$b-(\varphi, \Gamma)-$ graph contraction on metric space endowed with a graph

Sh. Mirzaee ${ }^{\text {a }}$, M. Eshaghi Gordjii ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Karaj Branch, Islamic Azad University, Alborz, Iran.
${ }^{\mathrm{b}}$ Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran.

Received 21 May 2018; Revised 11 September 2018; Accepted 12 September 2018.
Communicated by Ghasem Soleimani Rad

Abstract

In this paper, we introduce the $b-(\varphi, \Gamma)$-graphic contraction on metric space endowed with a graph so that (M, δ) is a metric space, and $V(\Gamma)$ is the vertices of Γ coincides with M. We aim to obtain some new fixed-point results for such contractions. We give an example to show that our results generalize some known results.

© 2018 IAUCTB. All rights reserved.

Keywords: Metric space, fixed point, $b-(\varphi, \Gamma)$-graphic contraction.
2010 AMS Subject Classification: $47 \mathrm{H} 10,47 \mathrm{H} 09$.

1. Introduction

Jachymski [13] offers some generalizations about the Banach contraction principle to map on a metric space with respect to a graph. Some recent articles give sufficient conditions for selfmap $f: M \rightarrow M$ to be a PO if (M, δ) is a metric space endowed with a graph. We give some conditions to show that $b-(\varphi, \Gamma)$-graphic contraction is PO. In order to study $b-(\varphi, \Gamma)$-graphic contraction, we need the following definitions (also, see $[1,2,4-8,10-12,14-16,18-22,24])$.

Let (M, δ) be a metric space, and Δ be the diagonal of $M \times M$. Let Γ be a directed graph so that the set $V(\Gamma)$ of its vertices coincides with M, and the set $S(\Gamma)$ of its edges contains all loops, i.e. $S(\Gamma) \supseteq \Delta$. Let Γ have no parallel edges, which is why one can identify Γ with the pair $(V(\Gamma), S(\Gamma))$. By Γ^{-1}, we denote the graph obtained from Γ by reversing the direction of edges, and call it the reverse of graph Γ. Thus,

[^0]$S\left(\Gamma^{-1}\right)=\{(x, y) \in M \times M \mid(y, x) \in S(\Gamma)\} . \tilde{\Gamma}$ is the undirected graph obtained from Γ by removing the direction of the edges. Thus, we have $S(\tilde{\Gamma})=S(\Gamma) \bigcup S\left(\Gamma^{-1}\right)$.

A path from x to y of length $N(N \in \mathbf{N})$ is a sequence $\left(x_{i}\right)_{i=0}^{N}$ of $N+1$ vertices so that $x_{0}=x, x_{N}=y$ and $\left(x_{n-1}, x_{n}\right) \in S(\Gamma)$ for $i=1, \ldots, N$. Γ has a weak connection if $\tilde{\Gamma}$ is connected. $[x]_{\Gamma}$ is the equivalent class of relations \Re defined on $V(\Gamma)$ by the rule: $z \Re y$ if there is a path in Γ from z to $y . \Gamma_{x}$ is called the component of Γ, which comprises of all edges and vertices that are contained in some paths beginning at x.

If $f: M \rightarrow M$ is an operator, then $\left.M^{f}:=\{x \in M:(x, f x)\} \in S(\Gamma)\right\}$ and the set of all fixed points of f is denoted by $F_{f}:=\{x \in M: f(x)=x\}$.

Definition 1.1 [3, 9] Let M be a set and $s \geqslant 1$ be a given real number. A function $\delta: M \times M \rightarrow \mathbf{R}^{+}$is said to be a $b-$ metric on M and the pair (M, δ) is called a $b-$ metric space if, for all $x, y, z \in M$,
$\left(\delta_{1}\right) \delta(x, y)=0$ if and only if $x=y$,
$\left(\delta_{2}\right) \delta(x, y)=\delta(y, x)$,
$\left(\delta_{3}\right) \delta(x, z) \leqslant s[\delta(x, y)+\delta(y, z)]$.
Remark 1 Set $s=1$ in the Definition 1.1, then we obtain δ is a metric space on M.
Example $1.2[24]$ Let $M=l_{p}(\mathbf{R})$, where $l_{p}(\mathbf{R})=\left\{x=\left\{x_{n}\right\} \subset \mathbf{R}: \sum_{n=1}^{\infty}\left|x_{n}\right|^{p}<\infty\right\}$ and $0<p<1$. Then $\delta(x, y)=\left(\sum_{n=1}^{\infty}\left|x_{n}-y_{n}\right|^{p}\right)^{\frac{1}{p}}$ is a $b-$ metric on M with $s=2^{\frac{1}{p}}$.
Definition 1.3 [8] A mapping $f: M \rightarrow M$ is called Γ-graphic contraction if

1. for all $x, y \in M$, if $(x, y) \in S(\Gamma)$ then $(f(x), f(y)) \in S(\Gamma)$;
2. there exists $a \in[0,1)$ so that $\delta\left(f(x), f^{2}(x)\right) \leqslant a d(x, f(x))$ for all $x \in M^{f}$.

Matkowski [17] defined class of φ-contractions in metric fixed-point theory.
Definition 1.4 [17] Let $\phi: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$. Consider the following properties:
(i) $\varphi_{\varphi} t_{1} \leqslant t_{2} \Rightarrow \varphi\left(t_{1}\right) \leqslant \varphi\left(t_{2}\right)$ for all $t_{1}, t_{2} \in \mathbf{R}^{+}$,
(ii) $)_{\varphi} \varphi(t)<t$ for $t>0$,
$(i i i)_{\varphi} \varphi(0)=0$,
(iv) $)_{\varphi \rightarrow \infty} \lim _{n \rightarrow \infty} \varphi^{n}(t)=0$ for all $t>0$,
$(v)_{\varphi} \sum_{n=0}^{\infty} \varphi^{n}(t)$ converges for all $t>0$.
We state that a function φ satisfying $(i)_{\varphi}$ and $(i v)_{\varphi}$ is said to be a comparison function.
Moreover, if a function φ satisfying $(i)_{\varphi}$ and $(v)_{\varphi}$ is said to be a (c)-comparison function
In Definition 1.4, $(i)_{\varphi}$ and $(i v)_{\varphi}$ imply $(i i)_{\varphi}$ and $(i)_{\varphi}$ and $(i i)_{\varphi}$ imply $(i i i)_{\varphi}$.
Remark 2 Any (c)-comparison function is a comparison function.
Definition $1.5[24]$ Let $s \geqslant 1$ be a fixed real number. A function $\varphi: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is known as (b)-comparison function if it satisfies $(i)_{\varphi}$ and the following holds:

$$
(v i)_{\varphi} \sum_{n=0}^{\infty} s^{n} \varphi^{n}(t) \text { converges for all } t \in \mathbf{R}^{+} .
$$

Remark 3 By setting $s=1$ in Definition 1.5, we obtain that the function φ is a comparison function.

Example 1.6 [24] Let (M, δ) be a b-metric space with coefficient $s \geqslant 1$. Then $\varphi(t)=a t$
for all $t \in \mathbf{R}^{+}$with $0<a<\left(\frac{1}{s}\right)$ is a (b)-comparison function.
Definition 1.7 [24] A mapping $f: M \rightarrow M$ is called $b-(\varphi, \Gamma)$-contraction if
(i) for all $x, y \in M$, if $(x, y) \in S(\Gamma)$ then $(f(x), f(y)) \in S(\Gamma)$;
(ii) $\delta(f(x), f(y)) \leqslant \varphi(\delta(x, y))$ whenever $(x, y) \in S(\Gamma)$,
where $\phi: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is a comparison function.
Definition 1.8 [13] Let (M, δ) be a b-metric space and $f: M \rightarrow M$ a mapping. Two sequences $\left\{f^{n} x\right\}$ and $\left\{f^{n} y\right\}$ in M are said to be equivalent if $\lim _{n \rightarrow \infty} \delta\left(f^{n} x, f^{n} y\right)=0$. Moreover, if each of them is a Cauchy sequence, they are called Cauchy equivalents.

In the next section, we state two fixed-point theorems for $b-(\varphi, \Gamma)$-graphic contraction.

2. Main results

In this section, we assume that (M, δ) is a b-metric space with coefficient $s \geqslant 1$ and Γ is a directed graph so that $V(\Gamma)=M, \Delta \subseteq S(\Gamma)$ and Γ has no parallel edges.
Definition 2.1 A mapping $f: M \rightarrow M$ is called $b-(\varphi, \Gamma)$-graphic contraction if
(i) for all $x, y \in M$, if $(x, y) \in S(\Gamma)$ then $(f(x), f(y)) \in S(\Gamma)$;
(ii) $\delta\left(f(x), f^{2}(x)\right) \leqslant \varphi(\delta(x, f(x)))$ for all $x \in M^{f}$,
where $\phi: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is a comparison function.
Remark 4 Any Γ-graphic contraction is a $b-(\varphi, \Gamma)$-graphic contraction.
Lemma 2.2 Let (M, δ) be a b-metric space and $f: M \rightarrow M$ be a $b-(\varphi, \Gamma)$-graphic contraction, where $\phi: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is a b-comparison function. Then, for given $x \in M^{f}$ there exists $r(x) \geqslant 0$ so that $\delta\left(f^{n} x, f^{n+1} x\right) \leqslant \varphi^{n}(r(x))$ for all $n \in \mathbf{N}$.
Proof. Assume that $x \in M^{f}$, then by induction, we have $\left(f^{n} x, f^{n+1} x\right) \in S(\Gamma)$ for each $n \in \mathbf{N}$. So

$$
\delta\left(f^{n} x, f^{n+1} x\right) \leqslant \varphi\left(\delta\left(f^{n-1} x, f^{n} x\right)\right) \leqslant \cdots \leqslant \varphi^{n}(\delta(x, f x)
$$

Set $r(x)=\delta(x, f x)$.
Lemma 2.3 Let (M, δ) be a b-metric space and $f: M \rightarrow M$ be a $b-(\varphi, \Gamma)-$ graphic contraction, where $\phi: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is a b-comparison function. Furthermore, for each $x \in M^{f}$, there exists $x^{*}(x) \in M$ so that the sequence $\left(f^{n} x\right)_{n \in \mathbf{N}}$ converges to $x^{*}(x)$ as $n \rightarrow \infty$.
Proof. Let $x \in M^{f}$. By Lemma 2.2, $\delta\left(f^{n} x, f^{n+1} x\right) \leqslant \varphi^{n}(r(x))$ for all $n \in \mathbf{N}$. Hence, $\sum_{n=0}^{\infty} \delta\left(f^{n} x, f^{n+1} x\right) \leqslant \sum_{n=0}^{\infty} \varphi^{n}(r(x))<\infty$. Thus, $\delta\left(f^{n} x, f^{n+1} x\right) \rightarrow 0$ as $n \rightarrow \infty$.
Therefore the sequence $\left(f^{n} x\right)_{n \in \mathbf{N}}$ is a Cauchy sequence. Since the space M is complete, there exists $x^{*}(x) \in X$ so that the sequence $\left(f^{n} x\right)_{n \in \mathbf{N}}$ converges to $x^{*}(x)$ as $n \rightarrow \infty$.
Definition 2.4 [23] Let $f: M \rightarrow M$, and let $y \in M$, and the sequence $\left\{f^{n} y\right\}$ in M so that $f^{n} y \rightarrow x^{*}$ with $\left(f^{n} y, f^{n+1} y\right) \in S(\Gamma)$ for all $n \in \mathbf{N}$. We say that a graph Γ is $\left(C_{f}\right)$-graph if there is a subsequence $\left\{f^{n_{k}} y\right\}$ and a natural number p so that $\left(f^{n_{k}} y, x^{*}\right) \in$ $S(\Gamma)$ for all $k \geqslant p$.

Definition 2.5 [13] A mapping $f: M \rightarrow M$ is called orbitally Γ - continuous if for all $x, y \in M$ and any sequence $\left(k_{n}\right)_{n \in \mathbf{N}}$ of positive integers, $f^{k_{n}} x \rightarrow y$ and $\left(f^{k_{n}} x, f^{k_{n+1}} x\right) \in$ $S(\Gamma)$ imply $f\left(f^{k_{n}} x\right) \rightarrow f y$ as $n \rightarrow \infty$.
Theorem 2.6 Let (M, δ) be a complete b-metric space endowed with a graph Γ and Γ be $\left(C_{f}\right)$-graph. Let $f: M \rightarrow M$ be a $b-(\varphi, \Gamma)$-graphic contraction and f be orbitally Γ-continuous, where $\phi: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is a $b-$ comparison function. Thus, the following statements hold.
(i) $F_{f} \neq \varnothing$ if and only if $M^{f} \neq \varnothing$.
(ii) If $M^{f} \neq \varnothing$ and Γ are weakly connected, then f is a weakly Picard operator.
(iii) For any $M^{f} \neq \varnothing,\left.f\right|_{[x]_{\Gamma}}$ is a weak Picard operator.

Proof. First, we prove (iii). Let $x \in M^{f}$. By Lemma 2.3, there exists $x^{*} \in M$ so that $\lim _{n \rightarrow \infty} f^{n} x=x^{*}$. Since $x \in M^{f}$, then $f^{n} x \in M^{f}$ for every $n \in \mathbf{N}$. Now, we assume that $(x, f x) \in S(\Gamma)$. Since Γ is $\left(C_{f}\right)$-graph, there exists a subsequence $\left(f^{k_{n}} x\right)_{n \in \mathbf{N}}$ of $\left(f^{n} x\right)_{n \in \mathbf{N}}$ and $p \in \mathbf{N}$ so that $\left(f^{k_{n}} x, x^{*}\right) \in S(\Gamma)$ for each $k \geqslant p$. Now, we have a path in Γ by using the points $x, f x, \cdots, f^{k_{l}} x, x^{*}$ and hence, $x^{*} \in[x]_{\tilde{\Gamma}}$. On the other hand, since f is orbitally Γ-continuous, we have x^{*} as a fixed point for $\left.f\right|_{[x]_{\overline{\mathrm{r}}}}$.
(i) is obtained using (iii) because $F_{f} \neq \varnothing$ if $M^{f} \neq \varnothing$. Now suppose that $F_{f} \neq \varnothing$. Using the assumption that $\triangle \subseteq S(\Gamma)$, we obtain $M^{f} \neq \varnothing$.
To prove (ii), let $x \in M^{f}$. Because Γ is weakly connected, we have $M=[x]_{\tilde{\Gamma}}$ and (iii) complete the proof.

In the next we study the case that $f: M \rightarrow M$ as a $b-(\varphi, \Gamma)$-graphic contraction can be a Picard operator. Thus, we need the following definition.

Definition 2.7 Let (M, δ) be a metric space endowed with a graph Γ and $f: M \rightarrow M$ be a mapping. We state that the graph Γ has a f-path property, if for any path in Γ, $\left(x_{i}\right)_{i=0}^{N}$ from x to y so that $x_{0}=x, x_{N}=y$ we have $f x_{i-1}=x_{i}$ for all $i=1, \cdots, N$.
Proposition 2.8 Let (M, δ) be a b-metric space endowed with a graph Γ. Let $f: M \rightarrow$ M be a $b-(\varphi, \Gamma)$-graphic contraction, where $\phi: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is a b-comparison function. Thus, the following statements hold:
(i) f is a $b-(\varphi, \tilde{\Gamma})$-graphic contraction and a $b-\left(\varphi, \Gamma^{-1}\right)$-graphic contraction;
(ii) $\left[x_{0}\right]_{\tilde{\Gamma}}$ is f-invariant, and $\left.f\right|_{\left[x_{0}\right]_{\tilde{\Gamma}}}$ is a $b-\left(\varphi, \tilde{\Gamma}_{x_{0}}\right)$-graphic contraction, and this means if $x_{0} \in M$, then $f x_{0} \in\left[x_{0}\right]_{\tilde{\Gamma}}$.
Proof. (i) is obtained using the symmetry of δ.
(ii) Let $x \in\left[x_{0}\right]_{\tilde{\Gamma}}$. Then there exists a path $\left(x_{i}\right)_{i=0}^{l}$ in $\tilde{\Gamma}$ from x to x_{0} so that $x_{0}=$ $x, x_{l}=x_{0}$. Since f is a $b-(\varphi, \tilde{\Gamma})$-graphic contraction, then $\left(f x_{i-1}, f x_{i}\right) \in S(\Gamma)$ for each $i=1, \cdots, l$. So $f x \in\left[f x_{0}\right]_{\tilde{\Gamma}}=\left[x_{0}\right]_{\tilde{\Gamma}}$. Now let $(x, y) \in S\left(\tilde{\Gamma}_{x_{0}}\right)$. Thus, there exists a path from x to y passing through x, i.e., $\left(x_{0}, x_{1}, \cdots, x_{k-1}=x, x_{k}=y\right)$ in such a way that $\left(x_{i-1}, x_{i}\right) \in S(\tilde{\Gamma})$ for $i=1, \cdots, k$. Since f is a $b-(\varphi, \tilde{\Gamma})$-graphic, $\left(f x_{i-1}, f x_{i}\right) \in S(\Gamma)$ for $i=1, \cdots, k$. Let $\left(z_{0}, z_{1}, \cdots, z_{l-1}, z_{l}\right)$ be a path from x_{0} to $f x_{0}$. So

$$
\left(z_{0}=x_{0}, z_{1}, \cdots, z_{l-1}, z_{l}=f x_{0}, f x_{1}, \cdots, f x_{k-1}=f x, f x_{k}=f y\right)
$$

is a path in $\tilde{\Gamma}$ from x_{0} to $f y$ so that $(f x, f y) \in S\left(\tilde{\Gamma}_{x_{0}}\right)$. Since f is a $\tilde{\Gamma}$-graphic contraction, and $S\left(\tilde{\Gamma}_{x_{0}}\right) \subset S(\tilde{\Gamma})$, then f is a $\tilde{\Gamma}_{x_{0}}$-graphic contraction.
Lemma 2.9 Let (M, δ) be a b-metric space endowed with a graph Γ. Let $f: M \rightarrow M$ be a $b-(\varphi, \Gamma)$-graphic contraction so that the graph Γ has the f-path property and
$\phi: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is a b-comparison function. Then for any $x \in M$ and $y \in[x]_{\tilde{\Gamma}}$ two sequences $\left(f^{n} x\right)_{n \in \mathbf{N}}$ and $\left(f^{n} y\right)_{n \in \mathbf{N}}$ are equivalent.
Proof. Let $x \in M$ and $y \in[M]_{\tilde{\Gamma}}$. Then there exists a path $\left(x_{i}\right)_{i=0}^{l}$ in $\tilde{\Gamma}$ from x to y so that $x_{0}=x, x_{l}=y$ with $\left(x_{i-1}, x_{i}\right) \in S(\Gamma)$ and $f x_{i-1}=x_{i}$ for all $i=1, \cdots, l$. From Proposition 2.8, f is a $b-(\varphi, \tilde{\Gamma})$-graphic contraction. Thus, $\left(f^{n+1} x_{i-1}, f^{n+1} x_{i}\right) \in S(\tilde{\Gamma})$ for all $n \in N$. So

$$
\delta\left(f^{n+1} x_{i-1}, f^{n+1} x_{i}\right)=\delta\left(f^{n} x_{i}, f^{n+1} x_{i}\right) \leqslant \varphi\left(\delta\left(f^{n-1} x_{i}, f^{n} x_{i}\right)\right)
$$

Hence,

$$
\begin{equation*}
\delta\left(f^{n} x_{i-1}, f^{n} x_{i}\right) \leqslant \varphi^{n-1} \delta\left(x_{i}, f x_{i}\right)=\varphi^{n-1} \delta\left(x_{i}, x_{i+1}\right) \tag{1}
\end{equation*}
$$

We know that $\left(f^{n} x_{i}\right)_{i=0}^{l}$ is a path in $\tilde{\Gamma}$ from $f^{n} x$ to $f^{n} y$. Using Definition 1.1 $\left(d_{3}\right)$ and (1), we have

$$
\delta\left(f^{n} x, f^{n} y\right) \leqslant \sum_{i=1}^{l} s^{i} \delta\left(f^{n} x_{i-1}, f^{n} x_{i}\right) \leqslant a^{n} \sum_{i=1}^{l} s^{i} \varphi^{n-1}\left(\delta\left(x_{i}, x_{i+1}\right)\right) .
$$

Assuming $n \rightarrow \infty$, we get $\delta\left(f^{n} x, f^{n} y\right) \rightarrow 0$.
Theorem 2.10 Let (M, δ) be a complete b-metric space endowed with a graph Γ, so that Γ is $\left(C_{f}\right)$-graph, and has a f-path property. Let $f: M \rightarrow M$ be a $b-(\varphi, \Gamma)-$ graphic contraction, and f be orbitally Γ-continuous, where $\phi: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is a b-comparison function. Let $z \in M$ so that $z \in M^{f}$, and thus the following statements hold:
(1) $\left.f\right|_{[z]_{\Gamma}^{\Gamma}}$ is a Picard operator;
(2) if Γ is weakly connected, then f is a Picard operator.

Proof. (1) Using (iii) Theorem 2.6, there exists $x^{*}(z) \in[z]_{\tilde{\Gamma}}$ so that $\lim _{n \rightarrow \infty} f^{n}(z)=x^{*}(z)$, and $x^{*}(z)$ is a fixed point of f. Now, let $y \in[z]_{\tilde{\Gamma}}$ and $\lim _{n \rightarrow \infty} f^{n}(y)=x^{*}(y)$. Then, by Lemma 2.9, two sequences $\left(f^{n} z\right)_{n \in \mathbf{N}}$ and $\left(f^{n} y\right)_{n \in \mathbf{N}}$ are equivalent. Since both are convergent sequences, they are Cauchy sequences. Hence, they are Cauchy equivalent. This means $x^{*}(y)=x^{*}(z)$.
(2) Since $z \in M^{f}$ and Γ is weakly connected, we have $M=[z]_{\tilde{\Gamma}}$. Then we only need to apply (1).
The following example shows that $b-(\varphi, \Gamma)$-graphic contraction is a generalization of $b-(\varphi, \Gamma)-$ contraction.
Example 2.11 Let $M=[0,1]$ and $\delta(x, y)=|x-y|^{2}$. Define the graph Γ by $S(\Gamma)=$ $\{(0,0)\} \bigcup\left\{(0, x), x \geqslant \frac{1}{2}\right\} \bigcup\{(x, y): x, y \in(0,1]\}$. and $f: M \rightarrow M$ by

$$
f x= \begin{cases}\frac{x}{2}, & x \in(0,1) ; \\ \frac{3}{4}, & x=0 ; \\ 1, & x=1\end{cases}
$$

So if $\varphi(t)=\frac{t}{3}$, then δ is a b-metric on M with $s=2$, and f is a $b-(\varphi, \Gamma)$-graphic contraction. But f is not $b-(\varphi, \Gamma)-$ contraction, because

$$
\delta\left(f(0), f\left(\frac{1}{2}\right) \nless \frac{\delta\left(0, \frac{1}{2}\right)}{3} .\right.
$$

Definition 2.12 A mapping $f: M \rightarrow M$ is called $b-(\varphi, \Gamma)$-almost contraction if:
(i) for all $x, y \in M$, if $(x, y) \in S(\Gamma) \quad$ then $\quad(f(x), f(y)) \in S(\Gamma)$;
(ii) there exists $L \geqslant 0$ so that $\delta(f(x), f(y)) \leqslant \varphi(\delta(x, y))+L \delta(y, f(x))$ whenever $(x, y) \in S(\Gamma)$,
where $\phi: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is a comparison function.
Remark 5 Note that if $f: M \rightarrow M$ is a $b-(\varphi, \Gamma)$-almost contraction, then f is a $b-(\varphi, \Gamma)$-graphic contraction with $L=0$ and $y=f(x)$.

References

[1] D. Alimohammadi, Nonexpansive mappings on complex C^{*}-algebras and their fixed points, Int. J. Nonlinear Anal. Appl. 7 (2016), 21-29.
[2] N. A. Assad, W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pac. J. Math. 43 (1972), 533-562.
[3] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, J. Func. Anal. 30 (1989), 26-37.
[4] B. Bao, Sh. Xu, L. Shi, V. C. Rajic, Fixed point theorems on generalized c-distance in ordered cone $b-$ metric spaces, Int. J. Nonlinear Anal. Appl. 6 (2016), 9-22.
[5] I. Beg, A. Rashid Butt, Fixed point of set-valued graph contractive mappings, J. Inequal. Appl. (2013), 2013:252.
[6] I. Beg, A. Rashid Butt, S. Radojevic, The contraction principle for set valued mappings on a metric space with a graph, Comput. Math. Appl. 60 (2010), 1214-1219.
[7] S. Beloul, Some fixed point theorem for nonexpansive type single valued mappings, Int. J. Nonlinear Anal. Appl. 7 (2016), 53-62.
[8] C. Chifo, G. Petrusel, Generalized contractions in metric spaces endowed with a graph, Fixed Point Theory Appl. (2012), 2012:161.
[9] S. Czerwik, Nonlinear set-valued contraction mappings in $b-$ metric spaces, Atti del Seminario Matematico e Fisico dell'Universita di Modena. 46 (1998), 263-276.
[10] M. Eshaghi Gordji, S. Abbaszadeh, A fixed point method for proving the stability of ring (α, β, γ)-derivations in 2-Banach algebras, J. Linear. Topological. Algebra. 6 (4) (2017), 269-276.
[11] M. Eshaghi Gordji, H. Habibi, Fixed point theory in generalized orthogonal metric space, J. Linear. Topological. Algebra. 6 (3) (2017), 251-260
[12] M. Hadian Dehkordi, M. Ghods, Common fixed point of multivalued graph contraction in metric spaces, Int. J. Nonlinear Anal. Appl. 7 (2016), 225-230.
[13] J. Jachymski, The contraction principle for mappings on a metric space endowed with a graph, Proc. Amer. Math. Soc. 136 (2008), 1359-1373.
[14] P. K. Jhade, A. S. Saluja, Common fixed point theorem for nonexpansive type single valued mappings, Int. J. Nonlinear Anal. Appl. 7 (2016), 45-51.
[15] Z. Kadelburg, S. Radenovic, Remarkes on some recent M. Borcat's results in partially ordered metric spaces, Int. J. Nonlinear Anal. Appl. 6 (2016), 96-104.
[16] S. Manro, A common fixed point theorem for weakly compatible maps satisfying common property (E.A.) and implicit relation in intuitionistic fuzzy metric spaces, Int. J. Nonlinear Anal. Appl. 6 (2016), 1-8.
[17] J, Matkowski, Integrable solutions of functional equations, Dissertationes Mathematicae, Seri. 127, 1975.
[18] S. K. Mohant, R. Maitra, Coupled coincidence point theorems for maps under a new invariant set ordered cone metric spaces, Int. J. Nonlinear Anal. Appl. 6 (2016), 140-152.
[19] M. Moosaei, On fixed points of fundamentally nonexpansive mappings in Banach spaces, Int. J. Nonlinear Anal. Appl. 7 (2016), 219-224.
[20] S. Moradi, M. Mohammadi Anjedani, E.Analoei, On existence and uniqueness of solutions of a nonlinear Volterra-Fredholm integral equation, Int. J. Nonlinear Anal. Appl. 6 (2016), 62-68.
[21] A. Naeimi Sadigh, S. Ghods, Coupled coincidence point in ordered cone metric spaces with examples in game theory, Int. J. Nonlinear Anal. Appl. 7 (2016), 183-194.
[22] R. A. Rashwan, S. M. Saleh, Some common fixed point theorems for four (ψ, ϕ)-weakly contractive mappings satisfying rational expressions in ordered partial metric spaces. Int. J. Nonlinear Anal. Appl. 7 (2016), 111-130.
[23] M. Samreen, T. Kamran, Fixed point theorems for integral G-contractions, Fixed Point Theory Appl. (2013), 2013:149.
[24] M. Samreen, T. Kamran, N. Shahzad, Some fixed Point theorems in $b-$ metric space endowed with graph, Abs. Appl. Anal. (2013), 2013:967132.

[^0]: * Corresponding author.

 E-mail address: mirzaeeshahram@gmail.com (Sh. Mirzaee); meshaghi@semnan.ac.ir (M. Eshaghi Gordji).

