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Abstract. We consider Albeverio’s linear representations of the braid groups B3 and B4.
We specialize the indeterminates used in defining these representations to non zero complex
numbers. We then consider the tensor products of the representations of B3 and the tensor
products of those of B4. We then determine necessary and sufficient conditions that guaran-
tee the irreducibility of the tensor products of the representations of B3. As for the tensor
products of the representations of B4, we only find sufficient conditions for the irreducibility
of the tensor product.
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1. Introduction

Let Bn be the braid group on n strings. It has many kinds of linear representations.
The earliest was Artin’s representation, which is an embedding Bn −→ Aut(Fn), where
Fn is a free group with n generators. Applying the free differential calculus to elements
of Aut(Fn) sometimes gives rise to linear representations of Bn and its normal subgroup,
the pure braid group denoted by Pn. For more details, see [3,4]. The Lawrence- Krammer
representation arises this way. Krammer’s representation is a representation of the braid

group Bn in GL(m,Z[t±1, q±1]), where m = n(n−1)
2 ([6,7]). It was shown by Bigelow us-

ing topological methods, and independently by Krammer using algebraic methods to be
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faithful, thus proving the long open problem that the braid groups are linear. To prove
linearity, Bigelow [2] used the Lawrence-Krammer representation. Other representations
of braid groups were obtained by Albeverio in every dimension (see [1]). Using Burau
unitarizable representation, Albeverio presented a class of non trivial unitary represen-
tations for the braid groups B3 and B4. These are unitary representations of the braid
group on a small number of strands and they exist in every dimension depending on
n parameters. In section 2, we write explicitly Albeverio’s representations of the braid
groups B3 and B4. In section 3, we write the main theorems of our work. In sections 4
and 5, we determine the tensor product of the representations of B3 and B4 respectively.
In sections 6 and 7, we prove Theorem 3.1 and Theorem 3.2 concerning the irreducibility
of the representations obtained by tensoring Albeverio’s representations of B3 and B4

respectively. Theorem 3.1 gives necessary and sufficient conditions for the irreducibility
of the tensor product of the representations of B3. As for the tensor product of the repre-
sentations of B4, we fall short of finding necessary conditions of irreducibility. Theorem
3.2 gives only sufficient conditions of irreducibility of the representations of B4. A similar
study related to reducibility or irreducibility of braid groups representations exists for the
Lawrence-Krammer representation. It was shown that the representation is generically
irreducible, but when its two parameters are specified to some complex numbers, it be-
comes reducible. A complete criterion of irreducibility for the representation is provided
in [8]. The latter paper provides a necessary and sufficient condition on the parameters
so that the representation is reducible.

2. Sergio Albeverio representations of the Braid groups B3 and B4

Albeverio representations of the Braid Group B3: Consider the braid group B3 and the
product of the generators J = σ1σ2 and S = σ1J . This means that B3 will be generated
by J and S, and has only one relation S2 = J3. Denote the representation of B3 by π3,
where π3(S) = U and π3(J) = V . Here U and V are 2n + m × 2n +m block matrices
given by

U = 2

A− In/2 B C
B∗ B∗A−1B − In/2 B∗A−1C
C∗ C∗A−1B C∗A−1C − Im/2


and V = diag(In, βIn, β

2Im). We have β = 3
√
1 is a primitive root, 1 ⩽ m ⩽ n, A and B

are n× n matrices and C is an n×m matrix. We also have V 3 = I2n+m. If A = A∗and
BB∗ + CC∗ = A−A2, we get U = U∗ and U2 = I2n+m. For more details, see [1].

Proposition 2.1 A and B are invertible, rank(C) = m, B∗B is a diagonal matrix with
simple spectrum and every entry of A is non-zero then the Albeverio representation is
irreducible.

Albeverio representations of the Braid Group B4: Consider the braid group B4

generated by σ1, σ2 and σ3. Denote the representation of B4 by π4. The representation
π4 is constructed using the reduced Burau representation (see [5]) written in the base
where every matrix π4(σi) is unitary, π4(σ1) = diag(u, 1, 1),

π4(σ2) =

 (u− 1)α1 + 1 (u− 1)
√
α1 − α2

1 0

(u− 1)
√

α1 − α2
1 (1− u)α1 + u 0

0 0 1


and
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π4(σ3) =

1 0 0

0 (u− 1)α2 + 1 (u− 1)
√
α2 − α2

2

0 (u− 1)
√
α2 − α2

2 (1− u)α2 + u

,

where uu = 1, α1 = −u/(u − 1)2, α2 = α1/(1 − α1). We assume further that u ̸= 1

and u ̸= 1±i
√
3

2 . We observe that α1 and α2 are real numbers. Let us specialize u to a
non zero complex number and write π4(u) instead of π4. Since the representation π4(u)
is unitary then the orthogonal complement of a proper invariant subspace is again a
proper invariant subspace. To study the irreducibility of π4(u), it suffices to study the
existence of a one-dimensional invariant subspace. The possible one-dimensional invariant
subspaces are ⟨e1⟩ and ⟨ae2 + be3⟩, where a and b are scalars, and e1, e2 and e3 standard
unit vectors. Easy calculations give the following proposition.

Proposition 2.2 π4(u) is irreducible if and only if u ̸= ±i.

3. Main theorems of the paper

We would take the 3-dimensional 1-parameter based representations of B3, namely,

π3C), with B and C non-zero reals and A specialized to 1
2 , β specialized to e

2πi

3 , tensor
with the 3-dimensional 1-parameter based representation of B3, namely π3(C

′) with B

and C’ non-zero reals and A specialized to 1
2 , β specialized to e

4πi

3 .

Theorem 3.1 For non zero real numbers C,C ′ ∈]− 1
2 ,

1
2 [, the tensor product of the real

specializations of Albeverio’s representations ρ3 = π3(C) × π3(C
′) : B3 −→ GL(9,C) is

irreducible if and only if C2 ̸= C ′2.

On the other hand, we take the 3-dimensional 1-parameter based representation of B4,
π4(u) as defined formerly tensor with π4(u

′).

Theorem 3.2 For non zero complex numbers u, u′ /∈
{
1, 1+i

√
3

2 , 1−i
√
3

2

}
, the tensor

product of the complex specializations of Albeverio’s representations ρ4 = π4(u)⊗π4(u
′) :

B4 −→ GL(9,C) is irreducible if u ̸= u′ and uu′ ̸= 1.

4. Tensor product of Albeverio’s representations of B3

Consider the braid group B3 generated by S and V . Take n = m = 1 with B and C
non-zero real numbers and A is specialized to the value 1

2 . This implies that B = B∗,

C = C∗ and B2+C2 = A−A2. For A = 1
2 , we have B

2 = 1
4−C2. We require −1

2 < C < 1
2 .

We substitute the value of B in U . So, we get

π3(S) = U = 2


0

√
1
4 − C2 C√

1
4 − C2 −2C2 2C

√
1
4 − C2

C 2C
√

1
4 − C2 2C2 − 1

2

 and π3(J) = V =

1 0 0
0 β 0
0 0 β2

 .

Here, β is a 3rd root of unity. That is, β3 = 1. The representation π3 is now a one
parameter representation. The matrices U and V are given in terms of the real number

C. Let β = e
2πi

3 and we denote π3 by π3(C). On the other hand, we change the real number
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C to C ′ and β to e
4πi

3 , which we will denote by π3(C
′). We also require −1

2 < C ′ < 1
2 .

We denote π3(C)× π3(C
′) by ρ3 given by

ρ3(J) =



1 0 0 0 0 0 0 0 0

0 e
4πi

3 0 0 0 0 0 0 0

0 0 e
2πi

3 0 0 0 0 0 0

0 0 0 e
2πi

3 0 0 0 0 0
0 0 0 0 1 0 0 0 0

0 0 0 0 0 e
4πi

3 0 0 0

0 0 0 0 0 0 e
4πi

3 0 0

0 0 0 0 0 0 0 e
2πi

3 0
0 0 0 0 0 0 0 0 1


and ρ3(S) =



0 0 0 0 a b 0 d e
0 0 0 a f g d h i
0 0 0 b g j e i k
0 a b 0 u l 0 m n
a f g u o p m q s
b g j l p r n s t
0 d e 0 m n 0 w x
d h i m q s w y z
e i k n s t x z v


,

where

a = 4
√(

1
4 − C2

) (
1
4 − C ′2

)
b = 4C ′

√(
1
4 − C2

)
d = 4C

√(
1
4 − C ′2

)
e = 4CC ′ f = −8C ′2

√(
1
4 − C2

)
g = 8C ′

√(
1
4 − C2

) (
1
4 − C ′2

)
h = −8CC ′2 i = 8CC ′

√(
1
4 − C ′2

)
j = (8C ′2 − 2)

√(
1
4 − C2

)
k = 2C(4C ′2 − 1) l = −8C ′C2 m = 8C

√(
1
4 − C2

) (
1
4 − C ′2

)
n = 8CC ′

√(
1
4 − C2

)
o = 16C2C ′2 p = −16C ′C2

√(
1
4 − C ′2

)
q = −16CC ′2

√(
1
4 − C2

)
r = −4C2

(
4C ′2 − 1

)
s = 16CC ′

√(
1
4 − C2

) (
1
4 − C ′2

)
t = 4C

(
4C ′2 − 1

)√(
1
4 − C2

)
u = −8C2

√(
1
4 − C ′2

)
v =

(
4C2 − 1

) (
4C ′2 − 1

)
w =

(
8C2 − 2

)√(
1
4 − C ′2

)
x = 2C ′(4C2 − 1) y = −4C ′2(4C2 − 1)

z = 4C ′(4C2 − 1)
√(

1
4 − C ′2

)

5. Tensor Product of Albeverio’s Representations of B4

Consider the braid group B4, where B4 is the braid group generated by the standard
generators σ1, σ2, σ3 and π4 is a one parameter representation of B4. The images of
the generators π4(σ1),π4(σ2) and π4(σ3) are given in terms of u only, and so we get the
representation π4(u). On the other hand, we change u to u′ and denote it by π4(u

′). We

require u ̸= 1, u ̸= 1±i
√
3

2 , u′ ̸= 1 and u′ ̸= 1±i
√
3

2 . The representation π4(u) is given by

σ1 =

(
u 0 0
0 1 0
0 0 1

)
, σ2 =

 −1
u−1

√
−u3+u2−u

u−1 0
√
−u3+u2−u

u−1
u2

u−1 0
0 0 1

 , σ3 =


1 0 0

0 1
u2−u+1

(u−1)
√

−u(u2+1)

|u2−u+1|

0
(u−1)

√
−u(u2+1)

|u2−u+1|
u3

u2−u+1

 .
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Then, we determine the tensor product ρ4 = π4(u)× π4(u
′).

ρ4(σ1) =



uu′ 0 0 0 0 0 0 0 0
0 u 0 0 0 0 0 0 0
0 0 u 0 0 0 0 0 0
0 0 0 u′ 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 u′ 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


and ρ4(σ2) =



xx′ r 0 r′ vv′ 0 0 0 0
r y′ 0 vv′ z′ 0 0 0 0
0 0 x 0 0 v 0 0 0
r′ vv′ 0 y z 0 0 0 0
vv′ z′ 0 z ww′ 0 0 0 0
0 0 v 0 0 w 0 0 0
0 0 0 0 0 0 x′ v′ 0
0 0 0 0 0 0 v′ w′ 0
0 0 0 0 0 0 0 0 1


,

where

r =
√
−u′3+u′2−u′

(1−u)(u′−1) r′ =
√
−u3+u2−u

(1−u′)(u−1)

v =

√
(−u3+u2−u)

(u−1) v′ =

√
(−u′3+u′2−u′)

(u′−1)

w = u2

(u−1) w′ = u′2

(u′−1)

x = −1
u−1 x′ = −1

u′−1

y = −u2

(u−1)(u′−1) y′ = −u′2

(u′−1)(u−1)

z =
u2
√

(−u′3+u′2−u′)

(u−1)(u′−1) z′ = u′2
√
−u3+u2−u

(u−1)(u′−1)

and

ρ4(σ3) =



1 0 0 0 0 0 0 0 0
0 a b 0 0 0 0 0 0
0 b c 0 0 0 0 0 0
0 0 0 d 0 0 e 0 0
0 0 0 0 f g 0 h i
0 0 0 0 g j 0 i k
0 0 0 e 0 0 l 0 0
0 0 0 0 h i 0 m n
0 0 0 0 i k 0 n o


,

where

a = 1
u′2−u′+1 b =

(u′−1)
√

−u′(u′2+1)

|u′2−u′+1| c = u′3

u′2−u′+1

d = 1
u2−u+1 e =

(u−1)
√

−u(u2+1)

|u2−u+1| f = 1
(u2−u+1)(u′2−u′+1)

g =
(u′−1)

√
−u′(u′2+1)

(u2−u+1)|u′2−u′+1| h =
(u−1)

√
−u(u2+1)

(u′2−u′+1)||u2−u+1| i =
(u−1)(u′−1)

√
uu′(u2+1)(u′2+1)

|u2−u+1||u′2−u′+1|

j = u′3

(u′2−u′+1)(u2−u+1) k =
u′3(u−1)

√
−u(u2+1)

(u′2−u′+1)|u2−u+1| l = u3

u2−u+1

m = u3

(u2−u+1)(u′2−u′+1) n =
u3(u′−1)

√
−u′(u′2+1)

(u2−u+1)|u′2−u′+1| o = u3u′3

(u2−u+1)(u′2−u′+1)

6. On the Irreducibility of the Tensor Product of the Real
Specializations of Albeverio’s Representations of B3

We specialize the indeterminates involved in defining the tensor product of Albeverio’s
representations of B3 to non zero real numbers. We investigate whether or not there
are invariant subspaces under the tensor product of the representations. Now, we prove
Theorem 3.1.
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Sufficient conditions of irreducibility: For a unitary representation, the orthogonal
complement of a proper invariant subspace is again a proper invariant subspace. Thus,
to show irreducibility, it suffices only to show that there are no proper invariant
subspaces of dimensions 1, 2, 3 and 4 if C2 is distinct from C ′2.
Invariant subspaces of dimension one. If x is a generator of a one-dimensional
invariant subspace, then since ρ3(J)(x) = λx, some scalar λ, we must have x belongs
to span⟨e1, e5, e9⟩ or x belongs to span ⟨e2, e6, e7⟩ or x belongs to span⟨e3, e4, e8⟩.
From the shape of the matrix ρ3(S) and the allowed specializations for C and C’, the
third possibility is to rule out. And so is the second one. It remains to study the first
possibility, where x belongs to span⟨e1, e5, e9⟩. Let A = ⟨α1e1 + α5e5 + α9e9⟩. Then,

ρ3 (S) e1 = λ
(
α1 0 0 0 α5 0 0 0 α9

)T
for some scalar λ. Here we notice that fk − gi = 0

but fn − ui ̸= 0 if C2 is distinct from C ′2. This implies α5 = α9 = 0. Then from the
eight row, we derive α1 = 0. Hence if C2 is distinct from C ′2, there is no one-dimensional
invariant subspace.
Invariant subspaces of dimension two. From the diagonal shape of ρ3(J), the pos-
sible 2-dimensional invariant subspaces are ⟨α1e1 + α5e5 + α9e9, α3e3 + α4e4 + α8e8⟩,
⟨α1e1 + α5e5 + α9e9, α2e2 + α6e6 + α7e7⟩, ⟨α2e2 + α6e6 + α7e7, α3e3 + α4e4 + α8e8⟩,
⟨e1, ei⟩ for i = 5, 9, ⟨e2, ei⟩ for i = 6, 7 and ⟨e3, ei⟩ for i = 4, 8. Here, α′

is are scalars. We
observe that for any vector belonging to either one of these spaces, we have at least two
of its components are zeros. From the shape of ρ3(S) and the specializations, we rule
out the subspaces of the form ⟨ei, ej⟩. Since the argument is quite similar in handling
all the other subspaces, we take A = ⟨α1e1 + α5e5 + α9e9, α3e3 + α4e4 + α8e8⟩ as an
example to show that the subspace is not invariant if C2 ̸= C ′2.

If A = ⟨α1e1 + α5e5 + α9e9, α3e3 + α4e4 + α8e8⟩, then ρ3(S) (α1e1 + α5e5 + α9e9) ∈
A. We show that the 2nd entry and the 7th entry cannot be both zeros. If 2nd entry
fα5 + iα9 = 0, we get

−8C ′2

√(
1

4
− C2

)
α5 + 8CC ′

√(
1

4
− C ′2

)
α5 = 0. (1)

If the 7-th entry mα5 + xα9 = 0, we get

8C

√(
1

4
− C2

)(
1

4
− C2

)
α5 + 2C ′(4C2 − 1)α9 = 0. (2)

By solving equations (1) and (2), we get C ′2 = C2, which is a contradiction. So, the 2nd
and 7th entries cannot be zeros at the same time. Thus, ρ3(U) (α1e1 + α5e5 + α9e9) /∈ A.
Therefore, the subspace A = ⟨α1e1 + α5e5 + α9e9, α3e3 + α4e4 + α8e8⟩ is not invariant.
Invariant subspaces of dimension three. As in dimension 2, we only consider the
three dimensional invariant subspace which contains vectors whose none of their compo-
nents are zeros. Take A = ⟨α1e1 + α5e5 + α9e9, α3e3 + α4e4 + α8e8, α2e2 + α6e6 + α7e7⟩.
Let V1 = α1e1 + α5e5 + α9e9, V2 = α3e3 + α4e4 + α8e8 and V3 = α2e2 + α6e6 + α7e7.

• ρ3(S)(V1) ∈ A.

So, we get (aα5+ eα9)e1+(fα5+ iα9)e2+(gα5+kα9)e3+(uα5+nα9)e4+(aα1+ oα5+
sα9)e5+(bα1+pα5+tα9)e6+(mα5+xα9)e7+(dα1+qα5+zα9)e8+(eα+sα5+vα9)e9 ∈ A.
Thus, ρ3(S)(V1) = k1V1+k2V2+k3V3, where aα5+eα9 = K1α1, aα1+oα5+sα9 = K1α5,
eα+sα5+ vα9 = K1α9, gα5+kα9 = K2α3, uα5+nα9 = K2α4, dα1+ qα5+ zα9 = K2α8,
fα5 + iα9 = K3α2, bα1 + pα5 + tα9 = K3α6 and mα5 + xα9 = K3α7.
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• ρ3(S)(V2) ∈ A

So we get (dα8)e1+(aα4+hα8)e2+(bα4+iα8)e3+(bα3+mα8)e4+(gα3+uα4+qα8)e5+
(jα3 + lα4 + sα8)e6 + (eα3 +wα8)e7 + (iα3 +mα4 + yα8)e8 + (kα3 + nα4 + zα8)e9 ∈ A.
Thus, ρ3(S)(V2) = d1V1 + d2V2 + d3V3, where dα8 = d1α1, gα3 + uα4 + qα8 = d1α5,
kα3+nα4+ zα8 = d1α9, bα4+ iα8 = d2α3, bα3+mα8 = d2α4, iα3+mα4+ yα8 = d2α8,
aα4 + hα8 = d3α2, jα3 + lα4 + sα8 = d3α6 and eα3 + wα8 = d3α7

• ρ3(S)(V3) ∈ A

So, we get (bα6)e1+(gα6+dα7)e2+(jα6+eα7)e3+(aα2+lα6)e4+(fα2+pα6+mα7)e5+
(gα2 + rα6 + nα7)e6 + (dα2 + nα6)e7 + (hα2 + sα6 +wα7)e8 + (iα2 + tα6 + xα7)e9 ∈ A.
Thus, ρ3(S)(V3) = m1V1+m2V2+m3V3, where bα6 = m1α1, fα2+ pα6+mα7 = m1α5,
iα2+tα6+xα7 = m1α9, jα6+eα7 = m2α3, aα2+ lα6 = m2α4, hα2+sα6+wα7 = m2α8,
gα6 + dα7 = m3α2, gα2 + rα6 + nα7 = m3α6 and dα2 + nα6 = m3α7.

Without loss of generality, we assume α1 = α2 = α3 = 1. Solving the system above,
we get the following equations.

kα5 + nα4α5 + zα5α8 − gα9 − lα4α9 − sα8α9 = 0 (3)

k + nα4 + zα8 − dα8α9 = 0 (4)

g − lα4 − sα8 − dα5α8 = 0 (5)

uα5 + iα9 − gα5α4 − kα9α4 = 0 (6)

b+ pα5 + tα9 − fα5α6 − iα9α6 = 0 (7)

mα5 + xα9 − fα5α7 − iα9α7 = 0 (8)

k + nα4 + zα8 − dα4α8α9 = 0 (9)

g + lα4 + sα8 − dα5α8 = 0 (10)

a+ oα5 + sα9 − aα2
5 − eα5α9 = 0 (11)

gα6α7 + dα2
7 − nα7 = 0 (12)

The aim is to write the values of αi in terms of α5 and α9 and then solve for α5 in terms
of α9 (i = 4, 6, 7, 8, 9). From equation (6), we get

α4 =
8CC ′

√
(14 − C2)α9 − 8C2

√
(14 − C2)α5

8C ′
√

(14 − C2)(14 − C ′2)α5 − 2C(4C ′2 − 1)α9

.

From equation (7), we get

α6 =
16C2C ′

√
(14 − C ′2)α5 − 4C(4C ′2 − 1)

√
(14 − C ′2)α9 − 4C ′

√
(14 − C ′2)

8C ′2
√

1
4 − C2α5 − 8CC ′

√
1
4 − C ′2α9

.
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From equation (8), we get

α7 =
8C
√

(14 − C2)(14 − C ′2)α5 + 2C ′(4C2 − 1)α9

8CC ′
√

1
4 − C ′2α9 − 8C2

√
1
4 − C2α5

.

By solving equations (9) and (10), we get

α8 =
(2c2(4c′2 − 1) + 8c′(14 − c′2)

√
(14 − c′2)

4c2
√

(14 − c′2)α9 + 4c
√(

1
4 − c2

) (
1
4 − c′2

)
α5

.

At last, we replace the values of α6 and α7 in equation (12) and then we get α9 in terms
of α5. By solving equations (3)-(5), we get

α9 =
(−4C3C ′3 + 2C ′C3 + 2C ′3C)α5

32C2C ′2α5 − (2C2 + 2C ′2 − 1)
√(

1
4 − C2

) (
1
4 − C ′2

) .
Comparing both equations, we get a contradiction. Thus, the subspace

A = ⟨α1e1 + α5e5 + α9e9, α3e3 + α4e4 + α8e8, α2e2 + α6e6 + α7e7⟩

is not invariant.
Invariant Subspaces of Dimension Four. As in the previous cases, we will exclude
these subspaces that are ruled out by just allowing the specializations for C and C’. We
consider a possible invariant subspace when the zero argument cannot be applied. That
is, at least one vector of the subspace has no zero components.

Let A = ⟨α1e1 + α5e5 + α9e9, α3e3 + α4e4 + α8e8, α2e2 + α6e6 + α7e7, e8⟩. Along the
same lines as in dimension 3 and performing several computations, we get α4 = 1 and
α7 =

CC′√
( 1

4
−C2)( 1

4
−C′2)

. This implies that

α6 =
(8C ′2 − 2)

√
1
4 − C2 − 8CC ′2

4
√(

1
4 − C2

) (
1
4 − C ′2

) (13)

α6 =
4(14 − C2)(14 − C ′2) + 4C2C ′2

((8C ′2 − 2)
√

1
4 − C2 − 8CC ′2)

√(
1
4 − C2

) (
1
4 − C ′2

) (14)

α6 =
(1− 4C ′2 − 4C2)

√
1
4 − C2

C ′2 − 2C ′
√

1
4 − C2

(15)

CC ′ + (8C ′2 − 2)
√

1− 4C2 + 8CC ′2 = 0. (16)

By (13) and (14), it follows that

4C ′(−4C2
√

1− 4C2+C ′(1−8C2−16C4)+16C2C ′2
√

1− 4C2+4C ′3(4C2−1) = 0 (17)
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By (15) and (16), it follows that

(1−4C2−4C ′2)
√

1− 4C2−C ′(2C ′−
√

1− 4C2)(
1

4
−C2)(−8C2C ′2(4C ′2−1)(

1

4
−C2) = 0

(18)
Solving equations (17) and (18), we get (C,C ′) = (±1

2 , 0), (C,C
′) = (0,±1

2) and (C,C ′) =
(0.45−0.09i,−0.36−0.014i) which are all rejected by our hypothesis. Thus, the subspace
A = ⟨α1e1 + α5e5 + α9e9, α3e3 + α4e4 + α8e8, α2e2 + α6e6 + α7e7, e8⟩ is not invariant.
Necessary conditions of irreducibility: We assume that C2 = C ′2. In the case C = C ′, it
is easy to see that a+e = a+o+s = e+s+v = 1 and f+ i = g+k = u+n = b+p+ t =
m+ x = d+ q+ z = 0. Hence, the one-dimensional subspace generated by ⟨e1 + e5 + e9⟩
is invariant. In the case C = −C ′, we also see that −a + e = −1, −a − o + s = −1,
−e− s+ v = 1 and −f + i = −g+ k = −u+n = −b− p+ t = −m+x = −d− q+ z = 0.
Hence, the one-dimensional subspace generated by ⟨−e1 − e5 + e9⟩ is invariant. ■

7. On the Irreducibility of the Tensor Product of the Complex
Specializations of Albeverio’s Representations of B4

We specialize the indeterminates u and u′ to non zero complex numbers. Our aim is
to study the irreducibility of the tensor product of complex specializations of Albeverio’s
representations of B4. The representations are 9× 9 matrices. We determine whether or
not there are invariant subspaces under the tensor product of the representation. Now,
we prove Theorem 3.2.

We show that there are no non trivial proper invariant subspaces. Assume that u ̸= u′

and uu′ ̸= 1 in order to reduce the number of possible invariant subspaces where we need
to study.
Invariant Subspaces of Dimension one. If there exists a one-dimensional invariant

subspace spanned by x = (α1, ..., α9)
T , assuming that u ̸= u′ and uu′ ̸= 1, then

ρ4(σ1)(x) = λx for some scalar λ forces the following set of conditions on the α′
is :

1) α1 ̸= 0 implies αi = 0 for all i ̸= 1.
2) α2 ̸= 0 implies αi = 0 for all i ̸= 2, 3.
3) α4 ̸= 0 implies αi = 0 for all i ̸= 4, 7.
4) α5 ̸= 0 implies αi = 0 for all i ̸= 5, 6, 8, 9.

Then, the one dimensional invariant subspaces candidates to study are:
1) S = ⟨e1⟩.
2) S = ⟨α2e2 + α3e3⟩.
3) S = ⟨α4e4 + α7e7⟩.
4) S = ⟨α5e5 + α6e6 + α8e8 + α9e9⟩.
Case 1. Consider S = ⟨e1⟩. ρ4 (σ2) (e1) =

(
xx′ r 0 r′ vv′ 0 0 0 0

)T
r ̸= 0 implies that S

is not invariant.
Case 2. Consider S = ⟨α2e2 + α3e3⟩. Then

ρ4 (σ2) (α2e2 + α3e3) =
(
rα2 y

′α2 xα3 vv
′α2 z

′α2 vα3 0 0 0
)T

.

If S is invariant then r ̸= 0 implies that α2 must be zero and v ̸= 0 implies that α3 must
be zero, a contradiction.
Case 3. Consider S = ⟨α4e4 + α7e7⟩. Then

ρ4 (σ2) (α4e4 + α7e7) =
(
r′α4 vv

′α4 0 yα4 zα4 0 x′α7 v
′α7 0

)T
The values of r′ and v′ are both non zero which force respectively that α4 = 0 and α7 = 0.
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Case 4. Consider S = ⟨α5e5 + α6e6 + α8e8 + α9e9⟩. Then
ρ4 (σ2) (α5e5 + α6e6 + α8e8 + α9e9) =

(
vv′α5 z

′α5 vα6 zα5 ww
′α5 wα6 v

′α8 w
′α8 α9

)T
.

Same reasoning as in Case 3, using v and v′ to get α5 = 0, α6 = 0, α8 = 0. Thus, we

have ρ4 (σ3) (α5e5 + α6e6 + α8e8 + α9e9) =
(
0 0 0 0 iα9 kα9 0 nα9 oα9

)T
. This implies

that α9 = 0, a contradiction.
Invariant Subspaces of Dimension Two. As before, we could apply the zero argu-
ment and we take

S = ⟨α4e4 + α7e7, α5e5 + α6e6 + α8e8 + α9e9⟩.

We have

ρ4 (σ2) (α4e4 + α7e7) =
(
r′α4 vv

′α4 0 yα4 zα4 0 x′α7 v
′α7 0

)T
and

ρ4 (σ3) (α4e4 + α7e7) =
(
0 0 0 dα4 + lα7 0 0 eα4 +mα7 0 0

)T
.

Since r′ is non zero, it follows from ρ4 (σ2) (α4e4 + α7e7) that α4 = 0 and so α7 = 0 by
considering the fourth component of ρ4 (σ3) (α4e4 + α7e7) is a contradiction.
Invariant Subspaces of Dimension Three. As in dimension 2, we can use the zero
argument. To see this, take

S = ⟨α2e2 + α3e3, α4e4 + α7e7, α5e5 + α6e6 + α8e8 + α9e9⟩ .

We have

ρ4 (σ2) (α2e2 + α3e3) =
(
rα2 y

′α2 x
′α3 vv

′α2 z
′α2 vα3 0 0 0

)T
and

ρ4 (σ3) (α2e2 + α3e3) =
(
0 aα2 + bα3 bα2 + cα3 0 0 0 0 0 0

)T
.

Since r is non zero, it follows from ρ4 (σ2) (α2e2 + α3e3) that α2 = 0 and so α3 = 0 by
considering the second component of ρ4 (σ3) (α2e2 + α3e3), a contradiction.
Invariant Subspaces of Dimension Four. We cannot always use zero argument as
in dimension 3. For instance, we take

S = ⟨α2e2 + α3e3, α4e4 + α7e7, α5e5 + α6e6 + α8e8 + α9e9, e1⟩.

Let V1 = α2e2 + α3e3, V2 = α4e4 + α7e7 and V3 = α5e5 + α6e6 + α8e8 + α9e9. Then

• ρ4 (σ2) (V1) = K1V1 +K2V2 +K3V3, where

−u′2

(u−1)(u′−1)α2 = K1α2,
−1

(u−1)α3 = K1α3,

√
(u3−u2+u)(u′3−u′2+u)

(u−1)(u′−1) α2 = K2α4,

u′2
√

(−u3+u2−u)

(u−1)(u′−1) α2 = K3α5 and

√
(−u3+u2−u)

u−1 α3 = K3α6.

• ρ4 (σ2) (V2) = m1V1 +m2V2 +m3V3, where
√

(u3−u2+u)(u′3−u′2+u)

(u−1)(u′−1) α4 = m1α2,
−u2

(u−1)(u′−1)α4 = m2α4,
−1

(u′−1)α7 = m2α7,

u′2
√

(−u3+u2−u)

(u−1)(u′−1) α4 = m3α5 and

√
(−u′3+u′2−u′)

u′−1 α7 = m3α8.

• ρ4 (σ2) (V3) = d1V1 + d2V2 + d3V3, where

u′2
√

(−u3+u2−u)

(u−1)(u′−1) α5 = d1α2,

√
(−u3+u2−u)

u−1 α6 = d1α3,
u2
√

(−u′3+u′2−u′)

(u−1)(u′−1) α5 = d2α4,√
(−u′3+u′2−u′)

u′−1 α8 = d2α7,
u2u′2

(u−1)(u′−1)α5 = d3α5,
u2

u−1α6 = d3α6,
u′2

u′−1α8 = d3α8 and
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α9 = d3α9. Solving all the above we get the following equations.

u′2 − u′ + 1 = 0 (19)

u′2α2α6 − (u′ − 1)α2α6 = 0 (20)

u2 − u+ 1 = 0 (21)

uα5 + iα9 − gα5α4 − kα9α4 = 0 (22)

u2α4α8 − (u− 1)α5α7 = 0 (23)

u′2α3α5 − (u′ − 1)α2α6 = 0 (24)

u2α5α7 − (u′ − 1)α4α8 = 0 (25)

u2(u′ − 1)− u′2(u− 1) = 0 (26)

u2u′ − (u− 1)(u′ − 1) = 0 (27)

Solving equations (20) and (27), we get (u− 1)(u′)− (u− 1)(u′− 1) = 0. So, (u− 1)(u′−
u′ + 1) = 0. Then, we have u = 1, which is a contradiction. So, S is not invariant. ■
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