Journal of Linear and Topological Algebra Vol. 07, No. 04, 2018, 269-272

A note on spectral mapping theorem

Z. Heydarbeygi^a, B. Moosavi^{b,*}, M. Shah Hosseini^c

^aDepartment of Mathematics, Payame Noor University (PNU), P.O. BOX, 19395-4697, Tehran, Iran. ^bDepartment of Mathematics, Safadasht Branch, Islamic Azad University, Tehran, Iran. ^cDepartment of Mathematics, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.

Received 19 June 2018; Revised 24 July 2018; Accepted 12 August 2018.

Communicated by Hamidreza Rahimi

Abstract. This paper aims to present the well-known spectral mapping theorem for multi-variable functions.

© 2018 IAUCTB. All rights reserved.

Keywords: Banach algebra, spectral mapping theorem.

2010 AMS Subject Classification: 47A60, 47A10.

1. Introduction

Spectral mapping theorem is a basic theorem in functional analysis. This theorem says that, if f is an analytic function, then

$$\sigma\left(f\left(x\right)\right) = f\left(\sigma\left(x\right)\right) \tag{1}$$

for an element of a Banach Algebra Ω (see for example [5, Proposition 2.8] and [6, Theorem 2.1.14]). Similar results have been studied for other types of spectrum as the joint spectrum (see [2,3]).

Here, we prove an extension of this theorem for multi-variable functions. We conclude

© 2018 IAUCTB. All rights reserved. http://jlta.iauctb.ac.ir

^{*}Corresponding author.

E-mail address: zheydarbeygi@yahoo.com (Z. Heydarbeygi); baharak_moosavie@yahoo.com (B. Moosavi); mohsen_shahhosseini@yahoo.com (M. Shah Hosseini).

this short paper by recalling some notations which will be used in the sequel. Let Ω be a commutative C^* -algebra. Then for any x in Ω we have

$$\sigma(x) = \{\varphi(x) : \varphi \in M_{\Omega}\},\$$

where φ is character and M_{Ω} denotes the maximal ideal space of Ω . In the sequel an essential role is played by bi-analytic functions. A continuous function F on \mathbb{C}^2 is said to be bi-analytic, if for all x_0, y_0 in \mathbb{C} ,

$$F(x) = F(x, y_0), \quad F(y) = F(x_0, y)$$

are analytic on \mathbb{C} . For instance

$$F(x,y) = e^{(x+y)}, \quad F(x,y) = e^{(x)} + e^{(y)}$$

are bi-analytic functions.

Assume that A and B are subsets of $\mathbb C$ and F is two variable function. We define

$$F(A, B) := \{F(a, b) : a \in A, b \in B\}.$$

The next section includes an extension of (1).

2. The main result

In order to derive our main result, we need the following observation.

Lemma 2.1 Every bi-analytic function f, has the representation

$$f(x,y) = \sum_{m,n=0}^{\infty} \alpha_{m,n} x^m y^n,$$

where $\alpha_{m,n}$ are complex numbers.

Proof. First of all, consider f(x, y) as function in y. Since $f(y) = f(x_0, y)$ is analytic, therefore

$$f(x,y) = \sum_{n} \alpha_n(x) y^n.$$
 (2)

It remains to prove, $\alpha_n(x)$ is analytic. Since $\alpha_0(x) = f(x,0)$, so α_0 is analytic. Also $\alpha_1(x) = f_y(x,0)$, and therefore α_1 is analytic. In a similar manner one can get α_i are analytic. Whence, it has power series of the form

$$\alpha_n(x) = \sum_m \alpha_{m,n} x^m.$$
(3)

By replacing (3) into (2) we get the desired result.

Now we use Lemma to prove an analogous result but different technique to the main theorem of Harte [4] in an easy fashion as an offshoot of our work.

Theorem 2.2 Let Λ be a commutative C^* -algebra and F be a bi-analytic function. Then for any x, y in Λ we have

$$\sigma(F(x,y)) \subseteq F(\sigma(x),\sigma(y)).$$

Proof. It follows from previous lemma that

$$F(x,y) = \sum_{m,n=0}^{\infty} \alpha_{m,n} x^m y^n.$$

On the other hand, bearing in mind that

$$\sigma(F(x,y)) = \{\varphi(F(x,y)): \varphi \in M_{\Omega}\},\$$

we have

$$\varphi(F(x,y)) = \varphi(\sum_{m,n=0}^{\infty} \alpha_{m,n} x^m y^n) = \sum_{m,n=0}^{\infty} \alpha_{m,n} \varphi(x)^m \varphi(y)^n = F(\varphi(x),\varphi(y)),$$

where $\varphi(x) \in \sigma(x)$ and $\varphi(y) \in \sigma(y)$. Therefore, $\varphi(F(x,y)) \in F(\varphi(x),\varphi(y))$ and since φ is arbitrary we have $\sigma(F(x,y)) \subseteq F(\sigma(x),\sigma(y))$. This completes the proof.

Related to the above theorem, the following remarks are worth mentioning.

- (i) If we take F(x, y) = x + y or F(x, y) = xy, then we have $\sigma(x + y) \subseteq \sigma(x) + \sigma(y)$ and $\sigma(xy) \subseteq \sigma(x)\sigma(y)$, which are well known results (see, e.g., [1, Corollary 3.2.10]).
- (ii) In general, for some fixed x, y it is enough x, y commute together, and then we consider the C^* -algebra generated by x, y.
- (iii) We guess the above theorem can be extended in the following way:

$$\sigma(F(x_1, x_2, \dots, x_n)) \subseteq F(\sigma(x_1), \sigma(x_2), \dots, \sigma(x_n)).$$

However, this does not appear to be easy to prove directly.

(iv) For completeness, we also state the extension of our result to spectral radius r(x). More precisely, we have

$$r(F(x,y)) \subseteq F(r(x),r(y))$$

and in general

$$r(F(x_1, x_2, \dots, x_n)) \subseteq F(r(x_1), r(x_2), \dots, r(x_n)).$$

Notice that, the proof is based on the fact that

$$F(x_1, x_2, \dots, x_n) | \leq F(|x_1|, |x_2|, \dots, |x_n|).$$

Acknowledgements

The authors would like to thank the anonymous reviewers for careful reading of the manuscript and giving useful comments, which will help to improve the paper.

References

- [1] B. Aupetit, A primer on spectral theory. Springer-Verlag, New York, 1991.
- [2] J. Eschmeier, Analytic spectral mapping theorems for joint spectra, Opr. Theory. Adv. Appl. 24 (1987), 167-181.
- [3] R. E. Harte, Spectral mapping theorems, Proceedings of the Royal Irish Academy, Section A: Math. Physic. Sci, 1972.
 [4] D. F. H. et al. (1976).
- [4] R. E. Harte, The spectral mapping theorems in several variables, Bull. Amer. Math. Soc. 78 (5) (1972), 871-875.
- [5] J. G. Murphy, C*-algebras and operator theory, Academic Press Inc, 1990.
 [6] M. Takesaki, Theory of operator algebras. Encyclopaedia of Math. Sci, 2002.