi : i ∈ I} be a frame for H with lower and upper bounds A and B,
respectively. Then the frame transform T : H → l2 ({Vi}) defined by Tx = {⟨x, xi⟩ : i ∈
I} is injective and adjointable, and has a closed range with ∥T∥ ⩽ ∥B∥

1

2 . The adjoint
operator T ∗ given by T ∗x =

∑
i∈I cixi, where x = {xi}i∈I , is surjective.
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Proof. Let x ∈ H. By the definition of frame for H, we have

A⟨x, x⟩A ⩽
∑
i∈I

⟨x, xi⟩A⟨xi, x⟩A ⩽ B⟨x, x⟩A. (3)

Thus, A⟨x, x⟩A ⩽ ⟨
∑

i∈I⟨x, xi⟩Axi, x⟩A ⩽ B⟨x, x⟩A and A⟨x, x⟩ ⩽ ⟨T ∗Tx, x⟩ ⩽ B⟨x, x⟩,
which implies that

A⟨x, x⟩ ⩽ ⟨Tx, Tx⟩ ⩽ B⟨x, x⟩. (4)

If Tx = 0 then ⟨x, x⟩ = 0 and so x = 0, i.e., T is injective. We now show that the range
of T is closed. Let {Txn}n∈N be a sequence in the range of T such that limn→∞ Txn = y.
By (4), for n,m ∈ N, we have

∥A⟨xn − xm, xn − xm⟩∥ ⩽ ∥⟨T (xn − xm), T (xn − xm)⟩∥ = ∥T (xn − xm)∥2.

Since {Txn}n∈N is Cauchy sequence in H, ∥A⟨xn − xm, xn − xm⟩∥ → 0 as n,m → ∞.
Note that for n,m ∈ N,

∥⟨xn − xm, xn − xm⟩∥ = ∥A−1A⟨xn − xm, xn − xm⟩∥ ⩽ ∥A−1∥∥A⟨xn − xm, xn − xm⟩∥.

Therefore, the sequence {xn}n∈N is Cauchy and hence there exists x ∈ H such that
xn → x as n → ∞. Again, by (4), we have ∥T (xn − x)∥2 ⩽ ∥B∥∥⟨xn − x, xn − x⟩∥. Thus,
∥Txn − Tx∥ → 0 as n → ∞ implies that Tx = y. It concludes that the range of T is
closed. For all x ∈ H and y = {yi} ∈ l2 ({Vi}), we have

⟨Tx, y⟩ = ⟨{⟨x, xi⟩}i∈Ix, yi⟩ =

〈
x,
∑
i∈I

⟨x, xi⟩yi

〉
.

Then T is adjointable and T ∗y =
∑

i∈I⟨x, xi⟩yi. By (4), ∥Tx∥2 ⩽ ∥B∥∥x∥2 and so

∥T∥ ⩽ ∥B∥
1

2 and ∥Tx∥ ⩾ ∥A−1∥−1∥x∥ for all x ∈ H and so, T ∗ is surjective. This
completes the proof. ■

Theorem 3.6 Let {xi}i∈I be a frame for H with frame transform T . Then {xi}i∈I is a
frame for H with lower and upper frame bounds ||(T ∗T )−1||−1 and ||T ||2, respectively.

Proof. By Theorem 3.5, T is injective and has a closed range and by Lemma 2.8,

||(T ∗T )−1||−1⟨x, x⟩ ⩽ ⟨T ∗Tx, x⟩ ⩽ ||T ||2⟨x, x⟩, ∀x ∈ U.

So,

||(T ∗T )−1||−1⟨x, x⟩ ⩽ ⟨
∑
i∈I

⟨x, xi⟩Axi, x⟩A ⩽ ||T ||2⟨x, x⟩, ∀x ∈ U.

Hence, {xi}i∈I is a frame for H with lower and upper frame bounds ||(T ∗T )−1||−1 and
||T ||2, respectively. ■
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4. g-Frames

Definition 4.1 [15]. We call a sequence {Λi ∈ End∗A(H, Vi) : i ∈ I} a g-frame in Hilbert
A-module H with respect to {Vi : i ∈ I} if there exist two positive constants C and D
such that for all x ∈ H,

C⟨x, x⟩A ⩽
∑
i∈I

⟨Λix,Λix⟩A ⩽ D⟨x, x⟩A. (5)

The numbers C and D are called lower and upper bounds of the g-frame, respectively. If
C = D = λ, the g-frame is λ-tight. If C = D = 1, it is called a g-Parseval frame. If the
sum in the middle of (5) is convergent in norm, the g-frame is called standard.

Example 4.2 Let C2 be the Hilbert C2-module with C2-inner product
⟨(x1, x2), (y1, y2)⟩ = (x1ȳ1, x2ȳ2) and A be the totality of all diagonal operators
diag{a, b} on C2, sending (z1, z2)

t to (az1, bz2)
t. Fix {ai}i and {bi}i in l2. Define

Λi : C2 → C2, (z1, z2) → (aiz1, biz2). Then {Λi}i is a g-frame for C2 with bounds
min{

∑
i |ai|2,

∑
i |bi|2} and max{

∑
i |ai|2,

∑
i |bi|2}, respectively.

Like frames, we define the frame transform T , the synthesis operator T ∗ and the g-
frame operator S as follows: T : H → ⊕i∈IVi, Tx = {Λix}i∈I , T ∗ : ⊕i∈IVi → H,
T ∗y =

∑
i∈I Λ

∗
i yi for all y = {yi}i∈I in ⊕i∈IVi, and S = T ∗T : H → H is given by

Sx =
∑

i∈I Λ
∗
iΛix for each x ∈ H. The g-frame operator is positive, invertible, and the

follow reconstruction formula x =
∑

i∈I Λ
∗
iΛiS

−1x =
∑

i∈I S
−1Λ∗

iΛix holds for all x ∈ H.
The following theorem gives a characterization of standard g-frame.

Theorem 4.3 Let Λi ∈ End∗A(H, Vi) for any i ∈ I and
∑

i∈I⟨Λix,Λix⟩A converge in
norm for x ∈ H. Then {Λi}i∈I is a g-frame for H with respect to {Vi}i∈I if and only if
there exist constants A, B > 0 such that

A∥x∥2 ⩽
∥∥∥∥∥∑

i∈I
⟨Λix,Λix⟩A

∥∥∥∥∥ ⩽ B∥x∥2 (6)

for all x ∈ H.

Proof. Suppose that {Λi : i ∈ I} is a g-frame in Hilbert A-module H with respect to
{Vi}i∈I . Then A⟨x, x⟩A ⩽

∑
i∈I⟨Λix,Λix⟩A ⩽ B⟨x, x⟩A. Since ⟨x, x⟩ ⩾ 0, we have

A∥⟨x, x⟩A∥⩽ ∥
∑
i∈I

⟨Λix,Λix⟩A∥⩽ B∥⟨f, f⟩A∥.

Thus, A∥x∥2⩽ ∥
∑

i∈I⟨Λix,Λix⟩A∥⩽ B∥x∥2. Now, suppose that (6) holds, we know that
the g− frame operator SΛ is positive self-adjoint and inversible

⟨S1/2x, S1/2x⟩ = ⟨Sx, x⟩ =
∑
i∈I

⟨Λix,Λix⟩A.

Hence,
√
A∥x∥⩽ ∥S1/2x∥⩽

√
B∥x∥ and A1⟨x, x⟩A ⩽

∑
i∈I⟨Λix,Λix⟩A ⩽ B1⟨x, x⟩A,

which implies that {Λi : i ∈ I} is a g-frame in Hilbert A-module H with respect to
{Vi}i∈I . ■
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Theorem 4.4 If Λ := {Λi ∈ End∗A(H,Hi)}i∈I is a g-frame in Hilbert A-module H
with respect to {Hi}i∈I with bounds A and B, then the g-frame operator S : H → H
defined by Sf =

∑
i∈I

Λ∗
iΛix is a bounded invertible operator. Also, if Λ̃i = ΛiS

−1, then

{Λ̃i ∈ End∗A(H,Hi)}i∈I is a g-frame in Hilbert A-module H with respect to {Hi}i∈I with
bounds B−1 and A−1 and it satisfies x =

∑
i∈I

Λ∗
i Λ̃ix =

∑
i∈I

Λ̃∗
iΛix for x ∈ H.

Proof. For x ∈ H, we have

∥∥∥∥∥∑
i∈I1

Λ∗
iΛix

∥∥∥∥∥ = sup
y∈H,∥y∥=1

∥∥∥∥∥∥
〈∑

i∈I1

Λ∗
iΛix, y

〉
A

∥∥∥∥∥∥
= sup

y∈H,∥y∥=1

∥∥∥∥∥∑
i∈I1

⟨Λix,Λiy⟩A

∥∥∥∥∥
⩽ sup

x∈H,∥y∥=1

∥∥∥∥∥∑
i∈I1

⟨Λix,Λix⟩A

∥∥∥∥∥
1/2 ∥∥∥∥∥∑

i∈I1

⟨Λix,Λiy⟩A

∥∥∥∥∥
1/2

⩽
√
B

∥∥∥∥∥∑
i∈I1

⟨Λiy,Λiy⟩A

∥∥∥∥∥
1/2

.

Hence, the series in
∑

i∈I1 Λ
∗
iΛi are convergent. Therefore, Sx is well-defined for any

x ∈ H. On the other hand, it is easy to check for any x, g ∈ H that

⟨Sx, g⟩A =
∑
i∈I1

⟨Λ∗
iΛix, g⟩A =

∑
i∈I1

⟨x,Λ∗
iΛig⟩A = ⟨f, Sg⟩A.

Hence, S is a self-adjoint operator. Therefore,

∥S∥= sup
x∈H,∥x∥=1

∥⟨Sx, x⟩A∥= sup
x∈H,∥x∥=1

∥⟨
∑
i∈I

Λ∗
iΛix, x⟩A∥= sup

x∈H,∥x∥=1
∥
∑
i∈I

⟨Λix,Λix⟩A∥⩽ B,

which shows that S is a bounded operator. Since there is ⟨x, x⟩A ⩾ 0, then for all x ∈ H,
A∥⟨x, x⟩A∥⩽ ∥⟨Sx, x⟩A∥⩽ B∥⟨x, x⟩A∥, which implies that A∥x∥2⩽ ∥⟨Sx, x⟩A∥⩽ B∥x∥2.
Then A∥x∥2⩽ ∥⟨Sx, x⟩A∥⩽ ∥Sx∥∥x∥. It follows that ∥Sx∥⩾ A∥x∥. Thus, S is injective
and SH is closed in H. Let g ∈ H be such that ⟨Sx, g⟩A = 0 for any x ∈ H. Then, we
have ⟨x, Sg⟩A = 0 for x ∈ H. This implies that Sg = 0 and therefore g = 0. Hence,

SH = H. Consequently, S is invertible and ∥S−1∥⩽ 1

A
. For any x ∈ H, we have

x = SS−1x = S−1Sx =
∑
i∈I

Λ∗
iΛiS

−1x =
∑
i∈I

S−1Λ∗
iΛix.

Let Λ̃i = ΛiS
−1. Then the above equalities become x =

∑
i∈I

Λ∗
i Λ̃ix =

∑
i∈I

Λ̃∗
iΛix. Now, we

prove that {Λ̃i ∈ End∗A(H,Hi)}i∈I is also a g-frame in Hilbert A-module H with respect
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to {Hi}i∈I . In fact, for any x ∈ H, we have

∥∥∥∥∥∑
i∈I

Λ̃ix

∥∥∥∥∥
2

=

∥∥∥∥∥∑
i∈I

〈
ΛiS

−1x,ΛiS
−1x

〉
A

∥∥∥∥∥
=

∥∥∥∥∥∑
i∈I

⟨Λ∗
iΛiS

−1x, S−1x⟩A

∥∥∥∥∥
=
∥∥⟨S−1Sx, S−1x⟩A

∥∥
=
∥∥⟨Λ∗

iΛiS
−1x, S−1x⟩A

∥∥
= ∥⟨S−1Sx, S−1x⟩A∥

=
∥∥⟨f, S−1x⟩A

∥∥ ⩽ 1

A
∥⟨x, x⟩A∥.

On the other hand,

∥x∥2= ∥⟨x, x⟩A∥ = ∥⟨
∑
i∈I

Λ̃i
∗
Λix, x⟩A∥

= ∥
∑
i∈I

⟨Λix, Λ̃ix⟩A∥

⩽ ∥
∑
i∈I

⟨Λix,Λix⟩A∥1/2∥
∑
i∈I

⟨Λ̃ix, Λ̃ix⟩A∥1/2

⩽
√
B∥x∥∥

∑
i∈I

⟨Λ̃ix, Λ̃ix⟩A∥1/2.

So, ∥
∑
i∈I

⟨Λ̃ix, Λ̃ix⟩A∥⩾
1

B
∥⟨x, x⟩A∥. Hence, {Λ̃i ∈ End∗A(H,Hi)}i∈I is a g-frame in

Hilbert A-module H with frame bounds
1

A
and

1

B
. Let S̃ be the g−frame operator

associated with Λ := {Λi ∈}i∈I . Then

SS̃x =
∑
i∈I

SΛ̃∗
i Λ̃ix =

∑
i∈I

SS−1Λ∗
iΛiS

−1x =
∑
i∈I

Λ∗
iΛiS

−1x = SS−1Λ∗
ix = x.

Hence, S̃ = S−1 and Λ̃iS̃−1S = Λi. ■

Theorem 4.5 Let {Λi}i∈I and {Γi}i∈I be g-Bessel sequences for Hilbert C∗-modules
U1 and U2 with g-Bessel bounds B1 and B2, respectively. Then {Λ∗

wΓw}w∈Ω is a-g-Bessel
sequence for U2 with respect to U1.

Proof. For each x ∈ U2, we have∑
i∈I

⟨Λ∗
iΓix,Λ

∗
iΓix⟩A ⩽

∑
i∈I

||Λ∗
i ||2⟨Γix,Γix⟩A ⩽ ||B1||2

∑
i∈I

⟨Γix,Γix⟩A

⩽ ||B1||2B2⟨x, x⟩A ⩽ ||B1||B2⟨x, x⟩A.
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Hence, {Λ∗
iΓi}i∈I is a g-Bessel sequence for U2 with respect to U1. ■

Theorem 4.6 A sequence {Λi ∈ End∗A(H,Vi)}i∈I is a g-frame in Hilbert A module H
with respect to {Vi}i∈I if and only if

Q : {gi}i∈I →
∑
i∈I

Λ∗
i g (7)

is a well defined bounded linear operator from l2
(
{Hi}i∈I

)
onto H, where the g-frame

bounds are ∥Q+∥−2
and ∥Q∥2, and Q+ is the pseudo-inverse of Q.

Proof. (1) ⇒ If Λ := {Λi ∈ End∗A(H,Hi)}i∈I is a g-frame in Hilbert A module H with
respect to {Hi}i∈I with bounds A and B, then for any finite subset I1 ⊂ I, we have∥∥∥∥∥∑

i∈I1

Λ∗
i gj

∥∥∥∥∥ = sup
f∈H,∥f∥=1

∥∥∥∥∥
〈∑

i∈I1

Λ∗
i gi, f

〉∥∥∥∥∥
= sup

f∈H,∥f∥=1

∥∥∥∥∥∑
i∈I1

⟨gi,Λif⟩

∥∥∥∥∥
⩽ sup

f∈H,∥f∥=1
∥
∑
i∈I1

⟨gi, gi⟩∥1/2∥
∑
i∈I1

⟨Λif,Λif⟩∥1/2

⩽
√
B∥
∑
i∈I1

⟨gi, gi⟩∥1/2.

Hence, the series
∑
i∈i

Λ∗
i gi converges in H and the operator defined by (7) is well defined

from l2
(
{Vi}i∈I

)
into H with ∥Q∥ ⩽

√
B. For every f ∈ H, there exists a g ∈ H such

that f = Sg =
∑
i∈I

Λ∗
iΛig. Since {Λi ∈ End∗A(H,Hi)}i∈I is a g-frame for H with respect

to {Hi}i∈I , then {Λig}i∈I ∈ l2
(
{Vi}i∈I

)
and Q

(
{Λig}i∈I

)
=
∑
i∈I

Λ∗
iΛig = f. This implies

that the operator Q is onto.
(2) ⇐ If Q is a well defined bounded linear operator from l2

(
{Hi}i∈I

)
onto H, then

for any f ∈ H and any finite subset I1 ⊂ I, we have∥∥∥∥∥∑
i∈I1

Λif

∥∥∥∥∥
2

=

∥∥∥∥∥∑
i∈I1

⟨Λif,Λif⟩

∥∥∥∥∥ =

∥∥∥∥∥∑
i∈I1

⟨f,Λ∗
iΛif⟩

∥∥∥∥∥ =

∥∥∥∥∥⟨f,∑
i∈I1

Λ∗
iΛif⟩

∥∥∥∥∥
⩽ ∥⟨f, f⟩∥1/2∥⟨

∑
i∈I1

Λ∗
iΛif,

∑
i∈I1

Λ∗
iΛif⟩∥1/2

⩽ ∥f∥

∥∥∥∥∥∑
i∈I1

Λ∗
iΛif

∥∥∥∥∥ = ∥f∥
∥∥Q ({Λif}i∈I1

)∥∥ .

It follows that

∥∥∥∥∥∑
i∈I1

Λif

∥∥∥∥∥
2

⩽ ∥Q∥2∥f∥2 for all f ∈ H and any finite subset I1 ⊂ I.
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Hence, we obtain

∥∥∥∥∥∑
i∈I

Λif

∥∥∥∥∥
2

⩽ ∥Q∥2∥f∥2 for all f ∈ H. On the other hand, since

Q
(
ℓ2 ({Hi}i∈I)

)
= H, there exists a unique bounded operator Q+ : H → l2

(
{Hi}i∈I

)
satisfying QQ+f = f, f ∈ Q

(
l2 ({Vi}i∈I)

)
= H. Let Q+f = {ai}i∈I . Then we have

∥∥∥∥∥∑
i∈I

ai

∥∥∥∥∥
2

= ∥Q+f∥2 ⩽ ∥Q+∥2 ∥f∥2, f ∈ H,

f = QQ+f =
∑
i∈I

Λ∗
i ai, f ∈ H.

Hence, we obtain

∥f∥4 = ∥⟨f, f⟩∥2=

∥∥∥∥∥
〈∑

i∈I
Λ∗
i ai, f

〉∥∥∥∥∥
2

=

∥∥∥∥∥∑
i∈I

⟨ai,Λif⟩

∥∥∥∥∥
2

⩽
∥∥Q+

∥∥2 ∥f∥2 ∥∥∥∥∥∑
i∈I

Λif

∥∥∥∥∥
2

.

This implies that 1
∥Q+∥2 ∥f∥2 ⩽

∥∥∥∥∥∑
i∈I

Λif

∥∥∥∥∥
2

for all f ∈ H. ■

Theorem 4.7 Let a sequence Λ := {Λi ∈ End∗A(H,Vi)}i∈I be a g-frame for H with re-
spect to {Vi}i∈I with bounds A and B. If P is the orthogonal projection from l2

(
{Vi}i∈I

)
onto RQ∗ , then P is defined by P

(
{gi}i∈I

)
:= {Λi

∑
k∈I

Λ̃∗
kgk}i∈I for any {gi}i∈I belongs

to l2
(
{Vi}i∈I

)
.

Proof. Let T̃ : l2 ({Hi}i∈I) → RQ∗ be the operator defined by T̃
(
{gi}i∈I

)
:=

{Λi

∑
k∈I

Λ̃∗
kgk}i∈I . Firstly, we prove that T̃ is a bounded linear operator. For all

{gi}i∈I , {hi}i∈I ∈ l2
(
{Hi}i∈I

)
, we consider that

T̃
(
{gi}i∈I + {hi}i∈I

)
= T̃

(
{gi + hi}i∈I

)
=

{
Λi

∑
k∈I

Λ̃∗
k (gk + hk)

}
i∈I

=

{
Λi

(∑
k∈I

Λ̃∗
kgk +

∑
k∈I

Λ̃∗
khk

)}
i∈I

=

{
Λi

∑
k∈I

Λ̃∗
kgk

}
i∈I

+

{
Λi

∑
k∈I

Λ̃∗
khk

}
i∈I

= T̃
(
{gi}i∈I

)
+ T̃

(
{hi}i∈I

)
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and

∥∥∥T̃ ({gi}i∈I)∥∥∥2 =
∥∥∥∥∥∥
{
Λi

∑
k∈I

Λ̃∗
kgk

}
i∈I

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
{
Λi

∑
k∈I

S−1Λ∗
kgk

}
i∈I

∥∥∥∥∥∥
2

=
∑
i∈I

∥∥∥∥∥Λi

∑
k∈I

S−1Λ∗
kgk

∥∥∥∥∥
2

⩽ B

∥∥∥∥∥∑
k∈I

S−1Λ∗
kgk

∥∥∥∥∥
2

⩽ B

A

∥∥{gk}k∈I∥∥2 .
Hence, T̃ is a bounded linear operator. Secondly, let g =

∑
i∈I

Λ̃∗
i gi. Since

T̃ 2
(
{gi}i∈I

)
= T̃

(
{Λig}i∈I

)
=

{
ΛI

∑
k∈I

Λ̃∗
kΛkg

}
i∈I

=

{
Λi

∑
k∈I

S−1Λ∗
kΛkg

}
i∈I

=

{
ΛiS

−1
∑
k∈I

Λ∗
kΛkg

}
i∈I

= {Λig}i∈I = T̃
(
{gi}i∈I

)
,

we obtain T̃ 2 = T̃ . Hence, we have that T̃ is a projection from l2
(
{Vi}i∈I

)
onto RQ2 .

Finally, for all {gi}i∈I , {fi}i∈I ∈ l2
(
{Vi}i∈I

)
, we obtain

〈
T̃
(
{gi}i∈I

)
, {fi}i∈I

〉
A
=

〈{
Λi

∑
k∈I

Λ̃∗
kgk

}
i∈I

, {fi}i∈I

〉
A

=
∑
i∈I

〈
Λi

∑
k∈I

Λ̃∗
kgk, fi

〉
A

=
∑
i∈I

〈∑
k∈I

Λ̃∗
kgk,Λ

∗
i fi

〉
A

=

〈∑
k∈I

Λ̃∗
kgk,

∑
i∈I

Λ∗
i fi

〉
A

=

〈∑
k∈I

S−1Λ∗
kgk,

∑
i∈I

Λ∗
i fi

〉
A

=

〈
S−1

∑
k∈I

Λ∗
kgk,

∑
i∈I

Λ∗
i fi

〉
A

=

〈∑
k∈I

Λ∗
kgk,

∑
i∈I

S−1Λ∗
i fi

〉
A

=

〈∑
k∈I

Λ∗
kgk,

∑
i∈I

Λ̃∗
i fi

〉
A

=
∑
k∈I

〈
gk,Λk

∑
i∈I

Λ̃∗
i fi

〉
A

=

〈
{gk}k∈I ,

{
Λk

∑
i∈I

Λ̃∗
i fi

}
k∈I

〉
A

=
〈
{gi}i∈I , T̃

(
{fi}i∈I

)〉
A
.
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It shows that T̃ ∗ = T̃ . Hence, T̃ is an orthogonal projection from l2
(
{Vi}i∈I

)
onto RQ∗ .

Since orthogonal projection is unique, we have P = T̃ . ■

5. ∗-Frames

Definition 5.1 [2] Let H be a Hilbert A-module over a unital C∗-algebra. A family
{xi}i∈I of elements of H is a ∗-frame for H if there exist strictly nonzero elements A and
B in A such that for all x ∈ H,

A⟨x, x⟩AA∗ ⩽
∑
i∈I

⟨x, xi⟩A⟨xi, x⟩A ⩽ B⟨x, x⟩AB∗. (8)

The elements A and B are called lower and upper bounds of the ∗-frame, respectively.
If A = B = λ1, the ∗-frame is λ1-tight. If A = B = 1, it is called a normalized tight
∗-frame or a Parseval ∗-frame. If the sum in the middle of (8) is convergent in norm, the
∗-frame is called standard.

Example 5.2 Let A be the C∗-algebra of the set of all diagonal matrices in M2,2(C) and

suppose A is the Hilbert A-module over itself. Consider Ai =

[
1
2i 0
0 1

3i

]
for all i ∈ N. For

A =

[
a 0
0 b

]
∈ A, we have

∑
i∈N

⟨A,Ai⟩⟨Ai, A⟩ =

[
|a|2
3 0

0 |b|2
8

]
=

[
1√
3

0

0 1√
8

]
⟨A,A⟩

[
1√
3

0

0 1√
8

]
.

Then {Ai}i∈N is

[
1√
3

0

0 1√
8

]
-tight ∗-frame for Hilbert A-module A.

Remark 1

(1) The set of all frames in Hilbert A-modules can be considered as a subset of ∗-
frames.

(2) We see that ∗-frames can be studied as frames with different bounds.

Now we define the ∗-frame operator and compare its properties with ordinary case.

Definition 5.3 Let {xi}i∈I be a ∗-frame for H with pre-∗-frame operator T and lower
and upper ∗-frame bounds A and B, respectively. The ∗-frame operator S : H → H is
defined by Sx = T ∗Tx =

∑
i∈I⟨x, xi⟩Axi.

The ∗-frame operator has some similar properties with frame operator in ordinary
frames, but the other properties are different. The main cause of differences is A-valued
bounds. However, the reconstruction formula is given from the ∗-frame operator.

Theorem 5.4 Let {xi}i∈I be a ∗-frame for H with ∗-frame operator S and lower and up-
per ∗-frame bounds A and B, respectively. Then S is positive, invertible and adjointable.
Also, the following inequality ∥A−1∥−2 ⩽ ∥S∥ ⩽ ∥B∥2 holds, and the reconstruction
formula x =

∑
i∈I⟨x, S−1xi⟩Axi holds for all x ∈ H.

In the following corollary, we see that ∗-frames can be studied as frames with different
bounds.
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Corollary 5.5 Let {xi}i∈I be a ∗-frame for H with pre-∗-frame operator T and lower
and upper ∗-frame bounds A and B, respectively. Then {xi}i∈I is a frame for H with
lower and upper frame bounds ∥(T ∗T )−1∥−1 and ∥T∥2, respectively.

5.1 ∗-g-Frames

The following definition was introduced independently by Alijani [1] and Bounader [4],
which is a generalization of g-frames.

Definition 5.6 [1, 4] We call a sequence {Λi ∈ End∗A(H, Vi) : i ∈ I} a ∗-g-frame in
Hilbert A-module H over a unital C∗-algebra with respect to {Vi : i ∈ I} if there exist
strictly nonzero elements A adn B in A such that for all x ∈ H,

A⟨x, x⟩AA∗ ⩽
∑
i∈I

⟨Λix,Λix⟩A ⩽ B⟨x, x⟩AB∗. (9)

The elements A and B are called lower and upper bounds of the ∗-g-frame, respectively.
If A = B = λ1, the ∗-g-frame is λ1-tight. If A = B = 1, it is called an ∗-g-Parseval frame.
If the sum in the middle of (9) is convergent in norm, the ∗-g-frame is called standard.

Example 5.7 Let {xi}i∈I be a ∗-frame for H with bounds A and B, respectively. For
each i ∈ I, we define Λi : H → A by Λix = ⟨x, xi⟩A for all x ∈ H. Λi is adjointable and
Λ∗
i a = axi for each a ∈ A, and we have A⟨x, x⟩AA∗ ⩽

∑
i∈I⟨x, xi⟩A⟨xi, x⟩A ⩽ B⟨x, x⟩AB∗

for all x ∈ H. Then A⟨x, x⟩AA∗ ⩽
∑

i∈I⟨Tix, Tix⟩ ⩽ B⟨x, x⟩AB∗ for all x ∈ H. So, {Λi}i∈I
is a ∗-g-frame with bounds A and B, respectively, in H with respect to A.

Remark 2

(1) The set of all g-frames in Hilbert A-modules can be considered as a subset of
∗-g-frames.

(2) We see that ∗-g-frames can be studied as g-frames with different bounds.

Now we define the ∗-g-frame operator.

Definition 5.8 Let {Λi ∈ End∗A(H, Vi) : i ∈ I} be a ∗-g-frame for H with lower and
upper ∗-g-frame bounds A and B, respectively. The ∗-g-frame operator S : H → H is
defined by Sx =

∑
i∈I Λ

∗
iΛix.

The ∗-g-frame operator has some similar properties with g-frame operator, but the
other properties are different. The main cause of differences is A-valued bounds. However,
the reconstruction formula is given from the ∗-g-frame operator.

Theorem 5.9 Let {Λi ∈ End∗A(H, Vi) : i ∈ I} be a ∗-g-frame for H with ∗-g-frame
operator S and lower and upper ∗-g-frame bounds A and B, respectively. Then S is
positive, invertible and adjointable. Also, the inequality ∥A−1∥−2 ⩽ ∥S∥ ⩽ ∥B∥2 holds,
and the reconstruction formula x =

∑
i∈I Λ

∗
iΛiS

−1x =
∑

i∈I S
−1Λ∗

iΛix holds for all
x ∈ H.

In the following corollary we see that ∗-g-frames can be studied as g-frames with
different bounds.

Corollary 5.10 Let {Λi ∈ End∗A(H, Vi) : i ∈ I} be a ∗-g-frame for H with pre-∗-g-
frame operator T and lower and upper ∗-g-frame bounds A and B, respectively. Then
{Λi ∈ End∗A(H, Vi) : i ∈ I} is a g-frame for H with lower and upper g-frame bounds
∥(T ∗T )−1∥−1 and ∥T∥2, respectively.
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Theorem 5.11 Let {Λi ∈ End∗A(H, Vi) : i ∈ I}. If the operator θ : ⊕i∈IVi → H defined
by θ({xi}i∈I) =

∑
i∈I Λ

∗
ixi is surjective, then {Λi}i∈I is a ∗-g-frame for H.

Proof. For each x ∈ H,∥∥∥∥∥∑
i∈I

⟨Λix,Λix⟩

∥∥∥∥∥ =

∥∥∥∥∥∑
i∈I

⟨x,Λ∗
iΛix⟩

∥∥∥∥∥ =

∥∥∥∥∥⟨x,∑
i∈I

Λ∗
iΛix⟩

∥∥∥∥∥
⩽ ∥x∥

∥∥∥∥∥∑
i∈I

Λ∗
iΛix

∥∥∥∥∥ ⩽ ∥x∥ ∥θ({Λix}i∈I)∥

⩽ ∥x∥ ∥θ∥ ∥{Λix}i∈I∥ ⩽ ∥x∥ ∥θ∥

∥∥∥∥∥∑
i∈I

⟨Λix,Λix⟩

∥∥∥∥∥
1

2

.

Thus,
∥∥∑

i∈I⟨Λix,Λix⟩
∥∥ 1

2 ⩽ ∥θ∥ ∥x∥. So,∥∥∥∥∥∑
i∈I

⟨Λix,Λix⟩

∥∥∥∥∥ ⩽ ∥θ∥2 ∥x∥2, ∀x ∈ H. (10)

Since θ is surjective, by Lemma 2.7 there exists ν > 0 such that ||θ∗x|| ⩾ ν||x|| for all
x ∈ H. Therefore, θ∗ is injective. Hence θ∗ : H → R(θ∗) is invertible, and for each x ∈ H,
(θ∗/R(θ∗))

−1θ∗x = x. So, for each x ∈ H, ∥x∥ = ∥(θ∗/R(θ∗))
−1θ∗x∥ ⩽ ∥(θ∗/R(θ∗))

−1∥ ∥θ∗x∥.
Hence,

∥(θ∗/R(θ∗))
−1∥−2 ∥x∥2 ⩽

∥∥∥∥∥∑
i∈I

⟨Λix,Λix⟩

∥∥∥∥∥ . (11)

From (10) and (11), {Λi}i∈I is a ∗-g-frame for H. ■

Theorem 5.12 Let {Λi}i∈I be a ∗-g-frame for H. If {Γi}i∈I is a ∗-g-Bessel sequence for
H with respect to {Vi : i ∈ I} and the operator F : H → H defined by Fx =

∑
i∈I Γ

∗
iΛix

is surjective, then {Γi}i∈I is a ∗-g-frame for H.

Proof. Since {Λi}i∈I is a ∗-g-frame for H, we have a ∗-g-frame transform T : H →
⊕i∈IVi defined by Tx = {Λix}i∈I . Now, the operator K : ⊕i∈IVw → H defined by
K({xi}i∈I) =

∑
i∈I Γ

∗
ixi is well-defined. Since∥∥∥∥∥∑

i∈I
Γ∗
ixi

∥∥∥∥∥ = sup
∥y∥=1

∥∥∥∥∥⟨∑
i∈I

Γ∗
ixi, y⟩

∥∥∥∥∥ = sup
∥y∥=1

∥∥∥∥∥∑
i∈I

⟨xi,Γiy⟩

∥∥∥∥∥
⩽ sup

∥y∥=1

∥∥∥∥∥∑
i∈I

⟨xi, xi⟩

∥∥∥∥∥
1

2

∥∥∥∥∥∑
i∈I

⟨Γiy,Γiy⟩

∥∥∥∥∥
1

2

⩽ sup
∥y∥=1

∥{xi}i∈I∥∥⟨y, y⟩∥
1

2 = ∥{xi}i∈I∥,

For each x ∈ H, we have Fx =
∑

i∈I Γ
∗
iΛix = KTx; that is, F = KT . Since F is

surjective, for each x ∈ H there exists y ∈ H such that Fy = x, which implies x = Fy =
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KTy and Ty ∈ ⊕i∈IVi and so K is surjective. From Theorem 5.11, we conclude that
{Γi}i∈I is a ∗-g-frame for H. ■

Now, we study ∗-g-frames in two Hilbert C∗-modules with different C∗-algebras.

Theorem 5.13 Let (H,A, ⟨., .⟩A) and (H,B, ⟨., .⟩B) be two Hilbert C∗-modules, ϕ :
A → B be a ∗-homomorphism and θ be an adjointable map on H such that ⟨θx, θy⟩B =
ϕ(⟨x, y⟩A) for all x, y ∈ H. Also, suppose that {Λi}i∈I is a ∗-g-frame for (H,A, ⟨., .⟩A)
with ∗-g-frame operator SA and lower and upper bounds A and B, respectively. If θ is
surjective and θΛi = Λiθ for all i ∈ I, then {Λi}i∈I is a ∗-g-frame for (H,B, ⟨., .⟩B) with
∗-g-frame operator SB and lower and upper bounds ϕ(A) and ϕ(B), respectively, and
⟨SBθx, θy⟩B = ϕ(⟨SAx, y⟩A).

Proof. Let y ∈ H. Since θ is surjective, there exists x ∈ H such that θx = y, and we
have A⟨x, x⟩AA∗ ⩽

∑
i∈I⟨Λix,Λix⟩A ⩽ B⟨x, x⟩AB∗. Thus,

ϕ(A⟨x, x⟩AA∗) ⩽ ϕ
(∑

i∈I
⟨Λix,Λix⟩A

)
⩽ ϕ(B⟨x, x⟩AB∗).

By definition of ∗-homomorphism, we have

ϕ(A)ϕ(⟨x, x⟩A)ϕ(A∗) ⩽
∑
i∈I

ϕ
(
⟨Λix,Λix⟩A

)
⩽ ϕ(B)ϕ(⟨x, x⟩A)ϕ(B∗).

By the relation betwen θ and ϕ, we get

ϕ(A)⟨y, y⟩Bϕ(A)∗ ⩽
∑
i∈I

⟨Λiy,Λiy⟩B ⩽ ϕ(B)⟨y, y⟩Bϕ(B)∗.

On the other hand, we have

ϕ(⟨SAx, y⟩A) = ϕ(⟨
∑
i∈I

Λ∗
iΛix, y⟩A) =

∑
i∈I

ϕ(⟨Λix,Λiy⟩A)

=
∑
i∈I

⟨Λiθx,Λiθy⟩B = ⟨
∑
i∈I

Λ∗
iΛiθx, θy⟩B = ⟨SBθx, θy⟩B.

This completes the proof. ■

Theorem 5.14 Let {Λi ∈ End∗A(H, Vi) : i ∈ I} be a ∗-g-frame for H with lower and
upper bounds A and B, respectively. Let θ ∈ End∗A(H) be injective and have a closed
range. Then {θΛi}i∈I is a ∗-g-frame for H.

Proof. We have A⟨x, x⟩A∗ ⩽
∑

i∈I⟨Λix,Λix⟩ ⩽ B⟨x, x⟩B∗ for all x ∈ H. Then∑
i∈I

⟨θΛix, θΛix⟩ ⩽ ||θ||2B⟨x, x⟩B∗ ⩽ (||θ||B)⟨x, x⟩(||θ||B)∗. (12)

By Lemma 2.8, we have ||(θ∗θ)−1||−1⟨Λix,Λix⟩ ⩽ ⟨θΛix, θΛix⟩ for each x ∈ H and
||θ−1||−2 ⩽ ||(θ∗θ)−1||−1. Thus,

||θ−1||−1A⟨x, x⟩(||θ−1||−1A)∗ ⩽
∑
i∈I

⟨θΛix, θΛix⟩. (13)
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From (12) and (13), we have

||θ−1||−1A⟨x, x⟩(||θ−1||−1A)∗ ⩽
∑
i∈I

⟨θΛix, θΛix⟩ ⩽ ||θ||2B⟨x, x⟩B∗ ⩽ (||θ||B)⟨x, x⟩(||θ||B)∗.

for each x ∈ H. Hence, {θΛi}i∈I is a ∗-g-frame for H. ■

6. K-Frames

Definition 6.1 [17] Let K ∈ End∗A(H). A family {xi}i∈I of elements of H is a K-frame
for H, if there exist two positive constants A and B such that for all x ∈ H,

A⟨K∗x,K∗x⟩A ⩽
∑
i∈I

⟨x, xi⟩A⟨xi, x⟩A ⩽ B⟨x, x⟩A. (14)

The numbers A and B are called lower and upper bounds of the K-frame, respectively.

The following theorem give a condition for getting a frame from a K-frame.

Theorem 6.2 Let {xi}i∈I be a K-frame for H with bounds A,B > 0. If the operator
K is surjective, then {xi}i∈I is a frame for H.

Proposition 6.3 A Bessel sequence {xi}i∈I of H is a K-frame with bounds A,B > 0 if
and only if S ⩾ AKK∗, where S is the frame operator for {xi}i∈I .

7. K-g-Frames

Definition 7.1 [24] Let K ∈ End∗A(H) and Λi ∈ End∗A(H, Vi) for all i ∈ I, then {Λi}i∈I
is said to be a K-g-frame for H with respect to {Vi}i∈I if there exist two constants C,D >
0 such that C⟨K∗x,K∗x⟩A ⩽

∑
i∈I⟨Λix,Λix⟩A ⩽ D⟨x, x⟩A for all x ∈ H. The numbers

C and D are called K-g-frame bounds. Particularly, if C⟨K∗x,K∗x⟩ =
∑

i∈I⟨Λix,Λix⟩
for all x ∈ H, the K-g-frame is C-tight.

Example 7.2 Let l∞ be the set of all bounded complex-valued sequences. For any u =
{uj}j∈N, v = {vj}j∈N ∈ l∞, we define uv = {ujvj}j∈N, u∗ = {ūj}j∈N, ∥u∥ = supj∈N |uj |.
Then A = {l∞, ∥.∥} is a C∗-algebra. Let H = C0 be the set of all sequences converging
to zero. For any u, v ∈ H, we define ⟨u, v⟩ = uv∗ = {uj ūj}j∈N. Then H is a Hilbert
A-module. Now, let {ej}j∈N be the standard orthonormal basis of H. For each j ∈ N
define the adjointable operator Λj : H → span{ej} by Λjx = ⟨x, ej⟩ej , then we have∑

j∈N⟨Λjx,Λjx⟩ = ⟨x, x⟩ for every x ∈ H. Fix N ∈ N∗ and define

K : H → H, Kej =

{
jej if j ⩽ N ,

0 if j > N .

It is easy to check that K is adjointable and satisfies

K∗ej =

{
jej if j ⩽ N ,

0 if j > N .
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For any x ∈ H, we have
1

N2
⟨K∗x,K∗x⟩ ⩽

∑
j∈N⟨Λjx,Λjx⟩ = ⟨x, x⟩. This shows that

{Λj}j∈N is a K-g-frame with bounds
1

N2
and 1.

Remark 3 If K ∈ End∗A(H) is a surjective operator, then every K-g-frame for H with
respect to {Vi}i∈I is a g-frame.

Theorem 7.3 Let {Λi}i∈I be a K − g frame in Hilbert A module H and T ∈ End∗A(H)
such that R(T ) ⊂ R(K). Then {Λi}i∈I is a T − g-frame in Hilbert A-module H.

Proof. Suppose that C is a lower frame bound of {Λi}i∈I . There exists α > 0 such that
TT ∗ ⩽ α2KK∗. Now, for each x ∈ H, we have ⟨TT ∗x, x⟩A ⩽ α2⟨KK∗x, x⟩A. So,

C

α2
⟨T ∗x, T ∗x⟩A ⩽ C⟨K∗x,K∗x⟩A ⩽

∑
i∈I

⟨Λix,Λix⟩A ⩽ D⟨x, x⟩A.

■

Theorem 7.4 Let {Λi}i∈I be a K − g- frame in Hilbert A-module H. Assume that K
has a closed range and T ∈ End∗A(H) such that R(T ∗) ⊂ R(K). Then {ΛiT

∗}i∈I is a
K − g- frame for R(T ) if and only if there exists δ > 0 such that for each x ∈ R(T ),
∥T ∗x∥⩾ δ∥K∗x∥.

Proof. Suppose that {ΛiT
∗}i∈I is aK-g-frame in HilbertAmoduleH with a lower frame

bound E > 0. If F is an upper frame bound of {Λi}i∈I , then we have E⟨K∗x,K∗x⟩A ⩽∑
i∈I⟨ΛiT

∗x,ΛiT
∗x⟩A for each x ∈ R(T ). Thus,

E⟨K∗x,K∗x⟩A ⩽
∑
i∈I

⟨ΛiT
∗x,ΛiT

∗x⟩A ⩽ F ⟨T ∗x, T ∗x⟩A

and

E∥⟨K∗x,K∗x⟩A∥⩽ ∥
∑
i∈I

⟨ΛiT
∗x,ΛiT

∗x⟩A∥⩽ F∥⟨T ∗x, T ∗x⟩A∥.

Hence, E∥K∗x∥2⩽ F∥T ∗x∥2 and
√

E
F ∥K

∗x∥⩽ ∥T ∗x∥ for the opposite implication. For

each x ∈ H, we have ∥T ∗x∥= ∥(K†)∗K∗T ∗x∥⩽ ∥(K†)∥∥K∗U∗x∥. Therefore, if E is a
lower frame bound of {Λi}i∈I , we have

Eδ2∥K†∥−2⟨K∗x,K∗x⟩ ⩽ E∥K†∥−2⟨T ∗x, T ∗x⟩ ⩽ E∥K∗T ∗x∥2⩽
∑
i∈I

⟨ΛiT
∗x,ΛiT

∗x⟩A.

For the upper bound, it is clear that
∑

i∈I⟨ΛiT
∗x,ΛiT

∗x⟩A ⩽ F ⟨T ∗x, T ∗x⟩A ⩽
F∥T∥2⟨x, x⟩A. So, (ΛiT

∗)i∈I is a K−g-frame in Hilbert A-module H with frame bounds
Eδ2∥K†∥−2 and F∥T∥2 . ■

Theorem 7.5 Let {Λi}i∈I be a K−g-frame in Hilbert A-module H and the operator K
has a dense rang. Assume that T ∈ End∗A(H) has a closed range and T and T ∗ commute.
If {ΛiT

∗}i∈I and {ΛiT}i∈I are K−g-frame in Hilbert A- module H, then T is invertible.

Proof. Suppose that {ΛiT
∗}i∈I is a K − g-frame in Hilbert A module H with a lower

frame bound A1 and B1. Then A1⟨K∗x,K∗x⟩A ⩽
∑

i∈I⟨ΛiT
∗x,ΛiT

∗x⟩A ⩽ B1⟨x, x⟩A for
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each x ∈ H. Hence,

∥A1⟨K∗x,K∗x⟩A∥⩽ ∥
∑
i∈I

⟨ΛiT
∗x,ΛiT

∗x⟩A∥⩽ ∥B1⟨x, x⟩A∥ (15)

and A1∥K∗x∥2⩽ ∥
∑

i∈I⟨ΛiT
∗x,ΛiT

∗x⟩∥⩽ B1∥x∥2. Since K has a dense range, K∗ is in-

jective. Moreover, R(T ) = (kerT ∗)⊥ = H and so T is surjective. Suppose that {ΛiT
∗}i∈I

is a K− g-frame in Hilbert A module H with a lower frame bound A2 and B2. Then, for
each x ∈ H, A2⟨K∗x,K∗x⟩A ⩽

∑
i∈I⟨ΛiT

∗x,ΛiT
∗x⟩A ⩽ B2⟨x, x⟩A, which implies that

∥A2⟨K∗x,K∗x⟩A∥⩽ ∥
∑
i∈I

⟨ΛiT
∗x,ΛiT

∗x⟩A∥⩽ ∥B2⟨x, x⟩A∥

and A2∥K∗x∥2⩽ ∥
∑

i∈I⟨ΛiT
∗x,ΛiT

∗x⟩A∥⩽ B2∥x∥2 and since kerU ⊆ kerK∗, T is in-
jective and hence, T is an invertible operator. ■

Theorem 7.6 Let {Λi}i∈I be a K−g-frame in Hilbert A- module H and T ∈ End∗A(H)
be a co-isometry (i.e. TT ∗ = IdH) such that TK = KT . Then {ΛiT

∗}i∈I is a K−g-frame
in Hilbert A-module H.

Proof. Suppose {Λi}i∈I be a K − g- frame in Hilbert A-module H with a lower frame
bound A1 and B1. For each x ∈ H, we have

∑
i∈I⟨ΛiT

∗x,ΛiT
∗x⟩A ⩽ B1⟨T ∗x, T ∗x⟩A.

Hence,
∑

i∈I⟨ΛiT
∗x,ΛiT

∗x⟩A ⩽ B1∥T ∗∥2⟨x, x⟩A. So, {ΛiT
∗}i∈I is a g-Bessel sequence.

For the lower bound, we can write∑
i∈I

⟨ΛiT
∗x,ΛiT

∗x⟩A ⩾ A1⟨K∗T ∗x,K∗T ∗x⟩A

= A1⟨(TK)∗x, (TK)∗x⟩A
= A1⟨(KT )∗x, (KT )∗x⟩A
= A1⟨T ∗K∗x, T ∗K∗x⟩A
= A1⟨TT ∗K∗x,K∗x⟩A
= A1⟨K∗x,K∗x⟩A.

■

Theorem 7.7 Let Λ := {Λi ∈ End∗A(H,Vi)}i∈I and ⊖ := {⊖i ∈ End∗A(H,Vi)}i∈I be
towK−g- Bessel sequences in Hilbert A- moduleH with bounds BΛ and B⊖ respectively.
Suppose that TΛ and T⊖ are their synthesis operators such that T⊖,T

∗
Λ = K∗. Then Λ

and ⊖ are K and K∗ − g-frames, respectively.

Proof. For each x ∈ H, we have

∥K∗x∥2 = ∥⟨K∗x,K∗x⟩A∥= ∥⟨T⊖T ∗
Λx,K

∗x⟩A∥⩽ ∥T ∗
Λx∥∥T ∗

⊖,K
∗x∥

⩽ (
∑
i∈I

⟨Λix,Λix⟩A)1/2B⊖∥⟨K∗x,K∗x⟩A∥.

So, ∥⟨K∗x,K∗x⟩A∥⩽
∑

i∈I⟨Λix,Λix⟩AB⊖. ■
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8. ∗-K-Frames

Definition 8.1 [6] Let K ∈ End∗A(H). A family {xi}i∈I of elements of H is a ∗-K-frame
for H if there exist strictly nonzero elements A and B in A such that for all x ∈ H,

A⟨K∗x,K∗x⟩AA∗ ⩽
∑
i∈I

⟨x, xi⟩A⟨xi, x⟩A ⩽ B⟨x, x⟩AB∗.

The elements A and B are called lower and upper bound of the ∗-K-frame, respectively.

Remark 4 Every ∗-frame is a ∗-K-frame.

9. ∗-K-g-Frames in Hilbert A-modules

Definition 9.1 [21] Let K ∈ End∗A(H). We call a sequence {Λi ∈ End∗A(H,Hi) : i ∈
I} a ∗-K-g-frame in Hilbert A-module H with respect to {Hi : i ∈ I} if there exist
strictly nonzero elements A, B in A such that A⟨K∗x,K∗x⟩AA∗ ⩽

∑
i∈I⟨Λix,Λix⟩A ⩽

B⟨x, x⟩AB∗ for all x ∈ H. The numbers A and B are called lower and upper bounds of
the ∗-K-g-frame, respectively. If A⟨K∗x,K∗x⟩A∗ =

∑
i∈I⟨Λix,Λix⟩ for all x ∈ H. The

∗-K-g-frame is A-tight.

Remark 5 [21]

(1) Every ∗-g-frame for H with respect to {Hi : i ∈ I} is a ∗-K-g-frame, for any
K ∈ End∗A(H): K ̸= 0.

(2) If K ∈ End∗A(H) is a surjective operator, then every ∗-K-g-frame for H with
respect to {Hi : i ∈ I} is a ∗-g-frame.

Example 9.2 [21] Let H be a finitely or countably generated Hilbert A-module. Let
K ∈ End∗A(H): K ̸= 0. Let A be a Hilbert A-module over itself with the inner product
⟨a, b⟩ = ab∗. Let {xi}i∈I be a ∗-frame for H with bounds A and B, respectively. For
each i ∈ I, we define Λi : H → A by Λix = ⟨x, xi⟩ for all x ∈ H. Λi is adjointable and
Λ∗
i a = axi for each a ∈ A, and we have A⟨x, x⟩A∗ ⩽

∑
i∈I⟨x, xi⟩⟨xi, x⟩ ⩽ B⟨x, x⟩B∗ for

all x ∈ H or ⟨K∗x,K∗x⟩ ⩽ ∥K∥2⟨x, x⟩ for all x ∈ H. Then

∥K∥−1A⟨K∗x,K∗x⟩(∥K∥−1A)∗ ⩽
∑
i∈I

⟨Λix,Λix⟩ ⩽ B⟨x, x⟩B∗, ∀x ∈ H.

So {Λi}i∈I is a ∗-K-g-frame for H with bounds ∥K∥−1A and B, respectively.

Let {Λi}i∈I be a ∗-K-g-frame in H with respect to {Hi : i ∈ I}. Define an operator
T : H → ⊕i∈IHi by Tx = {Λix}i,∀x ∈ H, then T is called the analysis operator.
So it’s adjoint operator is T ∗ : ⊕i∈IHi → H given by T ∗({xi}i) =

∑
i∈I Λ

∗
ixi for all

{xi}i ∈ ⊕i∈IHi. The operator T ∗ is called the synthesis operator. By composing T and
T ∗, the frame operator S : H → H is given by Sx = T ∗Tx =

∑
i∈I Λ

∗
iΛix. Note that S

need not be invertible in general. But under some condition S will be invertible.

Theorem 9.3 [21] Let K ∈ End∗A(H) be a surjective operator. If {Λi}i∈I is a ∗-K-g-
frame in H with respect to {Hi : i ∈ I}, then the frame operator S is positive, invertible
and adjointable. Moreover, we have the reconstruction formula x =

∑
i∈I Λ

∗
iΛiS

−1x for
all x ∈ H.

Proof. Result of (2) in Remark 5 and Theorem 3.8 in [1]. ■
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Let K ∈ End∗A(H). Now, using a ∗-g-frame, we constructed a ∗-K-g-frame.

Theorem 9.4 [21] Let K ∈ End∗A(H) and {Λi}i∈I be a ∗-g-frame in H with respect
to {Hi : i ∈ I} with bounds A and B. Then {ΛiK}i∈I is a ∗-K∗-g-frame in H with
respect to {Hi : i ∈ I} with bounds A and ∥K∥B. The frame operator of {ΛiK}i∈I is
S

′
= K∗SK, where S is the frame operator of {Λi}i∈I .

Proof. Form A⟨x, x⟩AA∗ ⩽
∑

i∈I⟨Λix,Λix⟩A ⩽ B⟨x, x⟩AB∗ for all x ∈ H, we get

A⟨Kx,Kx⟩AA∗ ⩽
∑
i∈I

⟨ΛiKx,ΛiKx⟩A ⩽ B⟨Kx,Kx⟩AB∗ ⩽ ∥K∥B⟨x, x⟩A(∥K∥B)∗.

Then {ΛiK}i∈I is a ∗-K∗-g-frame in H with respect to {Hi : i ∈ I} with bounds A and
∥K∥B. By definition of S, we have SKx =

∑
i∈I Λ

∗
iΛiKx. Then

K∗SKx = K∗
∑
i∈I

Λ∗
iΛiKx =

∑
i∈I

K∗Λ∗
iΛiKx.

Hence, S
′
= K∗SK. ■

Corollary 9.5 [21] Let K ∈ End∗A(H) and {Λi}i∈I be a ∗-g-frame. Then {ΛiS
−1K}i∈I

is a ∗-K∗-g-frame, where S is the frame operator of {Λi}i∈I .

Proof. Result of the Theorem 9.4 for the ∗-g-frame {ΛiS
−1}i∈I . ■

Remark 6 Note that

• If A,B ∈ C and K = I in Definition 9.1 we find the definition of the g-frame.

• If A,B ∈ C in Definition 9.1 we find the definition of the K-g-frame.

• For K = I in Definition 9.1 we find the definition of the ∗-g-frame.

10. Operator frame

Definition 10.1 [22] A family of adjointable operators {Ti}i∈J on a Hilbert A-module
H over a unital C∗-algebra is said to be an operator frame for End∗A(H) if there exists
positive constants A,B > 0 such that

A⟨x, x⟩ ⩽
∑
i∈J

⟨Tix, Tix⟩ ⩽ B⟨x, x⟩, ∀x ∈ H. (16)

The numbers A and B are called lower and upper bounds of the operator frame, respec-
tively. If A = B = λ, the operator frame is λ-tight. If A = B = 1, it is called a normalized
tight operator frame or a Parseval operator frame. If only upper inequality of (16) hold,
then {Ti}i∈J is called an operator Bessel sequence for End∗A(H). If the sum in the middle
of (16) is convergent in norm, the operator frame is called standard.

Throughout the paper, series like (16) are assumed to be convergent in the norm sense.

Example 10.2 [22] Let A be a Hilbert C∗-module over itself with the inner product
⟨a, b⟩ = ab∗ and {xi}i∈I be a frame for A with bounds A and B, respectively. For each
i ∈ I, we define Ti : A → A by Tix = ⟨x, xi⟩ for all x ∈ A. Ti is adjointable and T ∗

i a = axi
for each a ∈ A, and we have A⟨x, x⟩ ⩽

∑
i∈I⟨x, xi⟩⟨xi, x⟩ ⩽ B⟨x, x⟩ for all x ∈ A. Thus,
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A⟨x, x⟩ ⩽
∑

i∈I⟨Tix, Tix⟩ ⩽ B⟨x, x⟩, ∀x ∈ A. So, {Ti}i∈I is an operator frame in A with
bounds A and B, respectively.

Example 10.3 [22] Let H and K be separable Hilbert spaces and let B(H,K) be the
set of all bounded linear operators from H into K. B(H,K) is a Hilbert B(K)-module
with a B(K)-valued inner product ⟨S, T ⟩ = ST ∗ for all S, T ∈ B(H,K), and with a
linear operation of B(K) on B(H,K) by composition of operators. Let J = N and fix
(ai)i∈N ∈ l2(C). Define: Ti(X) = aiX for all X ∈ B(H,K) and i ∈ N. We have for all
X ∈ B(H,K) that

∑
i∈N⟨Tix, Tix⟩ =

∑
i∈N |ai|2⟨X,X⟩, and {Ti}i∈N is

∑
i∈N |ai|2-tight

operator frame.

Example 10.4 [22] Let {Wi}i∈J be a frame of submodules with respect to {vi}i∈J for
H. Put Ti = viπWi

,∀i ∈ J, then we get a sequence of operators {Ti}i∈J. Then there exist
constants A,B > 0 such that A⟨x, x⟩ ⩽

∑
i∈J v

2
i ⟨πWi

x, πWi
x⟩ ⩽ B⟨x, x⟩ for all x ∈ H. So,

we have A⟨x, x⟩ ⩽
∑

i∈J⟨Tix, Tix⟩ ⩽ B⟨x, x⟩ for all x ∈ H. Thus, the sequence {Ti}i∈J
becomes an operator frame for H.

In this example, a frame of submodules can be viewed as a special case of operator
frames.

Theorem 10.5 Let {Ti}i∈I be an operator frame for End∗A(H) with bounds ν and δ. If
{Ri}i∈I ⊂ End∗A(H) is an operator Bessel family with bound ξ < ν, then {Ti ∓Ri}i∈I is
an operator frame for End∗A(H).

Proof. We just proof the case that {Tw + Rw}w∈Ω is an operator frame for End∗A(H).
On one hand, for each x ∈ H, we have

∥{(Ti +Ri)f}i∈I∥ = ∥
∑
i∈I

⟨(Ti +Ri)f, (Ti +Ri)f⟩A∥
1

2

⩽ ∥{Tif}i∈I∥+ ∥{Rif}i∈I∥

= ∥
∑
i∈I

⟨Tif, Tif⟩A∥
1

2 + ∥
∑
i∈I

⟨Rif,Rif⟩A∥
1

2

⩽
√
δ∥f∥+

√
ξ∥f∥.

Hence,

∥
∑
i∈I

⟨(Ti +Ri)f, (Ti +Ri)f⟩A∥
1

2 ⩽ (
√
δ +

√
ξ)∥f∥. (17)

One the other hand, we have

∥{(Ti +Ri)f}i∈I∥ = ∥
∑
i∈I

⟨(Ti +Ri)f, (Ti +Ri)f⟩A∥
1

2

⩾ ∥{Tif}i∈I∥ − ∥{Rif}i∈I∥

= ∥
∑
i∈I

⟨Tif, Tif⟩A∥
1

2 − ∥
∑
i∈I

⟨Rif,Rif⟩A∥
1

2

⩾
√
ν∥f∥ −

√
ξ∥f∥.
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Then

∥
∑
i∈I

⟨(Ti +Ri)f, (Ti +Ri)f⟩A∥
1

2 ⩾ (
√
ν −

√
ξ)∥f∥. (18)

From (17) and (18), we get

(
√
ν −

√
ξ)2∥f∥2 ⩽ ∥

∑
i∈I

⟨(Ti +Ri)f, (Ti +Ri)f⟩A∥ ⩽ (
√
δ +

√
ξ)2∥f∥2.

Therefore, {Ti +Ri}i∈I is an operator frame for End∗A(H). ■

Theorem 10.6 Let {Ti}i∈I be an operator frame for End∗A(H) with bounds ν and δ
and let {Ri}i∈I ⊂ End∗A(H). The following statements are equivalent:

(i) {Ri}i∈I is an operator frame for End∗A(H).
(ii) There exists a constant ξ > 0 such that for all x ∈ H,

∥
∑
i∈I

⟨(Ti −Ri)f, (Ti −Ri)f⟩A∥ ⩽ ξ.min(∥
∑
i∈I

⟨Tif, Tif⟩A∥, ∥
∑
i∈I

⟨Rif,Rif⟩A∥). (19)

Proof. Suppose that {Ri}i∈I is an operator frame for End∗A(H) with bound η and ρ.
Then for all f ∈ H we have

∥{(Ti −Ri)f}i∈I∥ = ∥
∑
i∈I

⟨(Ti −Ri)f, (Ti −Ri)f⟩A∥
1

2 ⩽ ∥{Tif}i∈I∥+ ∥{Rif}i∈I∥

= ∥⟨Tif, Tif⟩A∥
1

2 + ∥
∑
i∈I

⟨Rif,Rif⟩A∥
1

2 ⩽ ∥
∑
i∈I

⟨Tif, Tif⟩A∥
1

2 +
√
ρ∥f∥

⩽ ∥
∑
i∈I

⟨Tif, Tif⟩A∥
1

2 +

√
ρ

ν
∥
∑
i∈I

⟨Tif, Tif⟩A∥
1

2

= (1 +

√
ρ

ν
)∥
∑
i∈I

⟨Tif, Tif⟩A∥
1

2 .

In the same way, we have

∥
∑
i∈I

⟨(Ti −Ri)f, (Ti −Ri)f⟩A∥
1

2 ⩽
(
1 +

√
δ

η

)
∥
∑
i∈I

⟨Rif,Rif⟩A∥
1

2 .

For (19), we take ξ = min(1 +
√

δ
η , 1 +

√
ρ
ν ). Now, we assume that (19) holds. For each

f ∈ H, we have from (19) that ∥
∑

i∈I⟨(Ti−Ri)f, (Ti−Ri)f⟩A∥ ⩽ ξ∥
∑

i∈I⟨Rif,Rif⟩A∥.
Then

∥
∑
i∈I

⟨Tif, Tif⟩A∥
1

2 ⩽
√

ξ∥
∑
i∈I

⟨Rif,Rif⟩A∥
1

2 + ∥
∑
i∈I

⟨Rif,Rif⟩A∥
1

2 .



24 M. Rossafi et al. / J. Linear. Topological. Algebra. 12(01) (2023) 1-32.

Hence,

√
ν∥f∥ ⩽ ∥

∑
i∈I

⟨Tif, Tif⟩A∥
1

2 ⩽ (1 +
√

ξ)∥
∑
i∈I

⟨Rif,Rif⟩A∥
1

2 . (20)

Also, we have

∥{Rif}i∈I∥ = ∥
∑
i∈I

⟨Rif,Rif⟩A∥
1

2

= ∥{(Rif − Tif) + Tif}i∈I∥

⩽ ∥{(Ti −Ri)f}i∈I∥+ ∥{Tif}i∈I∥

= ∥
∑
i∈I

⟨(Ti −Ri)f, (Ti −Ri)f⟩A∥
1

2 + ∥
∑
i∈I

⟨Tif, Tif⟩A∥
1

2 .

From (19), we have ∥
∑

i∈I⟨(Ti − Ri)f, (Ti − Ri)f⟩A∥ ⩽ ξ∥
∑

i∈I⟨Tif, Tif⟩A∥. Then

∥
∑

i∈I⟨Rif,Rif⟩A∥
1

2 ⩽ (1 +
√
ξ)∥
∑

i∈I⟨Tif, Tif⟩A∥
1

2 . So,

∥
∑
i∈I

⟨Rif,Rif⟩A∥
1

2 ⩽ (1 +
√

ξ)
√
δ∥f∥. (21)

From (20) and (21), we get ν
(1+

√
ξ)2

∥f∥2 ⩽ ∥
∑

i∈I⟨Rif,Rif⟩A∥ ⩽ δ(1+
√
ξ)2∥f∥2. There-

fore, {Ri}i∈I is an operator frame for End∗A(H). ■

Theorem 10.7 Let {Tk,i}i∈I ⊂ End∗A(H) be an operator frames with bounds Ak and
Bk for k = 1, 2, ..., n and {Rk,i}i∈I ⊂ End∗A(H) and L : l2(H) −→ l2(H) be a bounded
linear operator such that L({

∑n
k=1Rk,ix}i∈I) = {Tp,ix}i∈I for some p ∈ {1, 2, .., n}. If

there exists a constant λ > 0 such that

∥
∑
i∈I

⟨(Tk,i −Rk,i)x, (Tk,i −Rk,i)x⟩A∥ ⩽ λ∥
∑
i∈I

⟨Tk,ix, Tk,ix⟩A∥

for each x ∈ H and k = 1, .., n, then {
∑n

k=1Rk,i}i∈I is an operator frame for End∗A(H).

Proof. For all x ∈ H, we have

∥{
n∑

k=1

Rk,ix}i∈I∥ ⩽
n∑

k=1

∥{Rk,ix}i∈I∥ ⩽
n∑

k=1

(∥{Tk,i −Rk,ix}i∈I∥+ ∥{Tk,ix}i∈I∥)

⩽ (1 +
√
λ)∥

n∑
k=1

∥{Tk,ix}i∈I∥ ⩽ (1 +
√
λ)(

n∑
k=1

√
Bk)∥⟨x, x⟩A∥

1

2 .

Since we have ∥L({
∑n

k=1Rk,ix}i∈I)∥ = ∥{Tp,ix}i∈I∥ for any x ∈ H, then

√
Ap∥⟨x, x⟩A∥

1

2 ⩽ ∥{Tp,ix}i∈I∥ = ∥L({
n∑

k=1

Rk,ix}i∈I)∥ ⩽ ∥L∥∥{
n∑

k=1

Rk,ix}i∈I∥.
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Hence,

√
Ap

∥L∥ ∥⟨x, x⟩A∥
1

2 ⩽ ∥{
∑n

k=1Rk,ix}i∈I∥ for all x ∈ H. Therefore,

√
Ap

∥L∥
∥⟨x, x⟩A∥

1

2 ⩽ ∥{
n∑

k=1

Rk,i}i∈I∥ ⩽ (1 +
√
λ)(

n∑
k=1

√
Bk)∥⟨x, x⟩A∥

1

2 .

This gives that {
∑n

k=1Rk,i}i∈I is an operator frame for End∗A(H). ■

11. K-operator frame

Definition 11.1 Let K ∈ End∗A(H). A family of adjointable operators {Ti}i∈J on a
Hilbert A-module H over a unital C∗-algebra is said to be a K-operator frame for
End∗A(H) if there exists positive constants A,B > 0 such that

A⟨K∗x,K∗x⟩ ⩽
∑
i∈J

⟨Tix, Tix⟩ ⩽ B⟨x, x⟩, ∀x ∈ H. (22)

The numbers A and B are called lower and upper bound of the K-operator frame,
respectively. If A⟨K∗x,K∗x⟩ =

∑
i∈J⟨Tix, Tix⟩, theK-operator frame is A-tight. If A = 1,

it is called a normalized tight K-operator frame or a Parseval K-operator frame.

Example 11.2 Let l∞ be the set of all bounded complex-valued sequences. For any
u = {uj}j∈N, v = {vj}j∈N ∈ l∞, we define uv = {ujvj}j∈N, u∗ = {ūj}j∈N and ∥u∥ =
supj∈N |uj |. Then A = {l∞, ∥.∥} is a C∗-algebra. Let H = C0 be the set of all sequences
converging to zero. For any u, v ∈ H, we define ⟨u, v⟩ = uv∗ = {uj ūj}j∈N. Then H is a
Hilbert A-module. Now, let {ej}j∈N be the standard orthonormal basis of H. For each
j ∈ N, define the adjointable operator Tj : H → H by Tjx = ⟨x, ej⟩ej . Then for every
x ∈ H, we have

∑
j∈N⟨Tjx, Tjx⟩ = ⟨x, x⟩. Fix N ∈ N∗ and define

K : H → H, Kej =

{
jej if j ⩽ N ,

0 if j > N .

It is easy to check that K is adjointable and satisfies

K∗ej =

{
jej if j ⩽ N ,

0 if j > N .

For any x ∈ H, we have
1

N2
⟨K∗x,K∗x⟩ ⩽

∑
j∈N⟨Tjx, Tjx⟩ = ⟨x, x⟩. This shows that

{Tj}j∈N is a K-operator frame with bounds
1

N2
, 1.

One may ask for the class of operators K which can guarantee the existence of K-
operator frame for End∗A(H). The following remark and proposition answer this query.

Remark 7 Every operator frame is a K-operator frame for any K ∈ End∗A(H) where
K ̸= 0. Indeed, for any K ∈ End∗A(H), the inequality ⟨K∗x,K∗x⟩ ⩽ ∥K∥2⟨x, x⟩ for all
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x ∈ H holds. Now, if {Ti}i∈J is an operator frame with bounds A and B, then

A∥K∥−2⟨K∗x,K∗x⟩ ⩽ A⟨x, x⟩ ⩽
∑
i∈J

⟨Tix, Tix⟩ ⩽ B⟨x, x⟩, ∀x ∈ H.

Therefore, {Ti}i∈J is a K-operator frame with bounds A∥K∥−2 and B.

12. K-operator frame in tensor products of Hilbert C∗-modules

Suppose that A and B are C∗-algebras and take A⊗B as the completion of A⊗alg B
with the spatial norm. A⊗B is the spatial tensor product of A and B. Also suppose that
H is a Hilbert A-module and K is a Hilbert B-module. We want to define H ⊗ K as a
Hilbert (A⊗ B)-module. Start by forming the algebraic tensor product H⊗alg K of the
vector spaces H, K (over C). This is a left module over (A ⊗alg B) (the module action
being given by (a ⊗ b)(x ⊗ y) = ax ⊗ by, where a ∈ A, b ∈ B, x ∈ H and y ∈ K). For
x1, x2 ∈ H and y1, y2 ∈ K, we define

⟨x1 ⊗ y1, x2 ⊗ y2⟩A⊗B = ⟨x1, x2⟩A ⊗ ⟨y1, y2⟩B.

We also know that for z =
∑n

i=1 xi⊗yi ∈ H⊗algK, ⟨z, z⟩A⊗B =
∑

i,j⟨xi, xj⟩A⊗⟨yi, yj⟩B ⩾
0 and ⟨z, z⟩A⊗B = 0 iff z = 0. This extends by linearity to an (A⊗algB)-valued sesquilinear
form on H⊗alg K, which makes H⊗alg K into a semi-inner-product module over the pre-
C∗-algebra (A⊗alg B). The semi-inner-product on H⊗alg K is actually an inner product,
see [16]. Then H⊗alg K is an inner-product module over the pre-C∗-algebra (A⊗alg B),
and we can perform the double completion discussed in chapter 1 of [16] to conclude that
the completion H⊗K of H⊗algK is a Hilbert (A⊗B)-module. We call H⊗K the exterior
tensor product of H and K. With H ,K as above, we wish to investigate the adjointable
operators on H⊗K. Suppose that S ∈ End∗A(H) and T ∈ End∗B(K). We define a linear
operator S ⊗ T on H ⊗ K by S ⊗ T (x ⊗ y) = Sx ⊗ Ty(x ∈ H, y ∈ K). It is a routine
verification that is S∗ ⊗ T ∗ is the adjoint of S ⊗ T , so in fact S ⊗ T ∈ End∗A⊗B(H⊗K).
For more details see [7, 16]. We note that if a ∈ A+ and b ∈ B+ , then a⊗ b ∈ (A⊗B)+.
Plainly if a , b are Hermitian elements of A and a ⩾ b , then for every positive element
x of B, we have a⊗ x ⩾ b⊗ x.

Theorem 12.1 Let H and K be two Hilbert C∗-modules over unital C∗-algebras A and
B, respectively. Let {Λi}i∈I ⊂ End∗A(H) be a K1-operator frame for H and {Γj}j∈J ⊂
End∗B(K) be a K2-operator frame for K with frame operators SΛ and SΓ and operator
frame bounds (A,B) and (C,D) respectively. Then {Λi⊗Γj}i∈I,j∈J is a K1⊗K2-operator
frame for Hibert A⊗B-module H⊗K with frame operator SΛ⊗SΓ and lower and upper
operator frame bounds AC and BD, respectively.

Proof. By the definition of K1-operator frame {Λi}i∈I and K2-operator frame {Γj}j∈J ,
we have

A⟨K∗
1x,K

∗
1x⟩A ⩽

∑
i∈I

⟨Λix,Λix⟩A ⩽ B⟨x, x⟩A, ∀x ∈ H,

C⟨K∗
2y,K

∗
2y⟩B ⩽

∑
j∈J

⟨Γjy,Γjy⟩B ⩽ D⟨y, y⟩B, ∀y ∈ K.
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Therefore,

(A⟨K∗
1x,K

∗
1x⟩A)⊗ (C⟨K∗

2y,K
∗
2y⟩B) ⩽

∑
i∈I

⟨Λix,Λix⟩A ⊗
∑
j∈J

⟨Γjy,Γjy⟩B

⩽ (B⟨x, x⟩A)⊗ (D⟨y, y⟩B),∀x ∈ H, ∀y ∈ K.

Then

AC(⟨K∗
1x,K

∗
1x⟩A ⊗ ⟨K∗

2y,K
∗
2y⟩B) ⩽

∑
i∈I,j∈J

⟨Λix,Λix⟩A ⊗ ⟨Γjy,Γjy⟩B

⩽ BD(⟨x, x⟩A ⊗ ⟨y, y⟩B),∀x ∈ H, ∀y ∈ K.

Consequently, we have

AC⟨K∗
1x⊗K∗

2y,K
∗
1x⊗K∗

2y⟩A⊗B ⩽
∑

i∈I,j∈J
⟨Λix⊗ Γjy,Λix⊗ Γjy⟩A⊗B

⩽ BD⟨x⊗ y, x⊗ y⟩A⊗B, ∀x ∈ H,∀y ∈ K.

Then, for all x⊗ y in H⊗K, we have

AC⟨(K1 ⊗K2)
∗(x⊗ y), (K1 ⊗K2)

∗(x⊗ y)⟩A⊗B

⩽
∑

i∈I,j∈J
⟨(Λi ⊗ Γj)(x⊗ y), (Λi ⊗ Γj)(x⊗ y)⟩A⊗B ⩽ BD⟨x⊗ y, x⊗ y⟩A⊗B.

The last inequality is satisfied for every finite sum of elements in H⊗alg K and then it’s
satisfied for all z ∈ H ⊗K. It shows that {Λi⊗Γj}i∈I,j∈J is a K1⊗K2-operator frame for
Hilbert A⊗B-module H⊗K with lower and upper operator frame bounds AC and BD,
respectively. By the definition of frame operator SΛ and SΓ, we have SΛx =

∑
i∈I Λ

∗
iΛix

for all x ∈ H and SΓy =
∑

j∈J Γ
∗
jΓjy for all y ∈ K. Therefore, we have

(SΛ ⊗ SΓ)(x⊗ y) = SΛx⊗ SΓy

=
∑
i∈I

Λ∗
iΛix⊗

∑
j∈J

Γ∗
jΓjy

=
∑

i∈I,j∈J
Λ∗
iΛix⊗ Γ∗

jΓjy

=
∑

i∈I,j∈J
(Λ∗

i ⊗ Γ∗
j )(Λix⊗ Γjy)

=
∑

i∈I,j∈J
(Λ∗

i ⊗ Γ∗
j )(Λi ⊗ Γj)(x⊗ y)

=
∑

i∈I,j∈J
(Λi ⊗ Γj)

∗)(Λi ⊗ Γj)(x⊗ y).

Now, by the uniqueness of frame operator, the last expression is equal to SΛ⊗Γ(x ⊗ y).
Consequently, we have (SΛ ⊗ SΓ)(x ⊗ y) = SΛ⊗Γ(x ⊗ y). The last equality is satisfied
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for every finite sum of elements in H⊗alg K and then it’s satisfied for all z ∈ H ⊗K. It
shows that (SΛ ⊗ SΓ)(z) = SΛ⊗Γ(z). So, SΛ⊗Γ = SΛ ⊗ SΓ. ■

Theorem 12.2 Assume Q ∈ End∗A(H) is invertible and {Λi}i∈I ⊂ End∗A⊗B(H⊗K) is
a K-operator frame for H⊗K with lower and upper operator frame bounds A and B,
respectively and frame operator S. If K commute with Q ⊗ I, then {Λi(Q

∗ ⊗ I)}i∈I is
a K-operator frame for H⊗K with lower and upper operator frame bounds ∥Q∗−1∥−2A
and ∥Q∥2B , respectively and frame operator (Q⊗ I)S(Q∗ ⊗ I).

Proof. Since Q ∈ End∗A(H), Q⊗I ∈ End∗A⊗B(H⊗K) with inverse Q−1⊗I. It is obvious
that the adjoint of Q⊗ I is Q∗ ⊗ I. An easy calculation shows that for every elementary
tensor x⊗ y,

∥(Q⊗ I)(x⊗ y)∥2 = ∥Q(x)⊗ y∥2 = ∥Q(x)∥2∥y∥2 ⩽ ∥Q∥2∥x∥2∥y∥2 = ∥Q∥2∥x⊗ y∥2.

So Q⊗ I is bounded, and therefore it can be extended to H⊗K. Similarly, for Q∗ ⊗ I,
Q⊗ I is A⊗ B-linear, adjointable with adjoint Q∗ ⊗ I. Hence, for every z ∈ H ⊗K, we
have ∥Q∗−1∥−1.|z| ⩽ |(Q∗ ⊗ I)z| ⩽ ∥Q∥.|z|. By the definition of K-operator frames, we
have A⟨K∗z,K∗z⟩A⊗B ⩽

∑
i∈I⟨Λiz,Λiz⟩A⊗B ⩽ B⟨z, z⟩A⊗B. Then

A⟨K∗(Q∗ ⊗ I)z,K∗(Q∗ ⊗ I)z⟩A⊗B ⩽
∑
i∈I

⟨Λi(Q
∗ ⊗ I)z,Λi(Q

∗ ⊗ I)z⟩A⊗B

⩽ B⟨(Q∗ ⊗ I)z, (Q∗ ⊗ I)z⟩A⊗B

⩽ ∥Q∥2B⟨z, z⟩A⊗B

or

A⟨K∗(Q∗ ⊗ I)z,K∗(Q∗ ⊗ I)z⟩A⊗B = A⟨(Q∗ ⊗ I)K∗z, (Q∗ ⊗ I)K∗z⟩A⊗B

⩾ ∥Q∗−1∥−2A⟨K∗z,K∗z⟩A⊗B.

So, we have

∥Q∗−1∥−2A⟨K∗z,K∗z⟩A⊗B ⩽
∑
i∈I

⟨Λi(Q
∗ ⊗ I)z,Λi(Q

∗ ⊗ I)z⟩A⊗B ⩽ ∥Q∥2B⟨z, z⟩A⊗B.

Now,

(Q⊗ I)S(Q∗ ⊗ I) = (Q⊗ I)(
∑
i∈I

Λ∗
iΛi)(Q

∗ ⊗ I)

=
∑
i∈I

(Q⊗ I)Λ∗
iΛi(Q

∗ ⊗ I)

=
∑
i∈I

(Λi(Q
∗ ⊗ I))∗Λi(Q

∗ ⊗ I),

which completes the proof. ■

Theorem 12.3 Assume that Q ∈ End∗B(K) is invertible and {Λi}i∈I ⊂ End∗A⊗B(H⊗K)
is a K-operator frame for H⊗K with lower and upper operator frame bounds A and B
respectively and frame operator S. If K commute with I ⊗ Q, then {Λi(I ⊗ Q∗)}i∈I is
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a K-operator frame for H⊗K with lower and upper operator frame bounds ∥Q∗−1∥−2A
and ∥Q∥2B respectively and frame operator (I ⊗Q)S(I ⊗Q∗).

Proof. Similar to the proof of the previous theorem. ■

13. K-operator frame in Hilbert C∗-modules with different
C∗-algebras

Studying operator frame in Hilbert C∗-modules with different C∗-algebras is interesting
and important. In the following theorem we study this situation.

Theorem 13.1 Let (H,A, ⟨., .⟩A) and (H,B, ⟨., .⟩B) be two Hilbert C∗-modules and let
φ : A −→ B be a ∗-homomorphism and θ be a map on H such that ⟨θx, θy⟩B = φ(⟨x, y⟩A)
for all x, y ∈ H. Also, suppose that {Λi}i∈I ⊂ End∗A(H) is a K-operator frame for
(H,A, ⟨., .⟩A) with frame operator SA and lower and upper operator frame bounds A
and B, respectively. If θ is surjective, θK∗ = K∗θ, θΛi = Λiθ and θΛ∗

i = Λ∗
i θ for each i in

I, then {Λi}i∈I is a K-operator frame for (H,B, ⟨., .⟩B) with frame operator SB and lower
and upper operator frame bounds A and B, respectively and ⟨SBθx, θy⟩B = φ(⟨SAx, y⟩A).

Proof. Let y ∈ H then there exists x ∈ H such that θx = y (θ is surjective). By the
definition of K-operator frames, we have A⟨K∗x,K∗x⟩A ⩽

∑
i∈I⟨Λix,Λix⟩A ⩽ B⟨x, x⟩A

and φ(A⟨K∗x,K∗x⟩A) ⩽ φ(
∑

i∈I⟨Λix,Λix⟩A) ⩽ φ(B⟨x, x⟩A). By the definition of ∗-
homomorphism, we have Aφ(⟨K∗x,K∗x⟩A) ⩽

∑
i∈I φ(⟨Λix,Λix⟩A) ⩽ Bφ(⟨x, x⟩A).

By the relation betwen θ and φ, we get A⟨θK∗x, θK∗x⟩B ⩽
∑

i∈I⟨θΛix, θΛix⟩B ⩽
B⟨θx, θx⟩B. By the relation betwen θ, K∗ and Λi, we have

A⟨K∗θx,K∗θx⟩B ⩽
∑
i∈I

⟨Λiθx,Λiθx⟩B ⩽ B⟨θx, θx⟩B.

Then A⟨K∗y,K∗y⟩B ⩽
∑

i∈I⟨Λiy,Λiy⟩B ⩽ B⟨y, y⟩B for all y ∈ H. On the other hand,

φ(⟨SAx, y⟩A) = φ(⟨
∑
i∈I

Λ∗
iΛix, y⟩A) =

∑
i∈I

φ(⟨Λix,Λiy⟩A) =
∑
i∈I

⟨θΛix, θΛiy⟩B

=
∑
i∈I

⟨Λiθx,Λiθy⟩B = ⟨
∑
i∈I

Λ∗
iΛiθx, θy⟩B = ⟨SBθx, θy⟩B.

This completes the proof. ■

14. Duals of K-operator frame

In the following we define the Dual K-operator frame and we give some properties.

Definition 14.1 Let K ∈ End∗A(H) and {Λi ∈ End∗A(H), i ∈ I} be a K-operator frame
for the Hilbert A-module H. An operator Bessel sequences {Γi ∈ End∗A(H), i ∈ I} is
called a K-duals operator frame for {Λi}i∈I if Kf =

∑
i∈I Λ

∗
iΓif for all f ∈ H.

Example 14.2 Let K∈ EndA
∗(H) be a surjective operator and {Λi ∈ End∗A(H), i ∈ I}

be a K-operator frame for H with K-frame operator S, then S is invertible. For all
f ∈ H, we have Sf =

∑
i∈I Λ

∗
iΛif. So Kf =

∑
i∈I Λ

∗
iΛiS

−1Kf. Then the sequence
{ΛiS

−1K ∈ End∗A(H), i ∈ I} is a dual K-operator frame of {Λi ∈ End∗A(H), i ∈ I}
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Theorem 14.3 Let {Λi}i∈I and {Γj}j∈J are K-operator frame and L-operator frame

respectively inH and K with duals {Λ̃i}i∈I and {Γ̃j}j∈J respectively, then {Λ̃i⊗Γ̃j}i,j∈I,J
is a dual of {Λi ⊗ Γj}i,j∈I,J .

Proof. By definition, for all x ∈ H and y ∈ K, we have
∑

i∈I Λ
∗
i Λ̃ix = Kx and∑

j∈J Γ
∗
j Γ̃jy = Ly. Then

(K ⊗ L)(x⊗ y) = Kx⊗ Ly =
∑
i∈I

Λ∗
i Λ̃ix⊗

∑
j∈J

Γ∗
j Γ̃jy

and ∑
i∈I

Λ∗
i Λ̃ix⊗

∑
j∈J

Γ∗
j Γ̃jy =

∑
i,j∈I,J

Λ∗
i Λ̃ix⊗ Γ∗

j Γ̃jy

=
∑

i,j∈I,J
(Λ∗

i ⊗ Γ∗
j ).(Λ̃ix⊗ Γ̃jy)

=
∑

i,j∈I,J
(Λi ⊗ Γj)

∗.(Λ̃i ⊗ Γ̃j).(x⊗ y)

Thus, {Λ̃i ⊗ Γ̃j}i,j∈I,J is a dual of {Λi ⊗ Γj}i,j∈I,J . ■

Corollary 14.4 Let {Λi,j}0⩽i⩽n;j∈J be a family of Ki-operator frames such that 0 ⩽
i ⩽ n and {Λ̃i,j}0⩽i⩽n;j∈J their dual. Then {Λ̃0,j ⊗ Λ̃1,j ⊗ ...... ⊗ Λ̃n,j}j∈J is a dual of
{Λ0,j ⊗ Λ1,j ⊗ ......⊗ Λn,j}j∈J .

15. ∗-operator frame

Definition 15.1 [12] A family of adjointable operators {Ti}i∈I on a Hilbert A-module
H over a unital C∗-algebra is said to be a ∗-operator frame for End∗A(H), if there exists
two strictly nonzero elements A and B in A such that

A⟨x, x⟩A∗ ⩽
∑
i∈I

⟨Tix, Tix⟩ ⩽ B⟨x, x⟩B∗, ∀x ∈ H. (23)

The elements A and B are called lower and upper bounds of the ∗-operator frame,
respectively. If A = B = λ, the ∗-operator frame is λ-tight. If A = B = 1A, it is called a
normalized tight ∗-operator frame or a Parseval ∗-operator frame. If only upper inequality
of (23) hold, then {Ti}i∈i is called an ∗-operator Bessel sequence for End∗A(H).

We mentioned that the set of all of operator frames for End∗A(H) can be considered
as a subset of ∗-operator frame. To illustrate this, let {Tj}i∈I be an operator frame for
Hilbert A-module H with operator frame real bounds A and B. Note that for x ∈ H,

(
√
A)1A⟨x, x⟩A(

√
A)1A ⩽

∑
i∈I

⟨Tix, Tix⟩ ⩽ (
√
B)1A⟨x, x⟩A(

√
B)1A.

Therefore, every operator frame for End∗A(H) with real bounds A and B is a ∗-operator
frame for End∗A(H) with A-valued ∗-operator frame bounds (

√
A)1A and (

√
B)1B.
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Example 15.2 [12] Let A be a Hilbert C∗-module over itself with the inner product
⟨a, b⟩ = ab∗ and {xi}i∈I be a ∗-frame for A with bounds A and B, respectively. For
each i ∈ I, we define Ti : A → A by Tix = ⟨x, xi⟩ for all x ∈ A. Ti is adjointable and
T ∗
i a = axi for each a ∈ A, and we have A⟨x, x⟩A∗ ⩽

∑
i∈I⟨x, xi⟩⟨xi, x⟩ ⩽ B⟨x, x⟩B∗ for

all x ∈ A. Then A⟨x, x⟩A∗ ⩽
∑

i∈I⟨Tix, Tix⟩ ⩽ B⟨x, x⟩B∗ for all x ∈ A. So {Ti}i∈I is a
∗-operator frame in A with bounds A and B, respectively.

Example 15.3 [12] Let {Wi}i∈J be a ∗-frame of submodules with respect to {vi}i∈J for
H. Put Ti = viπWi

for all i ∈ J, then we get a sequence of operators {Ti}i∈J. Then there
exist A,B ∈ A such that A⟨x, x⟩A∗ ⩽

∑
i∈J v

2
i ⟨πWi

x, πWi
x⟩ ⩽ B⟨x, x⟩B∗ for all x ∈ H.

So, we have A⟨x, x⟩A∗ ⩽
∑

i∈J⟨Tix, Tix⟩ ⩽ B⟨x, x⟩B∗ for all x ∈ H. Thus, the sequence
{Ti}i∈J becomes a ∗-operator frame for H.

With this example a ∗-frame of submodules can be viewed as a special case of ∗-
operator frames.

Remark 8 The examples 3.3 and 3.4 in [1] are examples of ∗-operator frame.

16. ∗-K-operator frame

Now, we define the ∗-K-operator frame for End∗A(H).

Definition 16.1 [23] Let K ∈ End∗A(H). A family of adjointable operators {Ti}i∈I , on a
Hilbert A-module H over a unital C∗-algebra is said a ∗-K-operator frame for End∗A(H)
if there exists two nonzero elements A and B in A such that

A⟨K∗x,K∗x⟩A∗ ⩽
∑
i∈I

⟨Tix, Tix⟩ ⩽ B⟨x, x⟩B∗,∀x ∈ H. (24)

The elements A and B are called lower and upper bounds of the ∗-K-operator frame,
respectively. If A⟨K∗x,K∗x⟩AA∗ =

∑
i∈J⟨Tix, Tix⟩A, the ∗-K-operator frame is an A-

tight. If A = 1, it is called a normalized tight ∗-K-operator frame or a Parseval ∗-K-
operator frame.

Example 16.2 [23] Let l∞ be the set of all bounded complex-valued sequences. For
any u = {uj}j∈N, v = {vj}j∈N ∈ l∞, we define uv = {ujvj}j∈N, u∗ = {ūj}j∈N and
∥u∥ = supj∈N |uj |. Then A = {l∞, ∥.∥} is a C∗-algebra. Let H = C0 be the set of all null
sequences. For any u, v ∈ H, we define ⟨u, v⟩ = uv∗ = {uj ūj}j∈N. Then H is a Hilbert

A-module. Define fj = {f j
i }i∈N∗ by f j

i = 1
2 +

1
i if i = j and f j

i = 0 if i ̸= j for all j ∈ N∗.

Now, define the adjointable operator Tj : H → H by Tj{(xi)i} = (xif
j
i )i. Then, for every

x ∈ H, we have

∑
j∈N

⟨Tjx, Tjx⟩ = {1
2
+

1

i
}i∈N∗⟨x, x⟩{1

2
+

1

i
}i∈N∗ .

So, {Tj}j is a {1
2 + 1

i }i∈N∗-tight ∗-operator frame. Let K : H → H defined by Kx =
{xi

i }i∈N∗ . Then, for every x ∈ H, we have

⟨K∗x,K∗x⟩A ⩽
∑
j∈N

⟨Tjx, Tjx⟩ = {1
2
+

1

i
}i∈N∗⟨x, x⟩{1

2
+

1

i
}i∈N∗ .
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This shows that {Tj}j∈N is a ∗-K-operator frame with bounds 1, {1
2 + 1

i }i∈N∗ .

Remark 9

(1) Every ∗-operator frame for End∗A(H) is an ∗-K-operator frame for any K ∈
End∗A(H) where K ̸= 0.

(2) If K ∈ End∗A(H) is a surjective operator, then every ∗-K-operator frame for
End∗A(H) is an ∗-operator frame.
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