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Abstract. In this paper, we prove the generalized Hyers-Ulam-Rassias stability for the Dry-
gas functional equation

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y)

in Banach spaces by using the Brzḑek’s fixed point theorem. Moreover, we give a general result
on the hyperstability of this equation. Our results are improvements and generalizations of
the main result of M. Piszczek and J. Szczawińska [21].
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1. Introduction

The stability problem of functional equations originated from a question of Ulam
[26] concerning the stability of group homomorphisms. Hyers [17] gave a first affirmative
partial answer to the question of Ulam for Banach spaces. Hyers theorem was generalized
by Aoki [3] for additive mappings and by Rassias [22] for linear mappings by considering
an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained
by Găvruta [15] by replacing the unbounded Cauchy difference by a general control
function in the spirit of Rassias’ approach.
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We say a functional equation is hyperstable if any function f satisfying this equation
approximately is a true solution of it. The first hyperstability result was published in [5]
and concerned the ring homomorphisms. However, the term hyperstability has been used
for the first time in [19]. Quite often the hyperstability is confused with superstability,
which admits also bounded functions. The hyperstability results of the several functional
equation in the literature have been studied by many authors, see for example [4, 6, 7,
9, 11, 16, 19, 20].

Throughout this paper, we will denote the set of natural numbers by N = {1, 2, 3, · · · },
the set of nonnegative integers by N0 = {0, 1, 2, 3, · · · } and by Nm the set of all natural
numbers greater than or equal to the natural number m. Let R the set of real numbers
and R+ = [0,∞) the set of nonnegative real numbers. We write BA to mean the family
of all functions mapping from a nonempty set A into a nonempty set B, and we denote
An the n-ary Cartesian power of A.

Before proceeding to the main results, we state the following definition and theorem
which are useful for our purpose.

Definition 1.1 Let X be a nonempty set, (Y, d) be a metric space, ε ∈ RXn

+ and F1, F2

be operators mapping from a nonempty set D ⊂ Y X into Y Xn

. We say that the operator
equation

F1φ(x1, . . . , xn) = F2φ(x1, . . . , xn) (1)

for x1, . . . , xn ∈ X is ε-hyperstable provided that every φ0 ∈ D which satisfies

d (F1φ0(x1, . . . , xn),F2φ0(x1, . . . , xn)) ⩽ ε(x1, . . . , xn)

fulfills the equation (1).

Theorem 1.2 ([10, Theorem 1]) Let X be a nonempty set, (Y, d) a complete metric
space, f1, . . . , fs : X → X and L1, . . . , Ls : X → R+ be given mappings. Let Λ: RX

+ → RX
+

be a linear operator defined by

Λδ(x) :=

s∑
i=1

Li(x)δ(fi(x)) (2)

for δ ∈ RX
+ and x ∈ X. If T : Y X → Y X is an operator satisfying the inequality

d
(
T ξ(x), T µ(x)

)
⩽

s∑
i=1

Li(x)d
(
ξ(fi(x)), µ(fi(x))

)
, (ξ, µ ∈ Y X , x ∈ X),

and a function ε : X → R+ and a mapping φ : X → Y satisfy d (T φ(x), φ(x)) ⩽ ε(x)

and ε∗(x) :=
∞∑
k=0

Λkε(x) < ∞ for all x ∈ X, then for every x ∈ X, the limit ψ(x) :=

lim
n→∞

T nφ(x) exists and the function ψ ∈ Y X so defined is the unique fixed point of T
with d (φ(x), ψ(x)) ⩽ ε∗(x) for all x ∈ X.

Characterizing quasi-inner product spaces, Drygas considers in [13] the functional
equation

f(x) + f(y) = f(x− y) +
{
f(x+y

2 )− f(x−y
2 )

}
for all x, y ∈ R, which can be reduced to the following equation [23, Remark 9.2, p. 131]

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y), (x, y ∈ R). (3)
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This equation is known in the literature as Drygas equation and is a generalization of
the quadratic functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y), (x, y ∈ R).

The general solution of Drygas equation was given by Ebanks, Kannappan and Sahoo in
[14]. It has the form f(x) = A(x) + Q(y) for all x ∈ R, where A : R → R is an additive
function and Q : R → R is a quadratic function (see also [18]). A set-valued version of
Drygas equation was considered by Smajdor in [25]. Recently, the hyperstability of the
Drygas functional equation has been studied in [21] and [24].

In this paper, we discuss the generalized Hyers-Ulam-Rassias stability problem for the
Drygas functional equation (3) in Banach spaces by using Theorem 1.2. We also introduce
some hyperstability results for this equation. This approach to Ulam stability has been
patterned on considerations in [1, 2, 8]. There are also recent results in [12].

2. Main results

In the sequel, for a nonempty set X we write X0 := X \ {0}, and we denote by
Aut(X) for the family of all automorphisms of X. The identity function on X will
be denoted by idX , and for each u ∈ XX we write ux := u(x) for x ∈ X and we de-
fine −u by −ux := −u(x), 2ux := ux+ux and u′ by u′x := (idX−u)x = x−ux for x ∈ X.

The following theorem is the main result concerning the stability of the functional
equation (3).

Theorem 2.1 Let X be a normed space with the norm ∥.∥X , Y be a Banach space with
the norm ∥.∥Y , ε : X2

0 → R+ and

l(X) :=
{
u ∈ Aut(X) : −u, u′, (idX − 2u) ∈ Aut(X), αu < 1

}
(4)

be an infinite set, where

αu := 2λ(u′) + λ(u) + λ(−u) + λ(idX − 2u),

λ(u) := inf
{
t ∈ R+ : ε(ux, uy) ⩽ tε(x, y), ∀x, y ∈ X0

}
for u ∈ Aut(X). Assume that f : X −→ Y satisfies the inequality

∥f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)∥Y ⩽ ε(x, y) (5)

for all x, y ∈ X0 such that x + y ̸= 0 and x − y ̸= 0. Then, for each nonempty subset
U ⊂ l(X) such that

u ◦ v = v ◦ u, (u, v ∈ U), (6)

there exists a unique function D : X −→ Y satisfies the equation (3) and

∥f(x)−D(x)∥Y ⩽ ε̃(x) (7)

for x ∈ X0, where ε̃(x) := inf
{

ε(u′x,ux)
1−αu

: u ∈ U
}
.
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Proof. Let us fix arbitrarily u ∈ U . Replacing x with u′x and y with ux in (5), we get∥∥f(x) + f
(
(idX − 2u)x

)
− 2f(u′x)− f(ux)− f(−ux)

∥∥
Y
⩽ ε(u′x, ux) := εu(x) (8)

for all x ∈ X0. We define the operators Tu : Y X0 → Y X0 and Λu : RX0

+ → RX0

+ by

Tuξ(x) := 2ξ(u′x) + ξ(ux) + ξ(−ux)− ξ
(
(idX − 2u)x

)
,

Λuδ(x) := 2δ(u′x) + δ(ux) + δ(−ux) + δ
(
(idX − 2u)x

) (9)

for all x ∈ X0, ξ ∈ Y X0 and δ ∈ RX0

+ . Then (8) becomes ∥f(x)− Tuf(x)∥Y ⩽ εu(x) for
all x ∈ X0.

The operator Λu has the form given by (2) with s = 4 and fn(x) = u′x, f2(x) = ux,
f3(x) = −ux, f4(x) = (idX−2u)x, L1(x) = 2, L2(x) = L3(x) = L4(x) = 1 for all x ∈ X0.
Further,∥∥∥Tuξ(x)− Tuµ(x)

∥∥∥
Y
=

∥∥∥2ξ(u′x) + ξ(ux) + ξ(−ux)− ξ
(
(idX − 2u)x

)
− 2µ(u′x)− µ(ux)− µ(−ux) + µ

(
(idX − 2u)x

)∥∥∥
Y

⩽ 2
∥∥ξ(u′x)− µ(u′x)

∥∥
Y
+
∥∥ξ(ux)− µ(ux)

∥∥
Y
+
∥∥ξ(−ux)− µ(−ux)

∥∥
Y

+
∥∥ξ((idX − 2u)x

)
− µ

(
(idX − 2u)x

)∥∥
Y

for all x ∈ X0 and ξ, µ ∈ Y X0 .
Note that, in view of the definition of λ(u), ε(ux, uy) ⩽ λ(u)ε(x, y) for all x, y ∈ X0.

So it is easy to show by induction on s that Λs
uεu(x) ⩽ αs

uε(u
′x, ux) for all x ∈ X0, where

αu = 2λ(u′) + λ(u) + λ(−u) + λ(idX − 2u).

Hence,

ε∗(x) :=
∞∑
r=0

Λr
uεu(x) ⩽ ε(u′x, ux)

∞∑
r=0

αr
u =

ε(u′x, ux)

1− αu
<∞

for all x ∈ X0. By Theorem 1.2, there exists a unique solution Du : X → Y of the
equation

Du(x) = 2Du(u
′x) +Du(ux) +Du(−ux)−Du

(
(idX − 2u)x

)
(10)

for all x ∈ X0, which is a fixed point of Tu such that

∥∥∥Du(x)− f(x)
∥∥∥
Y
⩽ ε(u′x, ux)

1− αu
(11)

for all x ∈ X0. Moreover, Du(x) = lim
r→∞

T r
u f(x) for all x ∈ X0.

To prove that Du satisfies the functional equation (3) on X0, just prove the following
inequality∥∥∥T r

u f(x+ y) + T r
u f(x− y)− 2T r

u f(x)− T r
u f(y)− T r

u f(−y)
∥∥∥
Y
⩽ αr

uε(x, y) (12)
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for all x, y ∈ X0, x+ y ̸= 0, x− y ̸= 0 and r ∈ N0. Indeed, if r = 0, then (12) is simply
(5). So, take r ∈ N and suppose that (12) holds for r and x, y ∈ X0. Then, by using (9)
and the triangle inequality, we have

∥∥∥T r+1
u f(x+ y) + T r+1

u f(x− y)− 2T r+1
u f(x)− T r+1

u f(y)− T r+1
u f(−y)

∥∥∥
Y

=
∥∥∥2T r

u f
(
u′(x+ y)

)
+ T r

u f
(
u(x+ y)

)
+ T r

u f
(
− u(x+ y)

)
− T r

u f
(
(idX − 2u)(x+ y)

)
+ 2T r

u f
(
u′(x− y)

)
+ T r

u f
(
u(x− y)

)
+ T r

u f
(
− u(x− y)

)
− T r

u f
(
(idX − 2u)(x− y)

)
− 4T r

u f
(
u′x

)
− 2T r

u f
(
ux

)
− 2T r

u f
(
− ux

)
+ 2T r

u f
(
(idX − 2u)x

)
− 2T r

u f
(
u′y

)
− T r

u f
(
uy

)
− T r

u f
(
− uy

)
+ T r

u f
(
(idX − 2u)y

)
+ 2T r

u f
(
u′(−y)

)
+ T r

u f
(
u(−y)

)
+ T r

u f
(
− u(−y)

)
+ T r

u f
(
(idX − 2u)(−y)

)∥∥∥
Y

⩽ 2
∥∥∥T r

u f
(
u′(x+ y)

)
+ T r

u f
(
u′(x− y)

)
− 2T r

u f
(
u′x

)
− T r

u f
(
u′y

)
− T r

u f
(
u′(−y)

)∥∥∥
Y

+
∥∥∥T r

u f
(
u(x+ y)

)
+ T r

u f
(
u(x− y)

)
− 2T r

u f
(
ux

)
− T r

u f
(
uy

)
− T r

u f
(
u(−y)

)∥∥∥
Y

+
∥∥∥T r

u f
(
− u(x+ y)

)
+ T r

u f
(
− u(x− y)

)
− 2T r

u f
(
− ux

)
− T r

u f
(
− uy

)
− T r

u f
(
− u(−y)

)∥∥∥
Y

+
∥∥∥T r

u f
(
(idX − 2u)(x+ y)

)
+ T r

u f
(
(idX − 2u)(x− y)

)
− 2T r

u f
(
(idX − 2u)x

)
− T r

u f
(
(idX − 2u)y

)
− T r

u f
(
(idX − 2u)(−y)

)∥∥∥
Y

⩽ αr
u

(
2ε(u′x, u′y) + ε(ux, uy) + ε(−ux,−uy) + ε

(
(idX − 2u)x, (idX − 2u)y

))
⩽ αr

u

(
2λ(u′) + λ(u) + λ(−u) + λ(idX − 2u)

)
ε(x, y)

⩽ αr+1
u ε(x, y).

By induction, we have shown that (12) holds for all x, y ∈ X0, x+ y ̸= 0 and x− y ̸= 0.
Letting r → ∞ in (12), we get Du(x + y) + Du(x − y) = 2Du(x) + Du(y) + Du(−y)
for all x, y ∈ X0. Thus, we have proved that for every u ∈ U there exists a function
Du : X0 → Y which is a solution of the functional equation (3) on X0 and satisfies

∥∥∥f(x)−Du(x)
∥∥∥
Y
⩽ ε(u′x, ux)

1− αu

for all x ∈ X0. Next, we prove that each solution D : X0 → Y of (3) satisfying the
inequality

∥f(x)−D(x)∥Y ⩽ Lε(v′x, vx), (x ∈ X0) (13)

with some L > 0 and v ∈ U , is equal to Dw for each w ∈ U . So, fix v, w ∈ U , L > 0 and
D : X0 → Y a solution of (3) satisfying (13). Note that, by (11) and (13), there is L0 > 0
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such that

∥D(x)−Dw(x)∥Y ⩽ ∥D(x)− f(x)∥Y + ∥f(x)−Dw(x)∥Y

⩽ L0

(
ε(v′x, vx) + ε(w′x,wx)

)
·

∞∑
r=0

αr
w

(14)

for x ∈ X0. In other side, D and Dw are solutions of (10) because they are satisfy (3).
We show that, for each j ∈ N,

∥D(x)−Dw(x)∥Y ⩽ L0

(
ε(v′x, vx) + ε(w′x,wx)

)
·

∞∑
r=j

αr
w, (x ∈ X0). (15)

The case j = 0 is exactly (14). So fix γ ∈ N0 and assume that (15) holds for j = γ.
Then, in view of definition of λ(u),∥∥D(x)−Dw(x)

∥∥
Y

=
∥∥∥2D(w′x) +D(wx) +D(−wx)−D

(
(idX − 2w)x

)
− 2Dw(w

′x)−Dw(wx)−Dw(−wx) +Dw

(
(idX − 2w)x

)∥∥∥
Y

⩽ 2
∥∥D(w′x)−Dw(w

′x)
∥∥+

∥∥D(wx)−Dw(wx)
∥∥+

∥∥D(−wx)−Dw(−wx)
∥∥
Y

+
∥∥D(

(idX − 2w)x
)
−Dw

(
(idX − 2w)x

)∥∥
Y

⩽ 2L0

(
ε(w′v′x,w′vx) + ε(w′w′x,w′wx)

)
·

∞∑
r=γ

αr
w

+ L0

(
ε(wv′x,wvx) + ε(ww′x,wwx)

)
·

∞∑
r=γ

αr
w

+ L0

(
ε(−wv′x,−wvx) + ε(−ww′x,−wwx)

)
·

∞∑
r=γ

αr
w

+ L0

(
ε
(
(idX − 2w)v′x, (idX − 2w)vx

)
+ ε

(
(idX − 2w)w′x, (idX − 2w)wx

))
·

∞∑
r=γ

αr
w

⩽ L0

(
ε(v′x, vx) + ε(w′x,wx)

) (
2λ(w′) + λ(w) + λ(−w) + λ(idX − 2w)

)
·

∞∑
r=γ

αr
w

= L0

(
ε(v′x, vx) + ε(w′x,wx)

)
·

∞∑
r=γ+1

αr
w.

Hence, we have shown (15). Now, letting j → ∞ in (15), we get

D(x) = Dw(x), (x ∈ X0). (16)

By similar method, we also prove that Du = Dw for each u ∈ U , which yields
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∥f(x)−Dw(x)∥Y ⩽ ε(u′x,ux)
1−αu

, (x ∈ X0, u ∈ U).

This implies (7) with D = Dw and the uniqueness of D is given by (16). ■

In the following theorem, we prove the hyperstability of equation (3) in Banach spaces.

Theorem 2.2 Let X, Y and ε be as in Theorem 2.1. Suppose that there exists a
nonempty set U ∈ l(X) such that u ◦ v = v ◦ u for all u, v ∈ U and inf

u∈U
ε(u′x, ux) = 0, (x ∈ X0),

sup
u∈U

αu < 1. (17)

Then every f : X → Y satisfying (5) is a solution of (3) on X0.

Proof. Suppose that f : X → Y satisfies (5). Then, by Theorem 2.1, there exists a
mapping D : X → Y satisfies (3) and ∥f(x)−D(x)∥Y ⩽ ε̃(x) for all x ∈ X0.
Since, in view of (17), ε̃(x) = 0 for all x ∈ X0. This means that f(x) = D(x) for all
x ∈ X0, where

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y), (x, y ∈ X0)

which implies that f satisfies the functional equation (3) on X0. ■

From Theorems 2.1 and 2.2, we can obtain the following corollaries as natural results.

Corollary 2.3 Let (X, ∥.∥X) and (Y, ∥.∥Y ) be a normed space and a Banach space,
respectively. Assume that p, q ∈ R, p < 0, q < 0 and θ ⩾ 0. If f : X → Y satisfies∥∥∥f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)

∥∥∥
Y
⩽ θ

(
∥x∥pX + ∥y∥qX

)
(18)

for all x, y ∈ X0, then f satisfies the Drygas functional equation (3) on X0.

Proof. The proof follows from Theorem 2.2 by taking ε(x, y) = θ
(
∥x∥pX + ∥y∥qX

)
for

all x, y ∈ X0 with some real numbers θ ⩾ 0, p < 0 and q < 0. For each m ∈ N, define
um : X0 → X0 by umx := um(x) = −mx and u′m : X0 → X0 by u

′
mx := u′m(x) = (1+m)x.

Then

ε(umx, uky) = ε(−mx,−ky)

= θ
(
∥−mx∥pX + ∥−ky∥qX

)
= θmp ∥x∥pX + θkq ∥y∥qX

⩽ (mp + kq) θ
(
∥x∥pX + ∥y∥qX

)
= (mp + kq) ε(x, y)

for all x, y ∈ X0 and k,m ∈ N. Hence,

limm→∞ ε(u′mx, umy) ⩽ limm→∞

(
(1 +m)p +mq

)
ε(x, y) = 0

for all x, y ∈ X0. Then (17) is valid with λ(um) = mp +mq for m ∈ N, and there exists
n0 ∈ N such that m ⩾ n0 and
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αum
= 2

(
(1 +m)p + (1 +m)q

)
+ 2mp + 2mq + (1 + 2m)p + (1 + 2m)q < 1.

So it easily seen that (4) is fulfilled with U := {um ∈ Aut(X) : m ∈ Nn0
}. Therefore, by

Theorem 2.2, every f : X → Y satisfying (18) is a solution of the functional equation (3)
on X0. ■

In the following corollary we find the main result of [21].

Corollary 2.4 ([21, Theorem 2]) Let (X, ∥.∥X) and (Y, ∥.∥Y ) be a normed space and a
Banach space, respectively, θ ⩾ 0, and p < 0. Assume that f : X → Y satisfies∥∥∥f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)

∥∥∥
Y
⩽ θ

(
∥x∥pX + ∥y∥pX

)
(19)

for all x, y ∈ X0. Then f satisfies the Drygas functional equation on X0.

Proof. It is easily seen that the function ε given by ε(x, y) = θ
(
∥x∥pX + ∥y∥pX

)
for all

x, y ∈ X0 satisfies (17), since

ε(mx, ky) = θ ∥mx∥pX + θ ∥ky∥pX ⩽ θ
(
mp + kp

)(
∥x∥pX + ∥y∥pX

)
=

(
mp + kp

)
ε(x, y)

for all x, y ∈ X0, k,m ∈ N, and km ̸= 0. The remainder of the proof is similar to the
proof of Corollary 2.3. ■

If X is a normed space and f : X → Y satisfies (19) for x, y ∈ X0, with p < 0, then by
Theorem 2.2 we know that f satisfies the Drygas equation on X0. It is easy to see that if
f(0) = 0, then f satisfies the Drygas equation on the whole X. So we have the following
corollary.

Corollary 2.5 Let (X, ∥.∥X) and (Y, ∥.∥Y ) be a normed space and a Banach space,
respectively, θ ⩾ 0, and p < 0. Assume that f : X → Y satisfies f(0) = 0 and fulfills the
inequality∥∥∥f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)

∥∥∥
Y
⩽ θ

(
∥x∥pX + ∥y∥pX

)
for all x, y ∈ X0. Then f satisfies the Drygas functional equation on X.

Corollary 2.6 Let (X, ∥.∥X) and (Y, ∥.∥Y ) be a normed space and a Banach space,
respectively. Assume that p, q ∈ R, p+ q < 0 and θ ⩾ 0. If f : X → Y satisfies∥∥∥f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)

∥∥∥
Y
⩽ θ ∥x∥pX ∥y∥qX

for all x, y ∈ X0. Then f satisfies the Drygas functional equation (3) on X0.

Proof. It is easily seen that the function ε given by ε(x, y) = θ ∥x∥pX ∥y∥qX for x, y ∈ X0

satisfies (17), since

ε(mx, ky) = θ ∥mx∥pX ∥ky∥qX = θmpkq ∥x∥pX ∥y∥qX = mpkqε(x, y)

for all x, y ∈ X0, k,m ∈ N, and km ̸= 0. The rest of the proof is similar to the proof of
Corollary 2.3. ■

By an analogous conclusion, the function ε given by

ε(x, y) = θ
(
∥x∥pX + ∥y∥qX + ∥x∥pX ∥y∥qX

)
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fro all x, y ∈ X0 satisfies (17), since

ε(mx, ky) = θ
(
∥mx∥pX + ∥ky∥qX + ∥mx∥pX ∥ky∥qX

)
= θ

(
mp ∥x∥pX + kq ∥y∥pX +mpkq ∥x∥pX ∥y∥qX

)
⩽

(
mp + kq +mpkq

)
ε(x, y)

for all x, y ∈ X0, k,m ∈ Z, and km ̸= 0. So we have the following corollary.

Corollary 2.7 Let (X, ∥.∥X) and (Y, ∥.∥Y ) be a normed space and a Banach space,
respectively. Assume that p < 0, q < 0, p+ q < 0 and θ ⩾ 0. If f : X → Y satisfies∥∥∥f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)

∥∥∥
Y
⩽ θ

(
∥x∥pX + ∥y∥qX + ∥x∥pX ∥y∥qX

)
for all x, y ∈ X0, then f satisfies the functional equation (3) on X0.

The next corollary corresponds to the results on the inhomogeneous Drygas functional
equation (20).

Corollary 2.8 Let (X, ∥.∥X) and (Y, ∥.∥Y ) and ε be as in Theorem 2.1 and G : X2 → Y .
Suppose that

∥∥G(x, y)∥∥
Y

⩽ ε(x, y) for all x, y ∈ X0, where G(x0, y0) ̸= 0 for some
x0, y0 ∈ X0, and there exists a nonempty U ⊂ l(X) such that (6) and (17) hold. Then
the inhomogeneous equation

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y) +G(x, y) (20)

for all x, y ∈ X0, has no solutions in the class of functions f : X → Y .

Proof. Suppose that f : X → Y is a solution to (20). Then

∥∥∥f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)
∥∥∥
Y
=

∥∥∥2f(x) + f(y) + f(−y) +G(x, y)

− 2f(x)− f(y)− f(−y)
∥∥∥
Y

=
∥∥G(x, y)∥∥

Y

⩽ ε(x, y)

for all x, y ∈ X0. Consequently, by Theorem 2.2, f is a solution of (3), whence

G(x0, y0) = f(x0 + y0) + f(x0 − y0)− 2f(x0)− f(y0)− f(−y0) = 0,

which is contradiction. ■
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[10] J. Brzdȩk, K. Ciepliński, A fixed point approach to the stability of functional equations in non-Archimedean
metric spaces, Nonlinear Anal. 74 (2011), 6861-6867.
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