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Abstract. In this paper, the notions of a Suzuki-Berinde type FS-contraction and a Suzuki-
Berinde type FS

C -contraction are introduced on a S-metric space. Using these new notions,
a fixed-point theorem is proved on a complete S-metric space and a fixed-circle theorem is
established on a S-metric space. Some examples are given to support the obtained results.
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1. Introduction

The fixed-point theory was started with the classical Banach contraction principle [2].
This principle has been generalized using different approaches. One of these approaches
is to generalize the used contractive conditions (for example, see [3, 4, 8, 18, 20, 25, 26]).
Another approach is to generalize the used metric spaces. For example, the concept of
S-metric space was introduced for this purpose as a generalization of metric spaces [23].
Using this space, new fixed-point theorems were obtained with various approaches such as
generalized Banach’s contractive conditions, Rhoades’ condition, Wardowski’s condition
and etc (for more details, see [5–7, 9, 10, 14–16, 19, 21–24]).

Recently, the fixed-circle problem has been considered and studied a new direction of
the extensions of the fixed-point results on metric and S-metric spaces. For example,
in [13], some fixed-circle theorems were proved using Caristi’s inequality with existence
and uniqueness conditions on metric spaces. In [12], using a family of some functions, a
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fixed-circle result was given with discontinuity application. Therefore, some fixed-circle
results were studied using different approaches on S-metric spaces (see [11, 17]).

Motivated by the above studies, in this paper we prove a fixed-point theorem and a
fixed-circle theorem using the Suzuki-Berinde type contractive conditions on S-metric
spaces. In Section 2, we recall some definitions, results and examples related to S-metric
spaces. In Section 3, we define two new notions of a Suzuki-Berinde type FS-contraction
and a Suzuki-Berinde type FS

C -contraction. Using these contractive conditions, we present
a fixed-point theorem and a fixed-circle theorem with some illustrative examples on S-
metric spaces.

2. Preliminaries

In this section, we recall some necessary notions and results about S-metric spaces.

Definition 2.1 [23] Let X be a nonempty set and S : X×X×X → [0,∞) be a function
satisfying the following conditions for all u, v, w, a ∈ X:

(S1) S(u, v, w) = 0 if and only if u = v = w,
(S2) S(u, v, w) ⩽ S(u, u, a) + S(v, v, a) + S(w,w, a).
Then S is called a S-metric on X and the pair (X,S) is called a S-metric space.

Definition 2.2 [23] Let (X,S) be a S-metric space and {un} be a sequence in this space.

(1) A sequence {un} ⊂ X converges to u ∈ X if S(un, un, u) → 0 as n → ∞,
that is, for each ε > 0, there exists n0 ∈ N such that for all n ⩾ n0 we have
S(un, un, u) < ε.

(2) A sequence {un} ⊂ X is a Cauchy sequence if S(un, un, um) → 0 as n,m → ∞,
that is, for each ε > 0, there exists n0 ∈ N such that for all n,m ⩾ n0 we have
S(un, un, um) < ε.

(3) The S-metric space (X,S) is complete if every Cauchy sequence is a convergent
sequence.

Lemma 2.3 [23] Let (X,S) be a S-metric space and u, v ∈ X. Then we have

S(u, u, v) = S(v, v, u).

The relationships between a metric and a S-metric were studied in different papers
such as [6, 7, 16]. In [7], a formula of a S-metric space which is generated by a metric d
was given as follows:

Let (X, d) be a metric space. Then the function Sd : X ×X ×X → [0,∞) defined by
Sd(u, v, w) = d(u,w) + d(v, w) for all u, v, w ∈ X is a S-metric on X. The S-metric Sd
is called the S-metric generated by d [16]. We note that there exists a S-metric which is
not generated by any metric d as seen in the following example.

Example 2.4 [16] Let X = R. If we consider the function S : X × X × X → [0,∞)
defined by S(u, v, w) = |u− w| + |u+ w − 2v| for all u, v, w ∈ X, then S is a S-metric
on X which is not generated by any metric d.

Also in [6], it was shown that every S-metric defines a metric dS(u, v) = S(u, u, v) +
S(v, v, u) for all u, v ∈ X. But the function dS does not always define a metric since the
triangle inequality does not satisfied for all elements of X.

Example 2.5 [16] Let X = {1, 2, 3}. If we consider the function S : X×X×X → [0,∞)
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defined by

S(1, 1, 2) = S(2, 2, 1) = 5,

S(2, 2, 3) = S(3, 3, 2) = S(1, 1, 3) = S(3, 3, 1) = 2,

S(u, v, w) = 0 if u = v = w,

S(u, v, w) = 1 otherwise.

for all u, v, w ∈ X, then S is a S-metric on X which is not generated by any metric d
and does not generate a metric dS .

Also the relationship between a b-metric defined in [1] and a S-metric was proved in
the following theorem.

Theorem 2.6 [21] Let (X,S) be a S-metric space and dS(u, v) = S(u, u, v) for all
u, v ∈ X. Then we have

(1) dS is a b-metric on X,
(2) un → u in (X,S) if and only if un → u in (X, dS),
(3) {un} is a Cauchy sequence in (X,S) if and only if {un} is a Cauchy sequence in

(X, dS).

The metric dS is called the b-metric generated by S. From the above relationships, it
was important to study new fixed-point results on S-metric spaces.

3. New fixed-point and fixed-circle results on S-metric spaces

In this section, using the Suzuki-Berinde and Wardowski’s techniques, we give a fixed-
point theorem and a fixed-circle theorem on S-metric spaces. Some illustrative examples
are also presented for the validity of our results. For this purpose, we use the following
known family of functions and a lemma.

Let ∆F be the set of all functions F : R+ → R satisfying the following conditions [26]:
(F1) F is strictly increasing,
(F2) For all sequence {un} ⊆ R+, lim

n→∞
un = 0 if and only if lim

n→∞
F (un) = −∞,

(F3) There exists 0 < k < 1 such that lim
α→0+

αkF (α) = 0.

Lemma 3.1 [20] Let F : R+ → R be an increasing mapping and {un}∞n=1 be a sequence
of positive real numbers. Then the followings hold:

(a) If lim
n→∞

F (un) = −∞, then lim
n→∞

un = 0.

(b) If inf F = −∞ and lim
n→∞

un = 0, then lim
n→∞

F (un) = −∞.

After that, Secelean replaced the condition (F2) by (F ′
2) as follows:

(F ′
2) inf F = −∞ or (F ′′

2 ) There exists a sequence {un}∞n=1 of positive real numbers such
that lim

n→∞
F (un) = −∞.

Further, Piri et al. [18] used the following condition (F ′
3) instead of the condition (F3)

to obtain some new fixed-point results.
(F ′

3) F is continuous on (0,∞).
In the sequel, we consider F be the family of all functions F : R+ → R satisfying in
conditions (F1), (F

′
2) and (F ′

3).
At first, we define the notion of Suzuki-Berinde type FS-contraction on S-metric spaces.
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Definition 3.2 Let (X,S) be a S-metric space and T : X → X be a self-mapping. If
there exist F ∈ F , τ1 > 0 and τ2 ⩾ 0 such that for each u, v ∈ X with Tu ̸= Tv, we have

1

3
S(Tu, Tu, u) < S(u, u, v)

implies

τ1+F (S(Tu, Tu, Tv)) ⩽ F (S(u, u, v))+τ2min {S(Tu, Tu, u),S(Tv, Tv, u),S(Tu, Tu, v)} ,

then T is called a Suzuki-Berinde type FS-contraction on X.

Using Definition 3.2, we prove the following fixed-point result.

Theorem 3.3 Let (X,S) be a complete S-metric space and T : X → X be a self-
mapping. If T is a Suzuki-Berinde type FS-contraction on X, then T has a unique fixed
point u ∈ X and the sequence {Tnu0} converges to u for every u0 ∈ X.

Proof. Let u0 ∈ X and the sequence {un} be defined by Tnu0 = un. If there exists
n0 ∈ N such that un0+1 = un0

, then un0
is a fixed point of T . Therefore, assume that

Tun = un+1 ̸= un. Now, we have

1

3
S(Tun, Tun, un) =

1

3
S(un, un, un+1)

< S(un, un, Tun)

= S(Tun, Tun, un),

for all n ∈ N. Using the hypothesis, we get

τ1 + F (S(Tun, Tun, un)) = τ1 + F (S(Tun, Tun, Tun−1))

⩽ F (S(un, un, un−1)) + τ2min{S(Tun, Tun, un),

S(Tun−1, Tun−1, un),S(Tun, Tun, un−1)}

and so

F (S(Tun, Tun, un)) ⩽ F (S(Tun−1, Tun−1, un−1))− τ1

⩽ · · · ⩽ F (S(Tu0, Tu0, u0))− nτ1,

for all n ∈ N. Taking limit as n → ∞, we have lim
n→∞

F (S(Tun, Tun, un)) = −∞ and so

lim
n→∞

S(Tun, Tun, un) = 0, (1)

since F ∈ F . Now, we show that the sequence {un} is Cauchy. On the contrary, {un}
is not a Cauchy sequence. Suppose that there exists ε > 0 and sequences {x(n)} and
{y(n)} of natural numbers such that for x(n) > y(n) > n, we have

S(ux(n), ux(n), uy(n)) ⩾ ε. (2)

Therefore, S(ux(n)−1, ux(n)−1, uy(n)) < ε for all n ∈ N. Using the inequality (2), Lemma
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2.3 and the condition (S2), we obtain

ε ⩽ S(ux(n), ux(n), uy(n))

⩽ 2S(ux(n), ux(n), ux(n)−1) + S(uy(n), uy(n), ux(n)−1)

< 2S(ux(n), ux(n), ux(n)−1) + ε.

Using the equality (1) and taking the limit, we get

lim
n→∞

S(ux(n), ux(n), uy(n)) = ε. (3)

From (1) and (3), we can choose a natural number n0 ∈ N such that

1

3
S(Tux(n), Tux(n), ux(n)) <

ε

3
< S(ux(n), ux(n), uy(n)),

for all n ⩾ n0. Using the hypothesis, we obtain

τ1 + F (S(Tux(n), Tux(n), Tuy(n)))

⩽ F (S(ux(n), ux(n), uy(n))) + τ2min

{
S(Tux(n), Tux(n), ux(n)),S(Tuy(n), Tuy(n), ux(n)),

S(Tux(n), Tux(n), uy(n))

}

⩽ F (S(ux(n), ux(n), uy(n))) + τ2min


S(Tux(n), Tux(n), ux(n)),

2S(Tuy(n), Tuy(n), Tux(n)) + S(Tux(n), Tux(n), ux(n)),
2S(Tux(n), Tux(n), ux(n)) + S(uy(n), uy(n), ux(n))


= F (S(ux(n), ux(n), uy(n))) + τ2S(Tux(n), Tux(n), ux(n)).

Using the condition (F ′
3), and (1) and (3), we get τ1 + F (ε) ⩽ F (ε), which is a contra-

diction since τ1 > 0. Therefore, {un} is a Cauchy sequence. From the completeness of
X, there exists u ∈ X such that un → u as n → ∞. Thus we have lim

n→∞
S(un, un, u) = 0.

Now, we claim that

1

3
S(Tun, Tun, un) < S(un, un, u) or

1

3
S(T 2un, T

2un, Tun) < S(Tun, Tun, u), (4)

for all n ∈ N. On the contrary, we assume that there exists m ∈ N such that

1

3
S(Tum, Tum, um) ⩾ S(um, um, u) and

1

3
S(T 2um, T

2um, Tum) ⩾ S(Tum, Tum, u).
(5)

Thus, using Lemma 2.3, we get

3S(um, um, u) ⩽ S(Tum, Tum, um)

= S(um, um, Tum)

⩽ 2S(um, um, u) + S(Tum, Tum, u),

which implies

S(um, um, u) ⩽ S(Tum, Tum, u). (6)
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From the inequalities (5) and (6), we obtain

S(um, um, u) ⩽ S(Tum, Tum, u) ⩽
1

3
S(T 2um, T

2um, Tum). (7)

Also using the hypothesis and Lemma 2.3, we have

1

3
S(Tum, Tum, um) =

1

3
S(um, um, um+1)

< S(um, um, um+1)

= S(Tum, Tum, um)

and

τ1 + F (S(T 2um, T
2um, Tum)) = τ1 + F (S(Tum, Tum, T 2um))

⩽ F (S(um, um, Tum))

+τ2min

{
S(um, um, Tum),S(um, um, T 2um),

S(Tum, Tum, Tum)

}
= F (S(Tum, Tum, um)),

which implies

τ1 + F (S(T 2um, T
2um, Tum)) ⩽ F (S(Tum, Tum, um)). (8)

From the inequality (8), then we have

F (S(T 2um, T
2um, Tum)) < F (S(Tum, Tum, um)),

and therefore, using strictly increasing property of F we obtain that

S(T 2um, T
2um, Tum) < S(Tum, Tum, um) (9)

Using the inequalities (5), (7) and (9), we obtain

S(T 2um, T
2um, Tum) < S(Tum, Tum, um)

⩽ 2S(Tum, Tum, u) + S(um, um, u)

<
2

3
S(T 2um, T

2um, Tum) +
1

3
S(T 2um, T

2um, Tum)

= S(T 2um, T
2um, Tum),

which is a contradiction. Therefore, the inequalities given in (4) are satisfied. So using
Lemma 2.3, for each n ∈ N, we get

τ1 + F (S(Tun, Tun, Tu)) ⩽ F (S(un, un, u)) + τ2min

{
S(un, un, Tun),S(un, un, Tu),

S(u, u, Tun)

}
,
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which implies

τ1 + F (S(Tun, Tun, Tu)) ⩽ F (S(un, un, u)) + τ2min

{
S(un, un, un+1),S(un, un, Tu),

S(u, u, un+1)

}
.

(10)

Using (10), the condition (F ′
2) and Lemma 3.1, we obtain lim

n→∞
F (S(Tun, Tun, Tu)) = −∞

and lim
n→∞

S(Tun, Tun, Tu) = 0. Hence, we have

S(u, u, Tu) = lim
n→∞

S(un+1, un+1, Tu) = lim
n→∞

S(Tun, Tun, Tu) = 0

and so u is a fixed point of T . Finally, we show that u is a unique fixed point of T . On the
contrary, v is another fixed point of T such that u ̸= v. Then we have S(Tu, Tu, Tv) =
S(u, u, v) > 0 and

1

3
S(Tu, Tu, u) = 0 < S(u, u, v).

Using the hypothesis, we obtain

F (S(u, u, v)) = F (S(Tu, Tu, Tv))

< τ1 + F (S(Tu, Tu, Tv))

⩽ F (S(u, u, v)) + τ2min

{
F (S(u, u, Tu)), F (S(u, u, Tv)),

F (S(v, v, Tu))

}
,

which implies F (S(u, u, v)) < F (S(u, u, v)). Now, using the strictly increasing property
of F , we get S(u, u, v) < S(u, u, v), which is a contradiction. Therefore, u is a unique
fixed point of T . ■

Now we give the following illustrative example.

Example 3.4 Let us consider the sequence {An} defined as An = 2 + 4 + · · · + 2n =
n(n + 1). Let X = {An : n ∈ N} and the function S : X ×X ×X → [0,∞) be defined
as in Example 2.4. Then (X,S) is a complete S-metric space and the S-metric is not
generated by any metric. Let us consider the self-mapping T : X → X defined by

Tu =

{
A1 u = A1

An−1 u = An for (n > 1)

for all u ∈ X. If we take the mapping F (t) = −1
t + t, τ1 = 4 and τ2 = 0, then T is

a Suzuki-Berinde type FS-contraction on X. Indeed, we show this under the following
cases:
Case 1. Let 1 = n < m. Then we have

S(TAm, TAm, TA1) = 2 |TAm − TA1| = 2 |Am−1 −A1| = 2 [4 + 6 + · · ·+ 2(m− 1)]

and

S(Am, Am, A1) = 2 |Am −A1| = 2 [4 + 6 + · · ·+ 2m] .
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Since m > 1, so we get

4− 1

2 [4 + 6 + · · ·+ 2(m− 1)]
+ 2 [4 + 6 + · · ·+ 2(m− 1)]

< − 1

2 [4 + 6 + · · ·+ 2m]
+ 2 [4 + 6 + · · ·+ 2(m− 1) + 2m] .

Hence, we have

4− 1

2 |TAm − TA1|
+ 2 |TAm − TA1| < − 1

2 |Am −A1|
+ 2 |Am −A1| .

Case 2. By the similar arguments used in above, we get

4− 1

2 |TAm − TA1|
+ 2 |TAm − TA1| < − 1

2 |Am −A1|
+ 2 |Am −A1|

for 1 ⩽ m < n.
Case 3. Let 1 < n < m. Then we get

S(TAm, TAm, TAn) = 2 |TAm − TAn| = 2 |Am−1 −An−1|

= 2 [2n+ 2(n+ 1) + · · ·+ 2(m− 1)]

and

S(Am, Am, An) = 2 |Am −An| = 2 [2(n+ 1) + 2(n+ 2) + · · ·+ 2m] .

Since 1 < n < m and 4n+ 4 ⩽ 4m, we have

4− 1

2 [2n+ 2(n+ 1) + · · ·+ 2(m− 1)]
+ 2 [2n+ 2(n+ 1) + · · ·+ 2(m− 1)]

< − 1

2 [2(n+ 1) + 2(n+ 2) + · · ·+ 2m]
+ 2 [2(n+ 1) + 2(n+ 2) + · · ·+ 2(m− 1) + 2m] .

So we get

4− 1

2 |TAm − TAn|
+ 2 |TAm − TAn| < − 1

2 |Am −An|
+ 2 |Am −An| .

Therefore, T is a Suzuki-Berinde type FS-contraction and TA1 = A1; that is, A1 is a
unique fixed point of T .

If we take τ2 = 0 then we get the following corollaries.

Corollary 3.5 Let (X,S) be a complete S-metric space and T : X → X be a self-
mapping. If there exist τ1 > 0 and F ∈ F such that for each u, v ∈ X with Tu ̸= Tv,

we have
1

3
S(Tu, Tu, u) < S(u, u, v) implies τ1 + F (S(Tu, Tu, Tv)) ⩽ F (S(u, u, v)), then

T has a unique fixed point u ∈ X and the sequence {Tnu0} converges to u for every
u0 ∈ X.
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Corollary 3.6 Let (X,S) be a complete S-metric space and T : X → X be a self-
mapping. If there exist τ1 > 0 and F ∈ F such that for each u, v ∈ X with Tu ̸= Tv, we
have τ1 + F (S(Tu, Tu, Tv)) ⩽ F (S(u, u, v)), then T has a unique fixed point u ∈ X and
the sequence {Tnu0} converges to u for every u0 ∈ X.

If we consider Theorem 2.6, then we get the Suzuki-Berinde type fixed-point theorem
on b-metric spaces.

Theorem 3.7 Let (X, dS) be a complete b-metric space and T : X → X be a self-
mapping. If there exist F ∈ F , τ1 > 0 and τ2 ⩾ 0 such that for each u, v ∈ X with

Tu ̸= Tv, we have
1

3
dS(Tu, u) < dS(u, v) implies

τ1 + F (dS(Tu, Tv)) ⩽ F (dS(u, v)) + τ2min
{
dS(Tu, u), dS(Tv, u), dS(Tu, v)

}
,

then T has a unique fixed point u ∈ X and the sequence {Tnu0} converges to u for every
u0 ∈ X.

Proof. By the similar arguments used in the proof of Theorem 3.3, it is clear. ■

In [11] and [23], a circle and a disc are defined on a S-metric space as follows, respec-
tively:

CS
u0,r = {u ∈ X : S (u, u, u0) = r} and DS

u0,r = {x ∈ X : S (u, u, u0) ⩽ r}.

Definition 3.8 [11] Let (X,S) be a S-metric space, CS
u0,r be a circle and T : X → X be

a self-mapping. If Tu = u for every u ∈ CS
u0,r then the circle CS

u0,r is called as the fixed
circle of T .

We introduce the notion of Suzuki-Berinde type FS
C -contraction on S-metric spaces.

Definition 3.9 Let (X,S) be a S-metric space and T : X → X be a self-mapping. T is
called a Suzuki-Berinde type FS

C -contraction on X if there exist F ∈ F , τ1 > 0, τ2 ⩾ 0
and u0 ∈ X such that for each u ∈ X with Tu ̸= u, we have 1

3S(u, u, u0) < S(Tu, Tu, u)
implies

τ1 + F (S(Tu, Tu, u)) ⩽ F (S(u, u, u0)) + τ2min{S(Tu0, Tu0, u0),

S(Tu0, Tu0, u),S(Tu, Tu, u0)}.

Using Definition 3.9, we obtain the following proposition.

Proposition 3.10 Let (X,S) be a S-metric space and T : X → X be a self-mapping.
If T is a Suzuki-Berinde type FS

C -contraction with u0 ∈ X then we have Tu0 = u0.

Proof. Assume that Tu0 ̸= u0. From the definition of the Suzuki-Berinde type FS
C -

contraction, we get
1

3
S(u0, u0, u0) < S(Tu0, Tu0, u0) and so

τ1 + F (S(Tu0, Tu0, u0)) ⩽ F (S(u0, u0, u0)) + τ2min

{
S(Tu0, Tu0, u0),S(Tu0, Tu0, u0),

S(Tu0, Tu0, u0)

}
= F (0) + τ2S(Tu0, Tu0, u0),

which is a contradiction with the definition of F . Therefore, we obtain Tu0 = u0. ■

Now we prove the fixed-circle theorem.
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Theorem 3.11 Let (X,S) be a S-metric space, T be a self-mapping on X sat-
isfying the Suzuki-Berinde type FS

C -contractive condition with u0 ∈ X and r =
min {S(Tu, Tu, u) : Tu ̸= u}. If S(Tu, Tu, u0) = r for all u ∈ CS

u0,r then CS
u0,r is a fixed

circle of T . Especially, T fixes every circle CS
u0,ρ with ρ < r.

Proof. Let u ∈ CS
u0,r and Tu ̸= u. By the definition of r, we have 1

3S(u, u, u0) =
r
3 <

S(Tu, Tu, u). Now, using the Suzuki-Berinde type FS
C -contractive property, Proposition

3.10, Lemma 2.3 and the strictly increasing property of F , we obtain

F (S(Tu, Tu, u)) ⩽ F (S(u, u, u0))− τ1 + τ2min

{
S(Tu0, Tu0, u0),S(u, u, u0),

S(Tu, Tu, u0)

}
= F (r)− τ1

< F (r)

⩽ F (S(Tu, Tu, u)),

which is a contradiction. Therefore, we find Tu = u and so CS
u0,r is a fixed circle of T .

Finally, we show that T also fixes any circle CS
u0,ρ with ρ < r. Let u ∈ CS

u0,ρ and

suppose that Tu ̸= u. By the Suzuki-Berinde type FS
C -contractive property, we have

F (S(Tu, Tu, u)) ⩽ F (S(u, u, u0))− τ1 < F (ρ) ⩽ F (S(Tu, Tu, u)),

which is a contradiction. Hence we get Tu = u. Thus, CS
u0,ρ is a fixed circle of T . ■

As an immediate result of Theorem 3.11, we obtain the following corollary.

Corollary 3.12 Let (X,S) be a S-metric space, T be a self-mapping on X sat-
isfying the Suzuki-Berinde type FS

C -contractive condition with u0 ∈ X and r =
min {S(Tu, Tu, u) : Tu ̸= u}. If S(Tu, Tu, u0) = r for all u ∈ CS

u0,r then T fixes the

disc DS
u0,r.

Example 3.13 Let X =
{
1, 2, 52 , e−

1
2 , e, e+

1
2

}
and the S-metric be defined as in

Example 2.4. Then (X,S) is a S-metric space. Let us define the self-mapping T : X → X
as

Tu =

{
5
2 u = 2
u otherwise

for all u ∈ X. Then the self-mapping T is a Suzuki-Berinde type FS
C -contraction with

F = lnu, u0 = e, τ1 = 0.5 and τ2 ⩾ 0. Indeed, for u = 2, we get

1

3
S(u, u, u0) =

2e− 4

3
< S(Tu, Tu, u) = 1

⇒ S(Tu, Tu, u) = 1 < S(u, u, u0) = 2e− 4

⇒ ln(1) < ln(2e− 4) = ln(2(e− 4))

⇒ 0.5 < ln 2 + ln(e− 4)

⇒ τ1 + F (S(Tu, Tu, u)) ⩽ F (S(u, u, u0))

+τ2min {S(Tu0, Tu0, u0),S(Tu0, Tu0, u),S(Tu, Tu, u0)} .

Using Theorem 3.11, we get r = min {S(Tu, Tu, u) : Tu ̸= u} = 1. It is clear that T fixes
the circle CS

e,1 =
{
e− 1

2 , e+
1
2

}
and the disc DS

e,1 =
{
5
2 , e−

1
2 , e, e+

1
2

}
.
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If we consider Theorem 2.6, then we get the Suzuki-Berinde type fixed-circle theorem
on b-metric spaces.

Theorem 3.14 Let (X, dS) be a b-metric space, T : X → X be a self-mapping and
r = min

{
dS(Tu, u) : Tu ̸= u

}
. If there exist F ∈ F , τ1 > 0, τ2 ⩾ 0 and u0 ∈ X such

that for each u ∈ X with Tu ̸= u, we have 1
3d

S(u, u0) < dS(Tu, u) implies

τ1 + F (dS(Tu, u)) ⩽ F (dS(u, u0)) + τ2min
{
dS(Tu0, u0), d

S(Tu0, u), d
S(Tu, u0)

}
,

then CdS
u0,r =

{
u ∈ X : dS(u, u0) = r

}
is a fixed circle of T with the condition

dS(Tu, u0) = r. Especially, T fixes every circle CdS
u0,ρ with ρ < r, that is, T fixes the

disc DdS
u0,r =

{
u ∈ X : dS(u, u0) ⩽ r

}
.

4. Conclusion

In this section, we prove a Suzuki-Berinde fixed-point theorem and a Suzuki-Berinde
fixed-circle theorem using the Suzuki-Berinde and Wardowski’s techniques on S-metric
spaces. Similarly, new fixed-point or fixed-circle results can be obtained using or modified
the known techniques used in some fixed-point theorems on metric and some generalized
metric spaces.
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