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Abstract. In this paper, we prove that chevalley groups G2(q), where q ≡ ±2(mod 5) and
q2 + q+ 1 is a prime number, can be uniquely determined by the order of the group and the
second largest element order.
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1. Introduction and preliminaries

Let G be a finite group, π(G) be the set of prime divisors of order of G and πe(G) be
the set of elements order in G. We denote the largest element order of G by k1(G) and
also the second largest element of G by k2(G). Also we denote a sylow p-subgroup of G by
Gp and the number of sylow p-subgroups of G by np(G). The prime graph Γ(G) of group
G is a graph whose vertex set is π(G), and two distinct vertices u and v are adjacent if
and only if uv ∈ πe(G). Moreover, assume that Γ(G) has t(G) connected components πi,
for i = 1, 2, ..., t(G). In the case where G is of even order, we always assume that 2 ∈ π1.

In 1987, Thompson posed a question as follows:
Thompsons Problem. Suppose G1 and G2 are the same order type. If G1 is solvable,
is it true that G2 is also necessarily solvable?
Group characterization is one of the issues that have been considered by researchers,
where this characterization is done by using properties such as element order, number
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of elements, order, etc. One of this methods, is group characterization by using the
largest element order and the order of the group. In other words, we say the group G is
characterizable by using the order of the group and the largest element order of G, if for
every group H, so that k1(G) = k1(H) and |G| = |H|, then G ∼= H.

However, the authors proved that some finite simple groups are characterizable by
using the order of the group and the largest element order of G. For example, the authors
in ([2–4, 6–9, 11, 13]) proved that the sporadic simple groups, the projective special linear
groups L2(q), where q = pn < 125, the simple groups L3(q) and U3(q) where q is some
special power of prime, the projective special unitary group PSU3(3

n), the symplectic
groups PSP (8, q), the simple K4 -group of type L2(p) where p is a prime but not 2n-
1, the sympelectic group C4(q) and 2D8((2

n)2), where 28n + 1 is a prime number are
characterizable by the largest element order and the order of the group.

In this paper, we prove that chevalley groups G2(q), where q ≡ ±2(mod 5) and
q2 + q+1 is a prime number, can be uniquely determined by the order of the group and
the second largest element order. In fact, we prove the following main theorem.
Main Theorem. Let G be a group with |G| = |G2(q)| and k2(G) = k2(G2(q)), where
q ≡ ±2(mod 5) and q2 + q + 1 is a prime number. Then G ∼= G2(q).

In this section, we describe some preliminary results which will be used later.

Lemma 1.1 [10, Theorem 3.1] Let G be a Frobenius group of even order with kernel K
and complement H. Then

(1) t(G) = 2, π(H) and π(K) are vertex sets of the connected components of Γ(G);
(2) |H| divides |K| − 1;
(3) K is nilpotent.

Definition 1.2 [1] A group G is called a 2-Frobenius group if there is a normal series
1⊴H ⊴K ⊴G such that G/H and K are Frobenius groups with kernels K/H and H,
respectively.

Lemma 1.3 [1, Theorem 2] Let G be a 2-Frobenius group of even order. Then,

(1) t(G) = 2, π(H) ∪ π(G/K) = π1 and π(K/H) = π2;
(2) G/K and K/H are cyclic groups satisfying |G/K| divides |Aut(K/H)|.

Lemma 1.4 [15, Theorem A] Let G be a finite group with t(G) ⩾ 2. Then one of the
following statements holds:

(1) G is a Frobenius group;
(2) G is a 2-Frobenius group;
(3) G has a normal series 1 ⊴ H ⊴ K ⊴ G such that H and G/K are π1-groups,

K/H is a non-abelian simple group, H is a nilpotent group and |G/K| divides
|Out(K/H)|.

Lemma 1.5 [16, Lemma 6] Let q, k, l be natural numbers. Then

(1) (qk − 1, ql − 1) = q(k,l) − 1.

(2) (qk + 1, ql + 1) =

{
q(k,l) + 1 if both k

(k,l) and l
(k,l) are odd,

(2, q + 1) otherwise.

(3) (qk − 1, ql + 1) =

{
q(k,l) + 1 if k

(k,l) is even and l
(k,l) is odd,

(2, q + 1) otherwise.

In particular, the inequality (qk − 1, qk + 1) ⩽ 2 holds for every q ⩾ 2 and k ⩾ 1.
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Lemma 1.6 [14, Lemma 6] Let G be a non-abelian simple group such that (5, |G|) = 1.
Then G is isomorphic to one of the following groups:

(1) Ln(q), n = 2, 3, q ≡ ±2 (mod 5)(Projective special linear group);
(2) G2(q), q ≡ ±2 (mod 5)(Chevalley group);
(3) U3(q), q ≡ ±2 (mod 5)(Projective special unitary group);
(4) 3D4(q), q ≡ ±2 (mod 5)(Steinberg group);
(5) 2G2(q), q = 32m+1, m ≥ 1(Ree group).

2. Main results

In this section, we prove that the chevalley groups G2(q) are characterizable by using
the order of the group and the second largest element order. In fact, we prove that if
G is a group with |G| = |G2(q)| and k2(G) = k2(G2(q)), where q ≡ ±2(mod 5) and
q2 + q + 1 is a prime number, then G ∼= G2(q). From now on, we denote the chevalley
groups G2(q) and prime number q2 + q + 1 by R and p, respectively. Suppose that
G is a group with |G| = |R| = q6(q6−1)(q2−1) and k2(G) = k2(R) = q2+q, (See [5, 12]).

Claim 1. p is an isolated vertex of Γ(G).
proof. We, prove that p is an isolated vertex of Γ(G). Suppose the opposite, then
there is a prime number t ∈ π(G) − {p}, so that tp ∈ πe(G). So, we deduce
tp ≥ 2p = 2(q2 + q + 1) ≥ q2 + q + 1 > q2 + q. Therefore k2(G) > q2 + q, which is a
contradiction.

Claim 2. The group G is neither a Frobenius group nor a 2-Frobenius group.
proof. Let G be a Frobenius group with kernel K and complement H. Then by lemma
1.1, t(G) = 2 and π(H) and π(K) are vertex sets of the connected components of
Γ(G) and |H| divides |K| − 1. Now by Claim1 p is an isolated vertex of Γ(G). Thus,
we deduce that (i) |H| = p and |K| = |G|/p or (ii) |H| = |G|/p and |K| = p. Now
we prove that |H| = p and |K| = |G|/p. For this purpose, we assume π(H) = p,
then we show |H| = p. Since p is an isolated vertex and p be a set of prime divisor
of H. Hence, H = {p, p2, ..., pn} so |H| = pn. Now, we prove that only n = 1 is
satiesfied. For this purpose assume n > 1. The least value n = 2. Now, since G be a
Frobenius group by kernel K and compelement H. On the other hand G = KH. As

a result |K| = |G|
|H| so |K| = q6(q6−1)(q2−1)

(q2+q+1)2 . Thus, |K| = q14−q12−q8+q6

(q2+q+1)2 . It follows that

|K| = (q4+2q3+3q2+2q+1)(q10−2q9+4q7−5q6+6q4−6q3+6q−6)+(6q2+6q+6). Now,
since |H| | |K|−1, so (q4+2q3+3q2+2q+1) | (q4+2q3+3q2+2q+1)(q10−2q9+4q7−
5q6+6q4−6q3+6q−6)+(6q2+6q+5). As a result (q4+2q3+3q2+2q+1) | (6q2+6q+5),
which is a contradiction, so only n = 1 is satiesfied. Now, assume π(K) = p, then we
prove that |K| = p. Since, p is an isolated vertex and p be a set of prime divisor of
H so H = {p, p2, ..., pn} it follows that |H| = pn. Now, we prove that only n = 1 is
satiesfied. For this purpose, assume n > 1. In the least value n = 2. Now, since G be
a Frobenius group by kernel K and compelement H. On the other hand, G = KH.

As a result |H| = |G|
|K| so |H| = q6(q6−1)(q2−1)

(q2+q+1)2 . Thus |H| = q14−q12−q8+q6

q4+2q3+3q2+2q+1 . Since

|H| divides |K| − 1, so q14−q12−q8+q6

q4+2q3+3q2+2q+1 | (q4 + 2q3 + 3q2 + 2q + 1) − 1 it follows that

(q4 + 2q3 + 3q2 + 2q + 1)(q10 − 2q9 + 4q7 − 5q6 + 6q4 − 6q3 + 6q − 6) + (6q2 + 6q + 6) |
(q4 + 2q3 + 3q2 + 2q), which this is a contradiction. Thus |K| = p. Now, since
|H| = |G|/p ∤ p− 1, we conclude that the last case (ii) can not occur. Thus, |H| = p and
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|K| = |G|/p it follows that q2 + q + 1 | q6(q6 − 1)(q2 − 1)/(q2 + q + 1) − 1. Hence, we
have q2 + q + 1 | (q2 + q + 1)(q10 − 2q9 + 4q7 − 5q6 + 6q4 − 6q3 + 6q − 6) + 5. As a result
p | 5, which is impossible.
We now show that G is not a 2-Frobenius group. Suppose the opposite, assume G be
a 2-Frobenius group, so G has a normal series 1 ⊴ H ⊴ K ⊴ G such that G/H and K
are Frobenius groups by kernels K/H and H respectively. Now, since p is an isolated
vertex of Γ(G), it follows that π2(G) = p and also|K/H| = p. On the other hand,
|G/K| divides |Aut(K/H)|, we deduce that |G/K||(p− 1). On the other hand, we have
(q2 + q + 1, q2 + q − 1) = 1. Now, since |G/K| | (p− 1), we deduce that q2 + q − 1 | |H|.
Let H1 be a subgroup of H of order q2 + q − 1. On the other hand, H is nilpotent,
therefore H1 ⋊ K/H is a Frobenius group with kernel H1 and complementK/H. It
follows that, |K/H|divides |H1| − 1, so we have q2 + q + 1 ≤ (q2 + q − 1)− 1, but this is
a contradiction.

Claim 3. The group G is isomorphic to the group R.
proof. By Claim 1, p is an isolated vertex of Γ(G). Thus, t(G) > 1 and G satisfies one
of the cases of Lemma 1.4. Furthermore, Claim 2 implies that G is neither a Frobenius
group nor a 2-Frobenius group. Thus only the case (c) of lemma 1.4 occurs. So, G has a
normal series 1⊴H⊴K⊴G such that H and G/K are π1-groups, K/H is a non-abelian
simple group. Since, p is an isolated vertex of Γ(G), we have p | |K/H|. On the other
hand, we know that 5 ∤ |G|. Thus K/H is isomorphic to one of the groups in Lemma
1.6. Hence, we consider the following cases:

(1) If K/H ∼= 2G2(q
′), where q′ = 32m+1, then by ([12, Table A.7]),

k2(
2G2(q

′)) = q′ −
√
3q′ + 1. On the other hand, we know |2G2(q

′)| | |G|, in
other words q′3(q′3+1)(q′−1) | |G|. For this purpose, we consider q2+ q = q′−

√
3q′+1.

It follows that 3m+1(3m − 1) = (q − (−1+
√
5

2 ))(q − (−1−
√
5

2 )). Since (3m+1, 3m − 1) = 1,

so we deduce q − (−1−
√
5

2 ) = 3m − 1 and q − (−1+
√
5

2 ) = 3m+1. Then, we can see easily
this equations don’t have any solution in natural number N, which is a contradiction.

(2) If K/H ∼= 3D4(q
′), then by ([12, Table A.7]), k2(

3D4(q
′)) = q′4−q′2+1. On the other

hand we know|3D4(q
′)| | |G|, as q′12(q′8+ q′4+1)(q′6− 1)(q′2− 1) | |G|. For this purpose,

we consider q2 + q = q′4 − q′2 + 1. As a result (q − (−1+
√
5

2 ))(q − (−1−
√
5

2 )) = q′2(q′2 − 1)

and hence q − (−1+
√
5

2 ) = q′2 and q′2 − 1 = q − (−1−
√
5

2 ). Then, we can see easily this
equations don’t have any solution in natural number N, which this is a contradiction.

(3) If K/H ∼= L2(q
′), where q′ ≡ ±2(mod 5), q′ = p′m, then by ([12, Table A.1])

k2(L2(q
′)) = q′ − 1, q′+1

2 , where q′ be even and odd respectively. On the other hand,

we know |L2(q
′)| | |G|, in other words q′(q′2−1)

(2,q′−1) | |G|. Now, for this purpose, assume q′

be even, then k2(L2(q
′)) = q′ − 1, so we have q2 + q = q′ − 1. Then q2 − q + 1 = q′.

Since |L2(q
′)| ∤ |G|, which is a contradiction. Now if q′ odd, then k2(L2(q

′)) = q′+1
2 , so

we have q2+q = q′+1
2 . Then 2q2+2q−1 = q′. But this is a contradiction, because q′ = p′m.

(4) If K/H ∼= L3(q
′), where q′ ≡ ±2 (mod 5), then by ( [12, Table A.1]),

k2(L3(q
′)) = q′2−1

(3,q′−1) . On the other hand, we know |L3(q
′)| | |G|, as q′3(q′3−1)(q′2−1)

(3,q′−1) | |G|.
For this purpose, we consider two cases. First we assume (3, q′ − 1) = 1, then
q2 + q = q′2 − 1. As a result q(q + 1) = (q′ − 1)(q′ + 1), now since (q, q + 1) = 1, we
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deduce q′ − 1 = q and also q′ +1 = q+1. So, q′ = q+1 and q′ = q− 1, but |L3(q
′)| ∤ |G|,

which this is a contradiction. Now, if q2 + q = q′2−1
3 , then 3q2 + 3q = q′2 − 1. Therefore,

3q(q + 1) = (q′ − 1)(q′ + 1). On the other hand, (q′ − 1, q′ + 1) = 1 or 2. Now, if
(q′ − 1, q′ + 1) = 1, then q + 1 = q′ − 1 and 3q = q′ + 1. So q′ = q + 2 and q′ = 3q − 1
but |L3(q

′)| ∤ |G|, which is a contradiction. The other case is impossible.

(5) K/H ∼= U3(q
′), where q′ ≡ ±2 (mod 5), then by ([12, Table A.2]), k2(U3(q

′)) =
q′2−1

(3,q′+1) . On the other hand, we know|U3(q
′)| | |G|, in other words q′3(q′3+1)(q′2−1)

(3,q′+1) | |G|. For
this purpose, we consider two cases. First, we assume (3, q′+1) = 1, then q2+q = q′2−1.
As a result q(q + 1) = (q′ − 1)(q′ + 1), now since (q, q + 1) = 1, we deduce q′ − 1 = q
and also q′ + 1 = q + 1. It follows that q′ = q + 1 and q′ = q − 1, but |U3(q

′)| ∤ |G|,
which this is a contradiction. Now if q2 + q = q′2−1

3 , then 3q2 + 3q = (q′ − 1)(q′ + 1). So,
3q(q + 1) = (q′ − 1)(q′ + 1) it follows that 3q = q′ + 1 and q + 1 = q′ − 1. So, q′ = 3q − 1
and q′ = q + 2 but |U3(q

′)| ∤ |G|, which is a contradiction. Hence, we have the following
isomorphic:
(6) K/H ∼= G2(q

′), where q′ ≡ ±2 (mod 5), as a result |K/H| = |R|. Now, since p
is an isolated vertex and p | |K/H| and also k2(K/H) | k2(G). Hence, we consider
q2 + q = q′2 + q′ as a result q = q′. Now, since 1 ⊴H ⊴K ⊴G, we deduce that H = 1,
so G = K ∼= R.
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