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Abstract. In this paper, the notions of a Suzuki-Berinde type Fs-contraction and a Suzuki-
Berinde type Fg—contraction are introduced on a S-metric space. Using these new notions,
a fixed-point theorem is proved on a complete S-metric space and a fixed-circle theorem is
established on a S-metric space. Some examples are given to support the obtained results.
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1. Introduction

The fixed-point theory was started with the classical Banach contraction principle [2].
This principle has been generalized using different approaches. One of these approaches
is to generalize the used contractive conditions (for example, see [3, 4, 8, 18, 20, 25, 26]).
Another approach is to generalize the used metric spaces. For example, the concept of
S-metric space was introduced for this purpose as a generalization of metric spaces [23].
Using this space, new fixed-point theorems were obtained with various approaches such as
generalized Banach’s contractive conditions, Rhoades’ condition, Wardowski’s condition
and etc (for more details, see [5-7, 9, 10, 14-16, 19, 21-24]).

Recently, the fixed-circle problem has been considered and studied a new direction of
the extensions of the fixed-point results on metric and S-metric spaces. For example,
in [13], some fixed-circle theorems were proved using Caristi’s inequality with existence
and uniqueness conditions on metric spaces. In [12], using a family of some functions, a
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fixed-circle result was given with discontinuity application. Therefore, some fixed-circle
results were studied using different approaches on S-metric spaces (see [11, 17]).

Motivated by the above studies, in this paper we prove a fixed-point theorem and a
fixed-circle theorem using the Suzuki-Berinde type contractive conditions on S-metric
spaces. In Section 2, we recall some definitions, results and examples related to S-metric
spaces. In Section 3, we define two new notions of a Suzuki-Berinde type Fg-contraction
and a Suzuki-Berinde type Fg—contraction. Using these contractive conditions, we present
a fixed-point theorem and a fixed-circle theorem with some illustrative examples on S-
metric spaces.

2. Preliminaries

In this section, we recall some necessary notions and results about S-metric spaces.

Definition 2.1 [23] Let X be a nonempty set and S : X x X x X — [0, 00) be a function
satisfying the following conditions for all u, v, w,a € X:

(S1) S(u,v,w) =0 if and only if u = v = w,

(52) S(u,v,w) < S(u,u,a) +S(v,v,a) + S(w,w, a).

Then S is called a S-metric on X and the pair (X,S) is called a S-metric space.

Definition 2.2 [23] Let (X, S) be a S-metric space and {u,,} be a sequence in this space.

(1) A sequence {u,} C X converges to u € X if S(up,un,u) — 0 as n — oo,
that is, for each € > 0, there exists ng € N such that for all n > ng we have
S(Un, un,u) < €.

(2) A sequence {u,} C X is a Cauchy sequence if S(up, tn, upy) — 0 as n,m — oo,
that is, for each € > 0, there exists ng € N such that for all n,m > ng we have
S (tn, Up, um) < €.

(3) The S-metric space (X,S) is complete if every Cauchy sequence is a convergent
sequence.

Lemma 2.3 [23] Let (X,S) be a S-metric space and u,v € X. Then we have
S(u,u,v) = S(v,v,u).

The relationships between a metric and a S-metric were studied in different papers
such as [6, 7, 16]. In [7], a formula of a S-metric space which is generated by a metric d
was given as follows:

Let (X,d) be a metric space. Then the function Sz : X x X x X — [0,00) defined by
Sa(u,v,w) = d(u,w) + d(v,w) for all u,v,w € X is a S-metric on X. The S-metric Sy
is called the S-metric generated by d [16]. We note that there exists a S-metric which is
not generated by any metric d as seen in the following example.

Ezample 2.4 [16] Let X = R. If we consider the function S : X x X x X — [0, 00)
defined by S(u,v,w) = |u — w| + |u+w — 2v| for all u,v,w € X, then S is a S-metric
on X which is not generated by any metric d.

Also in [6], it was shown that every S-metric defines a metric dg(u,v) = S(u, u,v) +
S(v,v,u) for all u,v € X. But the function dg does not always define a metric since the
triangle inequality does not satisfied for all elements of X.

Ezxzample 2.5 [16] Let X = {1,2,3}. If we consider the function S : X x X x X — [0, 00)
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defined by
8( 9 7 ) (2 2 1) 57
S5(2,2,3) =8(3,3,2) =5(1,1,3) =5(3,3,1) =2
S(u,v,w) =0if u=0v=w,
S(u, w) = 1 otherwise.

for all u,v,w € X, then § is a S-metric on X which is not generated by any metric d
and does not generate a metric dg.

Also the relationship between a b-metric defined in [1] and a S-metric was proved in
the following theorem.

Theorem 2.6 [21] Let (X,S) be a S-metric space and d”(u,v) = S(u,u,v) for all
u,v € X. Then we have

(1) d° is a b-metric on X,

(2) up — uin (X,S) if and only if u, — u in (X,d%),

(3) {un} is a Cauchy sequence in (X,S) if and only if {u,} is a Cauchy sequence in
(X, a%).

The metric d° is called the b-metric generated by S. From the above relationships, it
was important to study new fixed-point results on S-metric spaces.

3. New fixed-point and fixed-circle results on S-metric spaces

In this section, using the Suzuki-Berinde and Wardowski’s techniques, we give a fixed-
point theorem and a fixed-circle theorem on S-metric spaces. Some illustrative examples
are also presented for the validity of our results. For this purpose, we use the following
known family of functions and a lemma.

Let Af be the set of all functions F' : Rt — R satisfying the following conditions [26]:

(Fy) F is strictly increasing,

(Fy) For all sequence {u,} C RT, lim u, =0 if and only if lim F(u,) = —o0,

n—oo n—oo

(F3) There exists 0 < k < 1 such that lim o*F(a) = 0.

a—07t

Lemma 3.1 [20] Let F': Rt — R be an increasing mapping and {u,} -, be a sequence
of positive real numbers. Then the followings hold:

(a) If lim F(u,) = —o0, then lim w, = 0.
n— o0 n—oo
(b) If inf F = —oco and lim u, = 0, then lim F(u,) = —oc.
n—oo n—oo

After that, Secelean replaced the condition (F») by (F3) as follows:
(F}) inf F = —oo or (FY') There exists a sequence {uy} -, of positive real numbers such
that ll)m F(uy) = —oc.

n—oo

Further, Piri et al. [18] used the following condition (F3) instead of the condition (F3)
to obtain some new fixed-point results.
(F3) F is continuous on (0, 00).
In the sequel, we consider F be the family of all functions F' : Rt — R satisfying in
conditions (F1), (Fy) and (F%).

At first, we define the notion of Suzuki-Berinde type Fs-contraction on S-metric spaces.
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Definition 3.2 Let (X,S) be a S-metric space and T': X — X be a self-mapping. If
there exist F' € F, 1 > 0 and 79 > 0 such that for each u,v € X with Tu # Tv, we have

%S(Tu, Tu,u) < S(u,u,v)

implies
T+F(S(Tu, Tu,Tv)) < F(S(u,u,v))+momin{S(Tu, Tu,u), S(Tv, Tv,u),S(Tu,Tu,v)},

then T is called a Suzuki-Berinde type Fgs-contraction on X.
Using Definition 3.2, we prove the following fixed-point result.

Theorem 3.3 Let (X,S) be a complete S-metric space and 7" : X — X be a self-
mapping. If T is a Suzuki-Berinde type Fg-contraction on X, then T has a unique fixed
point w € X and the sequence {T™ug} converges to u for every ug € X.

Proof. Let up € X and the sequence {uy,} be defined by T"ug = w,. If there exists
no € N such that u,,41 = up,, then u,, is a fixed point of T". Therefore, assume that
Tuy = Unt1 # upn. Now, we have

1 1

gS(Tun,Tun, Up) = gS(un,un, Un+1)
< S(Upy tp, Tup,)
= S(Tup, Tup, up),

for all n € N. Using the hypothesis, we get

1+ F(S(Tun, Tup, uy)) = 71 + F(S(Tun, Ttupn, Ttun—1))
< F(S(un, un,up—1)) + 1o min{S(Tup, Tun, uy),
S(Tun—17 Tun—l: un)a S(T’U,n, Tunv un—l)}

and so
F(S(Tup, Tup,up)) < F(S(Tup—1, Tup—1,Un-1)) — 71
< - < F(S(Tug, Tug, ug)) — nr,
for all n € N. Taking limit as n — oo, we have nILH;oF(S(TU”’ Ty, up)) = —o0 and so
lim S(Tup, Tup, u,) = 0, (1)

n—oo
since F' € F. Now, we show that the sequence {u,} is Cauchy. On the contrary, {u,}

is not a Cauchy sequence. Suppose that there exists € > 0 and sequences {z(n)} and
{y(n)} of natural numbers such that for z(n) > y(n) > n, we have

S(uaz(n)7u:1:(n)7uy(n)) Z €. (2)

Therefore, S(Uz(n)—1, Ua(n)—15Uy(n)) < € for all n € N. Using the inequality (2), Lemma
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2.3 and the condition (S2), we obtain

e<S(u (n)> Yz(n), “y(n))
25(
2

S(

z(n)s Yz(n)s ux(n)fl) + S(uy(n) s Uy(n)> uw(n)fl)

(n)> Ua(n)s U (n)—1) T+ &

NN N

x
U
U
Using the equality (1) and taking the limit, we get

lim S(u:r(n) y ux(n) y uy(n)) = E&. (3)

n—oo

From (1) and (3), we can choose a natural number ny € N such that

1 €
§S(Tux(n)7 Tux(n)? ux(n)) < g < S(“x(n)a Ug(n)s uy(n))7

for all n > ng. Using the hypothesis, we obtain

T+ F(S(Tua:(n)7 Tux(n)7 Tuy(n)))

S(Tua:(n)a Tux(n) y Ug(n) )7 S(Tuy(n) ) Tuy(n)v Uz(n))7 }

<FS xr(n)» x(n)» n + i
(S(Ua(n), Ua(n): Uy(n))) + T2 mm{ S(Tty(ny, Ty() s Uy (m))

< F(S(ux(n)a Ug(n)» Uy(n) )) + T2 min 2S(Tuy(n) ) Tuy(n)v Tuz(n)) + S(Tum(n)v Tux(n) ) um(n))v
2S(Tu:c(n) ) Tua;(n) ) ur(n)) + S(uy(n)a Uy (n)s ux(n))

= F(S(uz(n) » Uz(n), uy(n))) + TQS(Tux(n)7 Tu:]c(n)’ u:p(n))
Using the condition (F3), and (1) and (3), we get 71 + F'(¢) < F(e), which is a contra-

diction since 71 > 0. Therefore, {u,} is a Cauchy sequence. From the completeness of
X, there exists u € X such that uw, — u as n — co. Thus we have lim S(uy, up,u) = 0.
n—oo

Now, we claim that

1 1
gS(Tun,Tun,un) < S(up, un,u) or §S(T2un,T2un,Tun) < S(Tup, Tup,u), (4)

for all n € N. On the contrary, we assume that there exists m € N such that

1 1
gS(Tum,Tum,um) > S(uUp, U, u) and 53(T2um,T2um,Tum) > S(T U, T, uw).
(5)

Thus, using Lemma 2.3, we get

38 (U, Uy 1) < S(T Uy Ty Uy
S

—~~

umaurmTum)

< 28 (U, U, w) + S (T, Ty, w),
which implies

S (U, U, ) < S(TUpy, Ty, w0). (6)
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From the inequalities (5) and (6), we obtain

—_

S (Umy U, 1) < S(TUpy, Ty, u) < §S(T2um,T2um,Tum). (7)
Also using the hypothesis and Lemma 2.3, we have

1 1
gS(Tum,Tum,um) = gS(um,um,uerl)

< S (U, Uy Urn41)

= S(Ttm, Ty, U,
and

1+ F(S(T2um, T?uy,, Tup)) =11 + F(S(TUpm, Tup, T2um))
< F(S(um, um, Tup))

S(UTWA Um, Tum)7 S(umu Um,, T2um)7
S(T Uy, Tty Ty

= F(S(Tum, Tum, um)),

+7o min {

which implies
71+ F(S(T* U, T?tm, Tm)) < F(S(Tum, Ttim, Un,)).- (8)
From the inequality (8), then we have
F(S(T% U, T, Tttn)) < F (ST, T, ),
and therefore, using strictly increasing property of F' we obtain that
S(T2um, Ty, Tum) < S(Ttm, T, tm,) (9)
Using the inequalities (5), (7) and (9), we obtain

S(T?* U, Ty, Ttiy) < S(Tthyy, Tthy, U
< 285 (T U, T, 1) + S(Upny Uy, u)
2 1
< gS(TQUm, T?u,,, Tup) + gS(TQUm, T?u,,, Tup,)

= S(Tzum,T2um,Tum),

which is a contradiction. Therefore, the inequalities given in (4) are satisfied. So using
Lemma 2.3, for each n € N, we get

: S (Un; Un, Tun ), S(Uun, un, Tu),
71+ F(S(Tun, Tup, Tu)) < F(S(Up, tn,w)) + T2 mln{ S(u.u, Tuy) ,
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which implies

71+ F(S(Tun, Tun, Tu)) < F(S(tn, un, w)) + 72 min { S(un, u"’;(yz)’f(f:)’ tn, Tw), } .

(10)

Using (10), the condition (F3) and Lemma 3.1, we obtain lim F(S(Tuy, Tuy,, Tu)) = —00
n—oo
and lim S(Tuy, Tuy, Tu) = 0. Hence, we have

n—oo

S(u,u,Tu) = lim S(upy1, upt1,Tu) = lim S(Tuy, Tup, Tu) =0

n—oo n—oo

and so wu is a fixed point of T'. Finally, we show that w is a unique fixed point of 7. On the
contrary, v is another fixed point of 7" such that u # v. Then we have S(Tu, Tu, Tv) =
S(u,u,v) >0 and

%S(Tu,Tu,u) =0< S(u,u,v).

Using the hypothesis, we obtain

F(S(u,u,v)) = F(S(Tu, Tu,Tv))
<71+ F(S(Tu,Tu,Tv))

< F(8(u,u,v)) + T min { F(S(u,u, Tu)), F(S(u,u, Tv)), } |

F(S(v,v,Tu))

which implies F/(S(u,u,v)) < F(S(u,u,v)). Now, using the strictly increasing property
of F, we get S(u,u,v) < S(u,u,v), which is a contradiction. Therefore, u is a unique
fixed point of T [ |

Now we give the following illustrative example.

Exzample 3.4 Let us consider the sequence {A,} defined as A, =2+4+---+2n =
n(n+1). Let X = {A,, : n € N} and the function S : X x X x X — [0,00) be defined
as in Example 2.4. Then (X,S) is a complete S-metric space and the S-metric is not
generated by any metric. Let us consider the self-mapping T : X — X defined by

o A1 u:Al
Tu_{An_l u=A, for (n >1)

for all uw € X. If we take the mapping F(t) = —% +t, 71 =4 and » = 0, then T is
a Suzuki-Berinde type Fg-contraction on X. Indeed, we show this under the following
cases:
Case 1. Let 1 =n < m. Then we have

S(TAWTA,,TA) =2|TAp, —TA | =2]An-1—A1|=2[44+6+---+2(m—1)]

and

S(Am, Ay A1) = 2| Ay — Ay = 2[4+ 6+ -+ 2m].
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Since m > 1, so we get

1
4 —
2[4+ 6+ +2(m —1)]
1
<_
2[4+6+ - +2m]

+2[4+6+ - +2(m—1)]

+2[4464---+2(m—1)+2m)].

Hence, we have

1
4————— +2|TA, —TA -+ 2|A,, — Aq].
ST A, —TA T A il < 2 A — A [Am = A
Case 2. By the similar arguments used in above, we get
4 ;—&-MTA TA| < ;4-2]14 Al
2T A, — TA| " oA, - Ay mo

for1<m<n.
Case 3. Let 1 <n < m. Then we get
S(TAn,TA,TA,) =2|TA,, —TA,| =2|An—1— An_1|
=22n+4+2(n+1)+---+2(m—1)]

and
S(Amy Ay An) =214 — Ap| =22(n+ 1)+ 2(n+2) + -+ - 4+ 2m].
Since 1 < n <m and 4n + 4 < 4m, we have

1
4_2[2n+2(n+1)+...+2(m_1)]+2[2n+2(n+1)+“'+2(m—1)]

<_2[2(n+1)+2(n1—|—2)_|_..._|_2m} +22(n+ 1) +2(n+2)+ - +2(m— 1)+ 2m].

So we get

1

4 _
2T A, — TA,|

+2|T A, —TA,| < — + 2|4, — Anl.

o
2 [ Ay — Ay

Therefore, T is a Suzuki-Berinde type Fg-contraction and T'A; = Aj; that is, Ay is a
unique fixed point of 7.

If we take 70 = 0 then we get the following corollaries.

Corollary 3.5 Let (X,S) be a complete S-metric space and 7' : X — X be a self-

mapping. If there exist 71 > 0 and F' € F such that for each u,v € X with Tu # Tw,
1

we have gS(Tu,Tu,u) < S(u,u,v) implies 71 + F(S(Tw, Tu,Tv)) < F(S(u,u,v)), then

T has a unique fixed point u € X and the sequence {T"ug} converges to u for every
ug € X.
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Corollary 3.6 Let (X,S) be a complete S-metric space and 7' : X — X be a self-
mapping. If there exist 71 > 0 and F' € F such that for each u,v € X with Tu # Tv, we
have 71 + F(S(Tw, Tu, Tv)) < F(S(u, u,v)), then T has a unique fixed point u € X and
the sequence {T™ug} converges to u for every ug € X.

If we consider Theorem 2.6, then we get the Suzuki-Berinde type fixed-point theorem
on b-metric spaces.

Theorem 3.7 Let (X, ds) be a complete b-metric space and T : X — X be a self-
mapping. If there exist ' € F, 4 > 0 and 75 > 0 such that for each u,v € X with

1
Tu # Tv, we have gdS(Tu,u) < d®(u,v) implies
71+ F(d%(Tu, Tv)) < F(d*(u,v)) + 72 min {d*(Tw, u),d%(Tv,u),d”(Tu,v)},

then T has a unique fixed point u € X and the sequence {T™ug} converges to u for every
ug € X.

Proof. By the similar arguments used in the proof of Theorem 3.3, it is clear. [ |

In [11] and [23], a circle and a disc are defined on a S-metric space as follows, respec-
tively:
C% ={ueX:8(u,uu) =r} and DS  ={xec X :S(u,u,up) <r}.

Uo,T Uo,T

Definition 3.8 [11] Let (X, S) be a S-metric space, CEM be a circle and T': X — X be

a self-mapping. If Tu = u for every u € C’EM then the circle C?i,r is called as the fixed
circle of T.

We introduce the notion of Suzuki-Berinde type Fg—contraction on S-metric spaces.

Definition 3.9 Let (X,S) be a S-metric space and T': X — X be a self-mapping. 7" is
called a Suzuki-Berinde type Fg—contraction on X if there exist F € F, 71 >0, 179 >0
and ug € X such that for each v € X with Tu # u, we have %S(u, u,up) < S(Tu, T'u, u)
implies
7+ F(S(Tu, Tu,u)) < F(S(u,u,up)) + 72 min{S(Tug, Tuo, up),
S(Tug, Tug,w),S(Tu, Tu,up)}

Using Definition 3.9, we obtain the following proposition.

Proposition 3.10 Let (X,S) be a S-metric space and 7' : X — X be a self-mapping.
If T is a Suzuki-Berinde type Fg—contraction with ug € X then we have Tug = ug.

Proof. Assume that Tuy # ug. From the definition of the Suzuki-Berinde type Fg-

1
contraction, we get gS(Um ug, ug) < S(Tug, Tug, up) and so

71 + F(S(Tuo, Tup, up)) < F(S(up, up, up)) + 72 min { §(Tuo, T, uo), S(Ttig, To, o), }

S(Tuo, Tug, uo)
= F(0) + 728 (Tug, Tugp, up),

which is a contradiction with the definition of F'. Therefore, we obtain Tuy = ug. [ ]

Now we prove the fixed-circle theorem.
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Theorem 3.11 Let (X,S) be a S-metric space, T" be a self-mapping on X sat-
isfying the Suzuki-Berinde type Fg—contractive condition with w9 € X and r =
min {S(Tu, Tu,u) : Tu # u}. If S(Tu, Tu,ug) = r for all u € C3 . then C3 . is a fixed
circle of T. Especially, T fixes every circle C  with p < r.

Uo,p

Proof. Let u € C°

Up,T

and Tu # u. By the definition of r, we have %S(u,u, ug) = 5 <
S(Tu, Tu,u). Now, using the Suzuki-Berinde type Fg-contractive property, Proposition
3.10, Lemma 2.3 and the strictly increasing property of F', we obtain

F(S(T0,Tu,) € F(Sus,10)) = 7+ rymin { ST Jutrte) S0

S(Tu, T'u, up)
=F(r)—n

< F(r)

< F(S(Tu, Tu,u)),

which is a contradiction. Therefore, we find T'u = u and so C’qfw is a fixed circle of T'.
Finally, we show that T also fixes any circle C’fmp with p < r. Let v € C’;fw and

suppose that Tu # u. By the Suzuki-Berinde type Fg—contractive property, we have
F(S(Tu, Tu,u)) < F(S(u,u,u0)) — 71 < F(p) < F(S(Tu, Tu,u)),

which is a contradiction. Hence we get T'uw = u. Thus, Cfm p 1s a fixed circle of T'. |

As an immediate result of Theorem 3.11, we obtain the following corollary.

Corollary 3.12 Let (X,S) be a S-metric space, T be a self-mapping on X sat-
isfying the Suzuki-Berinde type Fg—contractive condition with w9 € X and r =
min {S(Tu, Tu,u) : Tu # u}. If S(Tu,Tu,uy) = r for all u € C;fO,T, then T fixes the
disc D2

Uo,T*°
Example 3.13 Let X = {1,2,%,6— %,e,e—i— %} and the S-metric be defined as in
Example 2.4. Then (X, S) is a S-metric space. Let us define the self-mapping 7' : X — X

as
5
2 u=2
Tu=1< 2 )
“ {uothervmse

for all v € X. Then the self-mapping 7" is a Suzuki-Berinde type Fg—contraction with
F=Inu, ug =e, 1 =0.5 and 7 > 0. Indeed, for u = 2, we get

2e — 4

éS(u, u,ug) = <S(Tu,Tu,u) =1
= S(Tu,Tu,u) =1 < S(u,u,ug) = 2e — 4
= In(1) < In(2e — 4) = In(2(e — 4))
= 0.5<In2+In(e —4)
=7+ F(S(Tu, Tu,u)) < F(S(u,u,up))
+7 min {S(T'ug, T'uo, uo), S(Tuo, Tuo, u), S(Tu, Tu, up) } .

Using Theorem 3.11, we get 7 = min {S(T'u, Tu,u) : Tu # u} = 1. It is clear that T" fixes
the circle C(;S:l = {e — %,e + %} and the disc Df,l = {%,e — %,e,e—}— %}
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If we consider Theorem 2.6, then we get the Suzuki-Berinde type fixed-circle theorem
on b-metric spaces.

Theorem 3.14 Let (X,d°) be a b-metric space, T : X — X be a self-mapping and
r = min{dS(Tu,u) :Tu # u} If there exist F € F, 11 > 0, @ > 0 and ug € X such
that for each u € X with Tu # u, we have £d”(u,ug) < d°(Tu,w) implies

71+ F(d%(Tu, u)) < F(d%(u, ug)) + 72 min {d°(Tug, up), d°(Tuo, u), d° (T, uo) },

then C%°

UQ,T

= {ueX:d%u,up) =r} is a fixed circle of T with the condition
d®(Tu,up) = r. Especially, T fixes every circle Cffi , with p < 7, that is, T fixes the
disc D¥ = {ue X :d5u,up) <r}.

Up,T

4. Conclusion

In this section, we prove a Suzuki-Berinde fixed-point theorem and a Suzuki-Berinde
fixed-circle theorem using the Suzuki-Berinde and Wardowski’s techniques on S-metric
spaces. Similarly, new fixed-point or fixed-circle results can be obtained using or modified
the known techniques used in some fixed-point theorems on metric and some generalized
metric spaces.
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