A note on spectral mapping theorem

Z. Heydarbeygia ${ }^{\text {a }}$, B. Moosavi ${ }^{\text {b,* }}$, M. Shah Hosseini ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Mathematics, Payame Noor Universtiy (PNU), P.O. BOX, 19395-4697, Tehran, Iran.
${ }^{\mathrm{b}}$ Department of Mathematics, Safadasht Branch, Islamic Azad University, Tehran, Iran.
${ }^{c}$ Department of Mathematics, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.

Received 19 June 2018; Revised 24 July 2018; Accepted 12 August 2018.
Communicated by Hamidreza Rahimi

Abstract

This paper aims to present the well-known spectral mapping theorem for multivariable functions. (c) 2018 IAUCTB. All rights reserved.

Keywords: Banach algebra, spectral mapping theorem.
2010 AMS Subject Classification: 47A60, 47A10.

1. Introduction

Spectral mapping theorem is a basic theorem in functional analysis. This theorem says that, if f is an analytic function, then

$$
\begin{equation*}
\sigma(f(x))=f(\sigma(x)) \tag{1}
\end{equation*}
$$

for an element of a Banach Algebra Ω (see for example [5, Proposition 2.8] and [6, Theorem 2.1.14]). Similar results have been studied for other types of spectrum as the joint spectrum (see [2,3]).
Here, we prove an extension of this theorem for multi-variable functions. We conclude

[^0]this short paper by recalling some notations which will be used in the sequel. Let Ω be a commutative C^{*}-algebra. Then for any x in Ω we have
$$
\sigma(x)=\left\{\varphi(x): \quad \varphi \in M_{\Omega}\right\},
$$
where φ is character and M_{Ω} denotes the maximal ideal space of Ω. In the sequel an essential role is played by bi-analytic functions. A continuous function F on \mathbb{C}^{2} is said to be bi-analytic, if for all x_{0}, y_{0} in \mathbb{C},
$$
F(x)=F\left(x, y_{0}\right), \quad F(y)=F\left(x_{0}, y\right)
$$
are analytic on \mathbb{C}. For instance
$$
F(x, y)=e^{(x+y)}, \quad F(x, y)=e^{(x)}+e^{(y)}
$$
are bi-analytic functions.
Assume that A and B are subsets of \mathbb{C} and F is two variable function. We define
$$
F(A, B):=\{F(a, b): a \in A, b \in B\} .
$$

The next section includes an extension of (1).

2. The main result

In order to derive our main result, we need the following observation.
Lemma 2.1 Every bi-analytic function f, has the representation

$$
f(x, y)=\sum_{m, n=0}^{\infty} \alpha_{m, n} x^{m} y^{n}
$$

where $\alpha_{m, n}$ are complex numbers.
Proof. First of all, consider $f(x, y)$ as function in y. Since $f(y)=f\left(x_{0}, y\right)$ is analytic, therefore

$$
\begin{equation*}
f(x, y)=\sum_{n} \alpha_{n}(x) y^{n} . \tag{2}
\end{equation*}
$$

It remains to prove, $\alpha_{n}(x)$ is analytic. Since $\alpha_{0}(x)=f(x, 0)$, so α_{0} is analytic. Also $\alpha_{1}(x)=f_{y}(x, 0)$, and therefore α_{1} is analytic. In a similar manner one can get α_{i} are analytic. Whence, it has power series of the form

$$
\begin{equation*}
\alpha_{n}(x)=\sum_{m} \alpha_{m, n} x^{m} . \tag{3}
\end{equation*}
$$

By replacing (3) into (2) we get the desired result.
Now we use Lemma to prove an analogous result but different technique to the main theorem of Harte [4] in an easy fashion as an offshoot of our work.

Theorem 2.2 Let Λ be a commutative C^{*}-algebra and F be a bi-analytic function. Then for any x, y in Λ we have

$$
\sigma(F(x, y)) \subseteq F(\sigma(x), \sigma(y))
$$

Proof. It follows from previous lemma that

$$
F(x, y)=\sum_{m, n=0}^{\infty} \alpha_{m, n} x^{m} y^{n} .
$$

On the other hand, bearing in mind that

$$
\sigma(F(x, y))=\left\{\varphi(F(x, y)): \quad \varphi \in M_{\Omega}\right\}
$$

we have

$$
\varphi(F(x, y))=\varphi\left(\sum_{m, n=0}^{\infty} \alpha_{m, n} x^{m} y^{n}\right)=\sum_{m, n=0}^{\infty} \alpha_{m, n} \varphi(x)^{m} \varphi(y)^{n}=F(\varphi(x), \varphi(y)),
$$

where $\varphi(x) \in \sigma(x)$ and $\varphi(y) \in \sigma(y)$. Therefore, $\varphi(F(x, y)) \in F(\varphi(x), \varphi(y))$ and since φ is arbitrary we have $\sigma(F(x, y)) \subseteq F(\sigma(x), \sigma(y))$. This completes the proof.

Related to the above theorem, the following remarks are worth mentioning.
(i) If we take $F(x, y)=x+y$ or $F(x, y)=x y$, then we have $\sigma(x+y) \subseteq \sigma(x)+\sigma(y)$ and $\sigma(x y) \subseteq \sigma(x) \sigma(y)$, which are well known results (see, e.g., [1, Corollary 3.2.10]).
(ii) In general, for some fixed x, y it is enough x, y commute together, and then we consider the C^{*}-algebra generated by x, y.
(iii) We guess the above theorem can be extended in the following way:

$$
\sigma\left(F\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \subseteq F\left(\sigma\left(x_{1}\right), \sigma\left(x_{2}\right), \ldots, \sigma\left(x_{n}\right)\right)
$$

However, this does not appear to be easy to prove directly.
(iv) For completeness, we also state the extension of our result to spectral radius $r(x)$. More precisely, we have

$$
r(F(x, y)) \subseteq F(r(x), r(y))
$$

and in general

$$
r\left(F\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \subseteq F\left(r\left(x_{1}\right), r\left(x_{2}\right), \ldots, r\left(x_{n}\right)\right)
$$

Notice that, the proof is based on the fact that

$$
\left|F\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right| \leqslant F\left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right) .
$$

Acknowledgements

The authors would like to thank the anonymous reviewers for careful reading of the manuscript and giving useful comments, which will help to improve the paper.

References

[1] B. Aupetit, A primer on spectral theory. Springer-Verlag, New York, 1991.
[2] J. Eschmeier, Analytic spectral mapping theorems for joint spectra, Opr. Theory. Adv. Appl. 24 (1987), 167-181.
[3] R. E. Harte, Spectral mapping theorems, Proceedings of the Royal Irish Academy, Section A: Math. Physic. Sci, 1972.
[4] R. E. Harte, The spectral mapping theorems in several variables, Bull. Amer. Math. Soc. 78 (5) (1972), 871-875.
[5] J. G. Murphy, C^{*}-algebras and operator theory, Academic Press Inc, 1990.
[6] M. Takesaki, Theory of operator algebras. Encyclopaedia of Math. Sci, 2002.

[^0]: *Corresponding author.
 E-mail address: zheydarbeygi@yahoo.com (Z. Heydarbeygi); baharak_moosavie@yahoo.com (B. Moosavi); mohsen_shahhosseini@yahoo.com (M. Shah Hosseini).

