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Abstract. In this paper we consider the minimization of a positive semidefinite quadratic
form, having a singular corresponding matrix H. We state the dual formulation of the orig-
inal problem and treat both problems only using the vectors x ∈ N (H)⊥ instead of the
classical approach of convex optimization techniques such as the null space method. Given
this approach and based on the strong duality principle, we provide a closed formula for the
calculation of the Lagrange multipliers λ in the cases when (i) the constraint equation is
consistent and (ii) the constraint equation is inconsistent, using the general normal equation.
In both cases the Moore-Penrose inverse will be used to determine a unique solution of the
problems. In addition, in the case of a consistent constraint equation, we also give sufficient
conditions for our solution to exist using the well known KKT conditions.
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1. Introduction

In many situations in physical sciences, the minimization of quadratic forms arises as
a suitable formulation of certain problems, in both the finite or the infinite dimensional
setting. Considering the minimization of a positive semidefinite quadratic form under
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linear constraints, an interesting question arises when the corresponding matrix is singu-
lar. In this case, the problem has been treated in the last decades using pseudo-inverses
(for example, see [10, 11, 14]. An example of such a case comes from electrical network
analysis, considering the problem of minimizing the energy dissipation f(x) = ⟨x,Hx⟩,
where H is the conductance matrix, most of the times positive definite. The voltage vec-
tor x satisfies Kirchoff’s second law if and only if it minimizes the above quadratic form
under linear constraints (for more details, see [1]). Since a positive semidefinite quadratic
form has a minimum value of zero when H is positive semidefinite, another approach
is to use only the vectors belonging to N (H)⊥. Moreover, if the corresponding matrix
H is singular, some type of a generalized inverse must be used. The right choice is the
Moore-Penrose inverse because of the orthogonal decomposition of the space resulted
by its use. The general problem studied is the minimization of a positive semidefinite
quadratic form under linear constraints in the form of

minimize
x

Φ(x) =
1

2
⟨x,Hx⟩+ ⟨g, x⟩,

subject to Ax = b,

where H is a n× n real matrix. We will call the problem above as the primal problem.
The primal problem is closely related with the well-known dual problem in the form of

max
x

min
λ

L(x, λ) = −1

2
⟨x,Hx⟩+ ⟨b, λ⟩,

subject to Hx+ g = A⊤λ.

From the optimization theory point of view, as we are working in a finite dimensional
case, due to the strong duality principle, both solutions of the primal and dual problem
coincide.

In this paper based on that argument we present a method to calculate the Lagrange
multipliers involved in the dual problem and finally compute the solution, inspired by the
primal-dual methods in convex optimization techniques and the fact that we are using
only the vectors x ∈ N (H)⊥. Using the strong duality principle, our result (Theorem 3.3)
shows that we can compute the Langrange multipliers using the Moore-Penrose inverse,
without the use of the classical methods involving derivatives of certain functions, which
in many times may be difficult to compute. Using the well known KKT conditions we
give sufficient conditions for our solution to be unique, despite the fact that H is positive
semidefinite. In the last section of this paper, the same work is extended in the case
of an inconsistent constraint equation Ax = b, considering the general normal equation
Ak+1x = Akb.

2. Preliminaries and notation

Let as denote the set of all n× r real matrices as Mn×r(R). In the case of n×n square
matrices, we denote Mn(R). Consider T ∈ Mn(R). We denote its kernel as N (T ), its
range as R(T ), its rank as rank(T ), its conjugate transpose as T ∗ and its transpose as
T⊤. Moreover, the smallest positive integer k for which rank(T k+1) = rank(T k) is called
the index of T and is denoted by ind(T ).

Let us recall the notion of Moore-Penrose inverse. If T ∈ Mn(R) with rank(T ) = r
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it can be shown that there exists a unique matrix, the Moore-Penrose inverse, which
satisfies the well-known following four Penrose equations:

TT †T = T, T †TT † = T †, TT † = (TT †)∗, T †T = (T †T )∗,

which is denoted as T †. For a great description, see [2]. One can easily verify that TT † is
the orthogonal projection of Rn onto R(T ) denoted by PT and that T †T is the orthogonal
projection of Rm onto R(T ∗) denoted by PT ∗ . It is also well known that R(T †) = R(T ∗).

In case when T commutes with T † or equivalently R(T ) = R(T ∗), then T is called an
EP matrix. EP matrices were introduced by Schwerdtfeger [13] and consist of a general
class of matrices such as hermitian, skew-hermitian or normal. Since the corresponding
matrices of the quadratic forms that we study are positive semidefinite, they are all EP
matrices.

For a matrix A of index k, the equation Ak+1x = Akb is consistent irrespective of
consistency of the system Ax = b. As we can see, this new type of constraint can be
used when the linear equation Ax = b is inconsistent and the new set is still a convex
set: It will be the general normal equation of the system Ax = b and therefore, the new
constraint set will be defined as:

SD = {x| x ∈ Rn, Ak+1x = Akb, k ⩾ indA}.

Standard reference books on generalized inverses are [2, 4, 6]. One of the basic problems
in optimization theory, arising in several real life problems, is the quadratic program-
ming problem with equality constraints. In his classical book on optimization theory,
Luenberger [7] presents various similar optimization problems for both finite and infinite
dimensions. The problem studied in general is the following:

min f(x) = ⟨x, Tx⟩+ ⟨p, x⟩+ a, x ∈ S,

where S = {x : Ax = b}, a ∈ R, p is a given vector and T is a positive definite matrix.
An interesting case to examine is when T is singular and positive semidefinite with a
nonempty kernel, N (T ) ̸= {0}. In this case we have that ⟨x, Tx⟩ = 0 for all x ∈ N (T )
and so, a first approach in both the finite and infinite dimensional case would be to
look among the vectors x ∈ N (T )⊥ = R(T ∗) = R(T ) for a minimizing vector for
Φ(x). In other words, we will study the problem minΦ(x) = ⟨x, Tx⟩ + ⟨p, x⟩ + a for
all x ∈ S ∩ N (T )⊥. Because of the singularity of T , the Moore-Penrose inverse will be
used. Moreover, since N (T ) = N (T †) the vectors examined in this case satisfy also an
additional condition: That x ∈ N (T )⊥. We present the above statement in the following
theorem found in [11].

Theorem 2.1 Let T a be n×n singular positive semidefinite matrix with a non empty
kernel, N (T ) ̸= {0}, with X2 = T . Let also A be a singular m × n, and consider the
equation Ax = b. If the set S = {x : Ax = b} is not empty, then the problem :

minimize Φ(x) = ⟨x, Tx⟩+ ⟨x, p⟩+ a, x ∈ S ∩N (T )⊥

with p ∈ Rn and a ∈ R has the unique solution x̂ = X†(AX†)†(12AT †p+ b)− 1
2T

†p.

The main motivation of this paper is to calculate the Lagrange multipliers of the clas-
sic quadratic minimization problem, only using linear algebra techniques and generalized
inverses, without the use of differentiation. Using our technique, even though a positive
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semidefinite quadratic form is not strictly convex and may have infinite minimizing vec-
tors, using the vectors x ∈ N (T )⊥ we can find a global minimum and the corresponding
Lagrange multipliers. Conditions for such a solution to exist are presented in section 3.
One of the applications of the Moore-Penrose inverse in the finite dimensional case is
the minimization of a positive definite quadratic functional under linear constraints, pre-
sented by Manherz and Hakimi [8], having a similar point of view to the one presented
in our work. Moreover, interest on quadratic minimization under linear constraints can
also be seen in electrical circuits, signal processing and linear estimation applications
(see e.g. [12, 15]) is an additional rationale and these practical applications can be solved
and have a global minimum value following our point of view.

The paper is organized as follows: In section 3, we examine the classical problem in
both the primal and the dual form and compute the solutions for both of them. We
prove that these solutions coincide and calculate the Lagrange multipliers using a closed
formula without the use of derivatives. We also present the difference between our method
and the null space method, using the KKT conditions for such a solution to exist and
the conditions for that are explicitly given. In section 4, the same work is extended in
the case of an inconsistent constraint equation Ax = b, considering the General Normal
equation Ak+1x = Akb. Corresponding examples are given in both cases.

3. The primal and dual solutions when the constraint equation is
consistent

The minimizing vectors: In many situations it is useful to treat the primal problem
with the Langrange method. For this method, we introduce some additional variables
λ = (λ1, · · · , λn), one for each constraint, the well-known Langrange multipliers. The
Langrange method leads us to the following dual formulation of the primal problem,
which is given in the following definition.

Definition 3.1 [5] Consider the primal problem:

minimize
x

Φ(x) =
1

2
⟨x,Hx⟩+ ⟨g, x⟩,

subject to Ax = b.

(1)

Then, the dual problem is

max
x

min
λ

L(x, λ) = −1

2
⟨x,Hx⟩+ ⟨b, λ⟩,

subject to Hx+ g = A⊤λ.

(2)

In many cases the usefulness of the Langrange formulation showed up by its natural
physical meaning. For example, the shadow prices in economics, or the total potential
energy of a certain system. Although, treating the minimization quadratic problems by
the Langrange dual method, leads us in a geometric interpretation in terms of the solution
of the dual problem, being actually a saddle point of L(x, λ), the Langrange function.

Let us now discuss the solutions of the problems in Definition 3.1. Since the matrixH is
singular the classical minimization techniques are collapsing, i.e. infinite minimum values
are equal to zero in a trivial way. For that reason, both the primal and dual problems
can be treated from another point of view, using Theorem 2.1. Since the matrix H is
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positive semidefinite, one possible approach to the problem would be to solve it for all
vectors x ∈ N (H)⊥. The same approach can be used to treat the dual problem. In the
following theorems we present the solutions of the primal and dual problems with this
additional constraint, making use of the Moore-Penrose inverse.

Theorem 3.2 Let H be a n× n singular positive semidefinite matrix, with X2 = H.
Let also A be m× n matrix and consider the equation Ax = b and g a given vector in
Rn. If the set S = {x : Ax = b, x ∈ N (H)⊥} is not empty, then the primal problem (1)
has the unique solution x̂ = X†(AX†)†(AH†g + b)−H†g.

Proof. The proof is straightforward by applying Theorem 2.1 ■

Theorem 3.3 Let H a n× n singular positive semidefinite matrix with X2 = H. Let
also A be m× n and g a given vector in Rn. If the set S = {x : Hx + g = A⊤λ, x ∈
N (H)⊥} is not empty, then the dual problem (2) has the unique solution for x in terms
of λ: û = X†(HX†)†(A⊤λ − g). The dimension of the Lagrange multipliers vector λ
depends on the dimensions of the constraint matrix A, in order for A⊤λ to be a column
vector.

Proof. Obviously the problem of maximizing −1
2⟨x,Hx⟩ + ⟨b, λ⟩ under Hx + g =

A⊤λ, x ∈ S is equivalent to the minimization of 1
2⟨x,Hx⟩−⟨b, λ⟩ underHx = A⊤λ−g, x ∈

S. Using Theorem 2.1, by replacing T,A and b by 1
2H,H and A⊤λ− g respectively and

setting p = 0, we get the desired solution for û in terms of λ. ■

The KKT matrix and the null space method: A well known method for the solution
of the primal problem is the null space method, presented explicitely in many convex
optimization books, such as [9]. The difference between this method and our proposed
method will be presented in details in this section. For the solution of the primal problem
(1), the null space method consists of using a matrix Z, whose columns are a basis for
the null space of A. Moreover, the well known Karush-Kuhn-Tucker (KKT) matrix is the

following: K =

[
H A⊤

A 0

]
.

Lemma 3.4 [9] Let A have full row rank, and assume that the matrix Z⊤HZ is positive
definite. Then the KKT matrix K is nonsingular, and hence there is a unique vector pair
(u∗, λ∗) satisfying the conditions of the Primal and Dual problems.

The null space method does not require nonsingularity of the matrix H and therefore
has wide applicability. It assumes only that the conditions of Lemma 3.4 hold, namely,
that A has full row rank and that Z⊤HZ is positive definite. However, it requires knowl-
edge of the null-space basis matrix Z. Using a random matrix Y such that [Y |Z] is
nonsingular, the KKT system is transformed to calculate the desired step of the solu-
tion. This system can be solved by performing a Cholesky factorization of the matrix
Z⊤HZ to obtain the Lagrange multiplier λ∗. It is now obvious that the null space method
has a completely different approach for the solution of this problem. Our method consists
of using the vectors perpendicular to the kernel N (H) of the matrix H corresponding
to the quadratic form, while the null space method restricts the problem to the vectors
perpendicular to the kernel N (A) of the restriction matrix A. We can also show using
the following theorem, that x∗ is a global solution of the primal problem.

Theorem 3.5 [9] Let A have full row rank and assume that the matrix Z⊤HZ is positive
definite. Then the vector u∗ found from Lemma 3.4 is the unique global solution of the
primal problem.
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Using the above theorem, we will present sufficient conditions for our method to have
a global solution:

Theorem 3.6 Let A have full row rank and N (A) ∩ N (H) = 0. then, the solution x̂
found from Theorem 3.2 is a global minimizer of the primal problem (1).

Proof. Let X be the square root of the positive semidefinite matrix H, that is,
X2 = H. Let us suppose that N (A) ∩ N (H) = 0. Then, ∥Z⊤HZx∥ = ⟨Z⊤HZx, x⟩ =
⟨XZw,XZw⟩ = ∥XZx∥ > 0 for all x ̸= 0 and Z⊤HZ is positive definite. On the
other hand, let us suppose that N (A) ∩ N (H) ̸= 0. Then, there exists some vector w ∈
N (A)∩N (H). The relation N (A)∩N (H) ̸= 0 is equivalent to R(Z)∩N (H) ̸= 0, so for
the vector w we have that XZw = 0, since Zw ∈ N (H) and it holds that N (H) = N (X).
Therefore, we get that ∥XZw∥ = 0 and so, 0 = ⟨XZw,XZw⟩ = ⟨Z⊤HZw,w⟩. So, we
proved that for some w ̸= 0, ∥Z⊤HZw∥ = 0 and therefore the matrix Z⊤GZ is positive
semidefinite. Using Theorem 3.5, we get the desired result. ■

Optimal choice of λ: (the minimal norm solution) As we have proved in above theorems,
the two optimal solutions for the primal and dual problems are x̂ = X†(AX†)†(AH†g +
b) − H†g and û = X†(HX†)†(A⊤λ − g). One can observe that the dual solution û is
formed in terms of λ, û = û(λ).

Before we treat the problem of choice of λ, let us discuss the relation of primal and dual
solutions. In general, it is known that the primal solution dominates the dual solution,
i.e. û ⩽ x̂ and that is the weak duality principle and the difference of primal and dual
solutions x̂− û is called duality gap (see e.g. [3]). This relation holds, even for nonconvex
minimization problems. On the other hand, there are many classes of problems that the
equality of primal and dual solutions holds, that is the strong duality principle. One
class of these problems, is the class of minimization of quadratic forms. The following
proposition presents the strong duality principle in our case.

Proposition 3.7 (strong duality principle) The solution of primal problem and dual
problem in Theorem 3.2 and Theorem 3.3 respectively coincide, i.e. x̂ = û(λ) or in the
other words, we duality gap is zero.

For a generic proof in the setting of quadratic programming, we refer the interest reader
to Boyd and Vandenberghe [3]. Since the (strong) duality principle provides the equality
of the optimal solutions of both the primal and dual problems, we can use this property
in order to compute the optimal value of λ and finally derive the optimal solution of the
dual problem via a minimal norm. Let us recall the standard minimization property of
the Moore-Penrose inverse:

Proposition 3.8 Let A ∈ Mr×m(R) and b ∈ Rr, b /∈ R(A), and the equation Ax = b.
Then, if A† is the generalized inverse of A, we have that A†b = u, where u is the minimal
norm solution.

As it mentioned above and based on the provided specific duality property of Definition
3.1, we can compute the optimal λ values in the following theorem.

Theorem 3.9 The Langrange multipliers λ ∈ Rn in the dual problem (2) can be com-
puted by solving the problem min

λ
||x̂− û(λ)||2, which has unique solution

λ∗ = (X†(HX†)†A⊤)†
(
X†(AX†)†(AH†g + b) +X†(HX†)†g −H†g

)
.

Proof. The problem min
λ

||x̂− û(λ)||2 is trivially equivalent with the problem
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min
λ

∣∣∣∣∣∣(X†(AX†)†(AH†g + b)−H†g −X†(HX†)†(A⊤λ− g)
∣∣∣∣∣∣
2

which is equivalent to the minimal norm solution of the equation

(X†(HX†)†A⊤λ = (X†(AX†)†(AH†g + b) +X†(HX†)†g −H†g.

So, using Proposition 3.8, we get

λ∗ = (X†(HX†)†A⊤)†
(
X†(AX†)†(AH†g + b) +X†(HX†)†g −H†g

)
.

■

Summarizing the above discussion we present the following example.

Example 3.10 Let the positive semidefinite matrix

H =

 26 10 −2
10 8 2
−2 2 2


We are looking for the minimum of the quadratic function f(x) = 1

2⟨x,Hx⟩+ ⟨g, x⟩ with
g = (1, 2, 3)⊤ and the set of constraints S defined as S = {(x, y, z) : 3x + y + z = −1}

or Ax = b. If X2 = H, the matrix X is: X =

 4.8335 1.5061 −0.6071
1.5061 2.1932 0.9601
−0.6071 0.9601 0.8424

 . The matrix

X† is X† =

 0.1908 −0.0295 −0.0833
−0.0295 0.2644 0.1861
−0.0833 0.1861 0.1518

 . As presented in Theorem 3.2, when we use

the Moore-Penrose inverse among all solutions of the system of linear equations we get
the one with a minimal norm, belonging also to the set N (H)⊥. The set N (H)⊥ has
the form u = (2x − 3y, x, y)⊤, x, y ∈ R. With calculations we can see that all vectors
u ∈ N (H)⊥ satisfying the constraint Au = b, where A =

[
3 1 1

]
and b = −1, have

the form u =
(
x, −8x−3

5 , −7x−2
5

)⊤
. Using Theorem 3.2 we can see that the minimizing

vector of f(x) under {Ax = b, x ∈ N (H)⊥} is x̂ = X†(AX†)†(AH†g + b) − H†g =
(−0.0049,−0.5922,−0.3931)⊤. It is easy to verify that the solution found satisfies the
equation Ax̂ = b. We will now deal with the Lagrange Dual problem using Theorem
3.3. As we have seen, this problem has the unique solution with respect to λ, û =

X†(HX†)†(A⊤λ− g). By calculations we get that û =

0.06971λ+ 0.11564
0.09864λ− 0.42176
0.04252λ− 0.31971

. If we set

this solution equal to the solution found from the primal problem, we have that

x̂ = û ⇒

0.06971λ+ 0.11564
0.09864λ− 0.42176
0.04252λ− 0.31971

 =

−0.0049
−0.5922
−0.3931

 .

In all 3 equations, the value of λ is the same λ = −1.72. On the other hand, using the
equation

λ∗ = (X†(HX†)†A⊤)†
(
X†(AX†)†(AH†g + b) +X†(HX†)†g −H†g

)
and the matrices used above, we get that λ∗ = −1.72. Moreover, we will examine the



140 D. Pappas and G. N. Domazakis / J. Linear. Topological. Algebra. 08(02) (2019) 133-143.

KKT matrix and the conditions presented in Theorem 3.6: The KKT matrix is

K =


26 10 −2 3
10 8 2 1
−2 2 2 1
3 1 1 0

 .

We have det(K) = −192 and also N (A) ∩N (H) = 0.

4. The primal and dual solutions when the constraint equation is
inconsistent

The minimizing vectors: In this section we will deal with the same problem, considering
the case when the constraint equation Ax = b is inconsistent, where A is a square matrix.
So, we will use the General Normal equation, Ak+1x = Akb where k is the index of A,
which is always consistent. The new constraint set is now defined as:

SD = {x| x ∈ Rn, Ak+1x = Akb, k ⩾ indA}.

In this section, we suppose that T ∈ Mn(R) is again a positive semidefinite matrix. Let
A ∈ Mn(R) be such that ind(A) = k and x, b ∈ Rn. We consider the minimization of the
functional Φ(x) = ⟨x, Tx⟩ + ⟨x, p⟩ + a, where p is a real vector and a is a real number.
Since N (T ) ̸= ∅, we have that ⟨x, Tx⟩ = 0 for all x ∈ N (T ) and so, we will investigate
the minimization problem

minimize Φ(x), x ∈ SD ∩N (T )⊥, (3)

under the assumption SD ∩N (T )⊥ ̸= ∅.

Proposition 4.1 [14] If T ∈ Mn(R) is a positive semidefinite matrix, then there exists
an orthogonal matrix U and invertible diagonal matrix T1 such that

T = U⊤(T1 ⊕O)U = U⊤
[
T1 0
0 0

]
U.

Also, there exists a unique matrix X such that X2 = T which is also an EP matrix, and
which satisfies the X = U⊤(R⊕O)U and X† = U⊤(R−1 ⊕O)U , where R2 = T1.

Theorem 4.2 [14] For a given square matrix A, let k = ind(A). The following vector,
denoted by x̂1 is an approximate solution of the problem (3):

x̂1 =X†(Ak+1X†)†Ak
(
b+ 1

2AT †p1
)
− 1

2T
†p1,

where X2 = T and p1 = PR(T )(p).

We will apply Theorem 4.2 to the dual optimization problems defined in 3.1 and present
both solutions.

Theorem 4.3 Let H be a n× n singular positive semidefinite matrix, with X2 = H. Let
A be n× n and k = ind(A), where A is singular and consider the inconsistent equation
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Ax = b. Therefore, the set SD = {x| x ∈ Rn, Ak+1x = Akb, k ⩾ indA} and a vector
g ∈ Rn. Then, the primal problem

minimize
x

Φ(x) =
1

2
⟨x,Hx⟩+ ⟨g, x⟩,

subject to x ∈ SD ∩N (H)⊥,

has the following two vectors, denoted by x̂1 and x̂2, as approximate solutions:

x̂1 = X†(Ak+1X†)†Ak
(
b+AH†g1

)
−H†g1,

x̂2 = X†
(
AkX†

)D
ADAk

(
b+AH†g1

)
−AH†g1,

where X2 = H and g1 = PR(H)(g) = HH†g.

Proof. It comes straightforward from Theorem 4.2, replacing p by 2g. ■

Theorem 4.4 Let H be a n× n singular positive semidefinite matrix, with X2 = H.
Let A be n× n and k = ind(A), where A is singular, a vector g ∈ Rn and the equation
Ak+1x = Akb. If the set S = {x : Hx + g = (Ak+1)⊤λ} is not empty, then the dual
problem

maximize
x

K(x, λ) = −1

2
⟨x,Hx⟩+ ⟨Akb, λ⟩,

subject to Hx+ g = (Ak+1)⊤λ, x ∈ SD ∩N (H)⊥

has the unique solution for x in terms of λ: û = X†(HX†)†((Ak+1)⊤λ− g).

Proof. Obviously the solution of dual problem is equivalent to the solution of the fol-
lowing minimization problem:

minimize
x

1

2
⟨x,Hx⟩ − ⟨b, λ⟩

subject to Hx = (Ak+1)⊤λ− g, x ∈ SD ∩N (H)⊥.

Minimizing ⟨x,Hx⟩ = ⟨Xx,Xx⟩ is the same as minimizing ||Xx||2. Let y = Xx, then
X†y = X†Xx = x, since x ∈ N (H)⊥ = R(H) = R(X) = R(H⊤), so we get x = X†y.
Replacing this value of x in the constraint equation we have HX†y = (Ak+1)⊤λ− g. So,
the minimal norm solution for y is given by ŷ = (HX†)†((Ak+1)⊤λ− g). Replacing back
to find the minimal norm solution for x, we get that the minimum norm solution for x
in terms of λ is û = X†(HX†)†((Ak+1)⊤λ − g). It is obvious again that the dimension
of the Lagrange multipliers vector λ depends on the dimensions of the constraint matrix
A, in order for ATλ to be a column vector. ■

Remark 1 Once more, we need to discuss on the KKT conditions. The difference be-
tween this case and the previous one is that the constraint Ax = b has been replaced by
the equation Ak+1x = Akb, so the new KKT matrix will be

K =

[
H (Ak+1)⊤

Ak+1 0

]
.
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As we have seen in Lemma 3.4 one of the conditions is that the matrix Ak+1 must have full
row rank. In this case, this condition is never satisfied, as A is a singular square matrix
with index k. Therefore the KKT conditions never hold when the constraint equation is
inconsistent.

Optimal choice of λ using the general normal equation: Once more, we have solved the
primal and Dual problems, and the solutions found are:

x̂ = X†(Ak+1X†)†Ak
(
b+AH†g1

)
−H†g1, û = X†(HX†)†((Ak+1)⊤λ− g).

So we need to minimize the 2-norm of their difference in terms of λ; that is, min
λ

||x̂−û(λ)||2
or

min
λ

∣∣∣∣∣∣(X†(Ak+1X†)†Ak
(
b+AH†g1

)
−H†g1 −X†(HX†)†((Ak+1)⊤λ− g)

∣∣∣∣∣∣
2

which is equivalent to the minimal norm solution of the equation

(X†(Ak+1X†)†Ak
(
b+AH†g1

)
−H†g1 +X†(HX†)†g = X†(HX†)†(Ak+1)⊤λ.

Therefore, using Proposition 3.8, again we have that

λ∗ = (X†(HX†)†(Ak+1)⊤)†
(
(X†(Ak+1X†)†Ak

(
b+AH†g1

)
−H†g1 +X†(HX†)†g

)
.

Once more, to clarify the above discussion we present the following example.

Example 4.5 Let H = R3, and the positive semidefinite matrix

H =

14 28 1
28 56 2
1 2 2

 .

We are looking for the minimum of the functional f(x) = 1
2⟨x,Hx⟩ + ⟨g, x⟩ with g =

(2, 3, 1)⊤ and the set of constraints SD defined as A2x = Ab, where

A =

1 2 3
3 2 1
5 6 7

 , ind(A) = 1, b = (−1, 1,−1)⊤, g1 = (1.6, 3.2, 1)⊤.

Using Theorem 4.3, we can see that the minimizing vector of f(x) under {A2x = Ab, x ∈
N (H)⊥} is

x̂ = X†(Ak+1X†)†Ak
(
b+AH†g1

)
−H†g1 = (0.6951,−0.3902,−0.3049)⊤.

It is easy to verify that the solution found satisfies the equation A2x̂ = Ab. We will now
deal with the dual problem using Theorem 4.4. As we have seen, this problem has the
unique solution with respect to λ, û = X†(HX†)†((Ak+1)Tλ− g). By calculations we get
that

û =

 687.2 478.5 1852.9
−343.6 −239.3 −926.4

13 9 34.9

λ1

λ2

λ3

−

 20.38
−10.15
0.459

 .

If we set this solution equal to the solution found from the primal problem, we have that

û = x̂ ⇒

 687.2 478.5 1852.9
−343.6 −239.3 −926.4

13 9 34.9

λ1

λ2

λ3

−

 20.38
−10.15
0.459

 =

 0.6951
−0.3902
−0.3049

 .
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Solving these 3 equations, the value of λ is: λ∗ =

−3.238
6.111
−0.366

 . On the other hand, using

the equation

λ∗ = (X†(HX†)†(Ak+1)⊤)†
(
(X†(Ak+1X†)†Ak

(
b+AH†g1

)
−H†g1 +X†(HX†)†g

)
,

we get exactly the same result: λ∗ =

−3.238
6.111
−0.366

 .

5. Conclusion

In this work we presented a new way to treat the classical quadratic optimization
problem, when the corresponding quadratic for is positive semidefinite. Using only the
vectors perpendicular to its kernel we tackled the problem and found a unique solution.
We solved both the primal and dual problems and proved that these two solutions co-
incide. Our main tool for this goal was the Moore-Penrose inverse. Using the proposed
method, the Lagrange multipliers can be found using a closed formula without the need
of differentiating. Sufficient conditions are given so that the solutions exists and is unique.
Many possible applications of the presented method can be found in economics, mathe-
matical finance, electrical engineering and other fields of applied mathematics, where we
deal with quadratic optimization problems.
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