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Transformations computations: power, roots and inverse
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Abstract. This paper presents some results of an annihilated element in Banach algebra,
and in specific case, for any square matrix. The developed method significantly improves the
computational aspects of transformations calculus and especially for finding powers and roots
of any annihilated element. An example is given to compare the proposed method with some
other methods to show the efficiency and performance.
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1. Introduction

Many problems in pure and applied mathematics can be solved by computing powers
or roots of some square matrix A; for example:
(a) Differential equations and matrix exponential: the classic scalar problem y′(t) = ay(t)
with initial condition y(0) = c, has solution y(t) = cet, while the analogous vector
problem

dY

dt
= AY , Y (0) = C , Y,C ∈ Cn , A ∈Mn(C)
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has solution Y (t) = eAtC, where eAt =
∑∞

j=0(At)
j/j!. More generally, with suitable

assumptions on the smoothness of f , the solution to the inhomogeneous system

dY

dt
= AY + f(t, Y ) , Y (0) = C , Y,C ∈ Cn , A ∈Mn(C)

satisfies

Y (t) = eAtC +

∫ t

0

eA(t−s)f(s, Y )ds

The matrix exponential is explicitly used in certain methods such as exponential integra-
tors, Exponential Time Difference (ETD), Nuclear Magnetic Resonance (NMR), Markov
models, Control theory ([2], Ch. 2, pp. 35-44) and continuous linear dynamical system
([9], Ch. 3). However, computing matrix exponential is depends on powers of the matrix.
(b) Trigonometric matrix functions: the matrix roots, arise in the solution of second order
differential equations. For example, the problem

d2Y

dt2
+AY = 0 , Y (0) = C1 , Y

′(0) = C2 Y,C1, C2 ∈ Cn , A ∈Mn(C)

has solution

Y (t) = cos(
√
At)C1 +A−1/2 sin(

√
At)C2

where
√
A denotes any square root of A. The solution exists for all A. When A is singular

(and
√
A and A−1/2 possibly does not exist) this formula is interpreted by expanding

cos(
√
At) and A−1/2 sin(

√
At) as power series in A. The matrix roots also are the funda-

mental tool for the algebraic Riccati equations and semidefinite programming ([2], Ch.
2, p. 45).
(c) Discrete linear dynamical system: linear nonsingular transformation

A : Cn −→ Cn , x 7−→ Ax

generates a variety of dynamical systems. The operator A itself generates a dynamical
system acting on Cn by the powers Am and one gets the problem of investigating the
trajectory of an arbitrary vector x by the action of the linear transformation, i.e. the
description of the behavior of the sequence of vectors of the form Amx. In addition,
linear operator A generates dynamical systems on a string of other spaces related to
Cn. Hartman-Grobman’s theorem explains the importance of linear systems: every dif-
feomorphism or vector field locally conjugate to its linear part (i.e. it’s differential) at a
hyperbolic fixed point ([5], Theorem 4.1, p. 60).
(d) Combinatorics and graph theory: consider the linear system of difference equations

x1(m+ 1) = a1,1x1(m) + a1,2x2(m) + · · ·+ a1,nxn(m)

x2(m+ 1) = a2,1x1(m) + a2,2x2(m) + · · ·+ a2,nxn(m)
...

...
...

...

xn(m+ 1) = an,1x1(m) + an,2x2(m) + · · ·+ an,nxn(m)

This system may be written in the vector form X(m+ 1) = AX(m), where

X(m) = [x1(m), x2(m), · · · , xn(m)]T ∈ Rn
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and A = (ai,j). In graph theory and computer science, an adjacency matrix is a square
matrix used to represent a finite graph. The elements of the matrix indicate whether
pairs of vertices are adjacent or not. If A is the adjacency matrix of the directed or
undirected graph G, then the matrix An has an interesting interpretation: the element
(i, j) of An gives the number of (directed or undirected) walks of length n from vertex i
to vertex j. If n is the smallest nonnegative integer, such that for some i, j, the element
(i, j) of An is positive, then n is the distance between vertex i and vertex j. This implies,
for example, that the number of triangles in an undirected graph G is exactly the trace
of A3 divided by 6.

This examples show the importance of matrix powers and roots. The aim of this work
is to presente a method for computing the powers and roots of any annihilated element
in a Banach algebra, and in particular, for square matrices. There are many methods
for computing Am, and A1/p for m, p ∈ N (or m, p ∈ Z when A is invertible) and square
matrix A, but there are not practical approaches. By the way, some of these methods
are efficient. We present a method that can be accurate and exact when the roots of
minimal polynomial and their repeated order are known. Also, we introduce the Jordan
and Hermite interpolation methods and compare this methods by our own way.

2. Preliminaries

Throughout the paper, A shows a Banach algebra with unity e, and ϖ is an element
of A. If f(z) = a0 + a1z+ · · ·+ anz

n is a polynomial with ai ∈ C, there is not any doubt
about the meaning of the symbol f(ϖ); it obviously denotes the element of A defined
by f(ϖ) = a0e + a1ϖ + · · · + anϖ

n. The question arises whether f(ϖ) can be defined
in a meaningful way for other functions f? In fact, if f(z) =

∑∞
j=0 ajz

j , is any entire

function in C, it is natural to define f(ϖ) ∈ A by f(ϖ) =
∑∞

j=0 ajϖ
j ; this series always

converges. Another example is given by the meromorphic functions f(z) = 1/(α− z).
In this case, the natural definition is f(ϖ) = (αe − ϖ)−1; which makes sense for all ϖ
whose spectrum does not contain α.

One is thus led to the conjecture that f(ϖ) should be definable, within A, whenever
f is holomorphic in an open set that contains Spec(ϖ). This turns out to be correct and
can be accomplished by a version of the Cauchy formula that converts complex functions
defined in open subsets of C to A-valued ones defined in certain open subsets of A. This
motivates the following definition.

Definition 2.1 For an open set Ω ⊂ C, let H(Ω) denotes the algebra of all holomorphic
functions on Ω in the complex plane. Then AΩ =

{
ϖ ∈ A ; Spec(ϖ) ⊂ Ω

}
is an open

subset of A (Theorem 10.20 of [7]). Define H̃(AΩ) to be the set of all A-valued functions

f̃ with domain AΩ, that arise from an f ∈ H(Ω) by the formula

f̃(ϖ) =
1

2πi

∫
Γ
f(z)(ze−ϖ)−1dz (1)

where Γ is a closed contour that encloses the spectrum, Spec(ϖ).

Definition 2.1 calls for some comments.
(a) Since inversion is continuous in A (Theorem 10.12 [7]), and Γ stays away from

Spec(ϖ), the integral in (1) is continuous; So that the integral exists and defines f̃(ϖ)
as an element of A. The integrand is actually a holomorphic A-valued function in the
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complement of Spec(ϖ). The Cauchy Integral Theorem implies that f̃(ϖ) is independent
of the choice of Γ, provided only that Γ surrounds Spec(ϖ) in Ω.

(b) If ϖ = λe for some λ ∈ Ω, the equation (1) becomes f̃(ϖ) = f(λ)e. Note that
λ ∈ Ω if and only if λe ∈ AΩ. If we identify λ ∈ C with λe ∈ A, every f ∈ H(Ω) may be
regarded as mapping a certain subset of AΩ (namely, the intersection of AΩ with the one-

dimensional subspace of A generated by e) into A, and then, the equality f̃(ϖ) = f(λ)e

shows that f̃ may be regarded as an extension of f . The mapping f −→ f̃ is an algebra
isomorphism of H(Ω) onto H̃(AΩ) which is continuous in the following sense:

Theorem 2.2 ([7], Theorem 10.27) If
{
fn

}∞
n=1

⊂ H(Ω) and fn −→ f uniformly on

compact subsets of Ω, then for every ϖ ∈ AΩ, f̃(ϖ) = limn→∞ f̃n(ϖ). Moreover, if

g(z) = z and h(z) = 1 in Ω, then g̃(ϖ) = ϖ and h̃(ϖ) = 1, in AΩ.

Also, there is a relation between the spectral of ϖ and f̃(ϖ) as follow:

Theorem 2.3 ([7], Theorem 10.28) Suppose ϖ ∈ AΩ and f ∈ H(Ω).

(a) f̃(ϖ) is invertible in A, if and only if f(λ) ̸= 0, for every λ ∈ Spec(ϖ).

(b) Spec
(
f̃(ϖ)

)
= f

(
Spec(ϖ)

)
.

An application of this symbolic calculus deals with the existence of roots and loga-
rithms. Note that an element ϖ ∈ A has an n-th root in A if ϖ = ϑn for some ϑ ∈ A. If
ϖ = exp(ϑ) for some ϑ ∈ A, then ϑ is a logarithm of ϖ. Although exp(ϖ) =

∑
j=0ϖ

j/j!,
but the exponential function can also be defined by contour integration, as in Definition
2.1. The continuity assertion of Theorem 2.2 shows that these definitions coincide (as
they do for every entire function).

Theorem 2.4 ([7], Theorem 10.30) Assume that for some ϖ ∈ A, the spectrum Spec(ϖ)
of ϖ does not separate 0 from ∞. Then
(a) ϖ has roots of all orders in A,
(b) ϖ has a logarithm in A, and
(c) if ϵ > 0, there is a polynomial P such that ∥ϖ−1 − P (ϖ)∥ < ϵ.
Moreover, if Spec(ϖ) ∩ R− = ∅, the roots in (a) can be chosen so as to satisfy the same
condition. In addition, for every p ≥ 2, there is a unique p-th root ϑ of ϖ such that
Spec(ϑ) ⊂

{
z ∈ C ; −π/p < arg(z) < π/p

}
. We refer to ϑ as the principal p-th root of

ϖ and write ϑ = ϖ1/p.

These results are not quite trivial even when A is a finite-dimensional algebra. For
example, it is a special case of (b) that a complex n×n matrix A has a logarithm if and
only if 0 is not an eigenvalue of A; that is, if and only if A is invertible.

If some ϖ ∈ A satisfies a polynomial identity, i.e., if Q(ϖ) = 0 for some polynomial

Q, then f̃(ϖ) can always be calculated as a polynomial in ϖ, without using the Cauchy
integral as in Definition 2.1. If A is finite dimensional, then this remark applies to every
ϖ ∈ A. Since in this case, the set {ϖn}∞n=1 is a linearly dependent set. Also, when A
is finite dimensional, the polynomial P which mentioned in (c) can be chosen so that
P (ϖ) = ϖ−1. Here are the details:

Theorem 2.5 ([7], Theorem 10.31) Let P (z) = (z−λ1)n1 · · · (z−λk)nk be a polynomial
of degree n = n1 + · · ·+ nk, and Ω an open set in C, which contains the zeros λ1, · · ·λk
of P . If A is a Banach algebra, ϖ ∈ A, and P (ϖ) = 0, then
(a) Spec(ϖ) ⊂ {λ1, λ2, · · · , λk},
(b) to every f ∈ H(Ω), corresponds a polynomial Q of degree < n, and a function

g ∈ H(Ω), so that f(z) = P (z)g(z) +Q(z) and f̃(ϖ) = Q(ϖ),
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(c) If λi ̸= 0 for i = 1, · · · , k and P (z) = a0 + a1z + · · ·+ anz
n, then ϖ is invertible and

ϖ−1 = −a1/a0e− a2/a0ϖ − · · · − an−1/a0ϖ
n−1.

An element ϖ ∈ A is called annihilated, if ϖ satisfies the conclusion of Theorem
2.5; i.e., if there exist polynomial P for which P (ϖ) = 0. The minimal polynomial of
an annihilated element ϖ is the monic polynomial ψ over C of least degree such that,
ψ(ϖ) = 0. By theorem 2.5, we conclude the following corollary immediately:

Corollary 2.6 Let A be a Banach algebra and ϖ an annihilated element, and let f :
Ω → C be defined on the spectrum of ϖ where Ω ⊂ C is an open set which contains
the spectrum of ϖ. If ψ is the minimal polynomial of ϖ, then f(ϖ) = p(ϖ), where
p(z) ∈ C[z] is the polynomial of degree less than deg(ψ) that satisfies the interpolation
conditions:

p(j)(λi(ϖ)) = f (j)(λi(ϖ)),

where j = 0, · · · , ni − 1 and ni is the repeated order of λi(ϖ) ∈ Spec(ϖ) in ψ.

Remark 1 The polynomial p in Corollary 2.6 is called the Hermite interpolating poly-
nomial of f , and it is given explicitly by the Lagrange-Hermite formula

p(t) =

k∑
i=1

ni−1∑
j=0

1

j!
ϕ
(j)
i (λi)(t− λi)

j

∏
r ̸=i

(t− λr)
nr

 , (2)

where ϕi(t) = f(t)/
∏

j ̸=i(t− λi)
nj . When the minimal polynomial ψ has distinct roots

(ni ≡ 1, k = n), this formula reduces to the familiar Lagrange form

p(t) =

n∑
i=1

f(λi)Li(t) , Li(t) =

n∏
j=1
j ̸=i

(
t− λj
λi − λj

)
.

Corollary 2.6 explicitly makes f(ϖ) a polynomial in ϖ. It is important to note, however,
that the polynomial p depends on ϖ, through the values of f on the spectrum of ϖ, so it
is not the case that f(ϖ) ≡ p(ϖ), for some fixed polynomial p independent of ϖ.

There is a well-known approach which gives an algorithm for computing the power
of any annihilated element ϖ ∈ A, and in particular, the power of any square matrix.
Actually, this approach can be derived from Corollary 2.6, with f(z) = zm. By this
assumption, we obtain an unique and closed form for ϖm with m ⩾ n, where n is the
degree of the minimal polynomial of ϖ. Hence, the m-th power of ϖ, and inductively
all higher powers, are expressible as a linear combination of e,ϖ, · · · , ϖn−1. Thus, any
power series in ϖ can be reduced to a polynomial in ϖ of degree at most n − 1. This
polynomial is rarely of an elegant form or practical interest. For every m, this polynomial
can be presented as

ϖm = pn−1(m)ϖn−1 + pn−2(m)ϖn−2 + . . .+ p1(m)ϖ + p0(m) (3)

and has several applications.
In special case, when A = Mn(C) for some n ≥ 2, there is another approach which

gives Am for A ∈ Mn(C) and m ≥ n. This approach based on the Jordan Canonical
Form. Denoted by λ1, · · · , λk the distinct eigenvalues of A, and let ni be the repeated
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times of the eigenvalue λi. It is a standard result that A can be expressed in the Jordan
canonical form

Z−1AZ = J = diag(J1, J2, · · · , Jk), (4)

where for each i = 1, 2, · · · , k, we have

Ji = Ji(λi) =


λi 1

λi
. . .
. . . 1

λi

 ∈Mni
(C).

The transforming matrix Z is nonsingular and is not unique. But the Jordan matrix J
is unique up to the ordering of the blocks Ji. The function f is defined on the spectrum
of A if the values f (j)(λi) for j = 1, 2, · · · , ni and i = 1, 2, · · · , k exist. They are called
the values of the function f on the spectrum of A.

Theorem 2.7 ([2], Theorem 1.12]) Let f be defined on the spectrum of A ∈Mn(C) and
let A have the Jordan canonical form (4). Then

f̃(A) = Zf̃(J)Z−1 = Zdiag
(
f̃(Ji)

)
Z−1, (5)

where for every i = 1, 2, · · · , k, we have

f̃(Ji) = f̃
(
Ji(λi)

)
=


f(λi) f

′(λi) · · · f (ni−1)(λi)
(ni−1)!

f(λi)
. . .

...
. . . f ′(λi)

f(λi)

 . (6)

To provide some insight into this theorem, we make several comments.
(a) The expression yields an f̃(A) that can be shown to be independent of the particular
Jordan canonical form that is used. If A is diagonalizable, then the Jordan canonical form
reduces to an eigen-decomposition A = ZDZ−1, with D = diag(λi), and the columns

of Z are the distinct eigenvectors of A. Then, Theorem 2.7 yields f̃(A) = Zf̃(D)Z−1 =
Zdiag

(
f(λi)

)
Z−1.

(b) In most cases of practical interest, f is given by a formula, such as f(z) = ez,
f(z) = zm or any other complex valued function. However, Theorem 2.7 requires only
the values of f on the spectrum of A; it does not require any other information about f .
Indeed any arbitrary numbers can be chosen and assigned as the values of f (j)(λi). It is
only when we need to make statements about global properties such as continuity that
we will need to assume more about f .
(c) Finally, we explain how (6) can be obtained from Taylor series considerations. Write
Ji = λiIi +Ni ∈ Mni

(C), where Ni is zero except for a superdiagonal of 1s. In general,
powering Ni causes the superdiagonal of 1s to move a diagonal at a time towards the
top right-hand corner, until at the ni-th power disappears: Nni

i = 0; so Nk is nilpotent.
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Assume that f has the following convergent Taylor series expansion

f(t) = f(λi) + f ′(λi)(t− λi) + · · ·+ f (m)(λi)

m!
(t− λi)

m + · · · .

By substituting Ji for t, we obtain the following finite series, since all powers of Ni from
the ni-th onwards are zero.

f̃(Ji) = f(λi)Ii + f ′(λi)(Ji − λiIi) + · · ·+ f (ni−1)(λi)

(ni − 1)!
(Ji − λiIi)

ni−1.

This expression is easily seen to agree with (6). In a particular case, if we take f(z) = zm

for some m ≥ n, the expression in (6) becomes

(
Ji(λi)

)m
=


λmi mλm−1

i · · ·
(
m
ni

)
λm−ni

i

λmi
. . .

...
. . . mλm−1

i
λmi

 . (7)

Now, substituting
(
Ji(λi)

)m
in (5), we get a closed form for Am. Although the expression

(5) looks different than (3), but multiplying Z and Z−1 in f̃(J), the final expression for
Am is agree with (3). In the next section, we give our method to conclude the formula (3);
moreover, we are going to determine the coefficient functions pi(m) in the independent
way from Hermite interpolation.

3. Main Results: Power, Inverse and p-th root

As we mentioned before, we give another way to obtain (3). In this new way, we use
the difference equations and also we do not need to use the derivation compare with the
Hermit interpolation. Moreover, we apply this closed form to find out the roots of an
annihilated element in a Banach algebra. At the first, we need the following theorem:

Theorem 3.1 [10] Let sequence {an} satisfies the recurrence relation

c0an + c1an−1 + . . .+ cman−m = 0,

where c0 ̸= 0, cm ̸= 0 and 1 ⩽ m ⩽ n. If λ1, . . . , λk be distinct roots of the equation
c0x

m + c1x
m−1 + . . .+ cm−1x+ cm = 0. Then

an = (α11 + α12n+ . . .+ α1m1
nm1−1)λn1

+ (α21 + α22n+ . . .+ α2m1
nm2−1)λn2

+ · · ·+ (αk1 + αk2n+ . . .+ αkmk
nmk−1)λnk , (8)

where mi is the repeated times of the root λi and each αij is any complex number.

Let ϖ be an annihilated element in Banach algebra A, and it’s minimal polynomial
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be as follow:

ψ(z) = zn + an−1z
n−1 + . . .+ a1z + a0 (9)

By the definition, ϖn = bn−1ϖ
n−1 + . . . + b1ϖ + b0e, where e is the unity of A, and

bi = −ai for i = 0, 1, . . . , n − 1. Our aim is to present an approach to calculate ϖm for
every m ∈ N and m ⩾ n (also for every m ∈ Z whenever ϖ is invertible) in general.
Considering (3) and multiplying by ϖ, yields:

ϖm+1 = pn−1(m)ϖn + pn−2(m)ϖn−1 + . . .+ p1(m)ϖ2 + p0(m)ϖ (10)

By substituting (9) in (10) provides:

ϖm+1 = (bn−1pn−1(m) + pn−2(m))ϖn−1

+ (bn−2pn−1(m) + pn−3(m))ϖn−2

+ · · ·+ (b1pn−1(m) + p0(m))ϖ + b0pn−1(m)e. (11)

In other hand, changing index m to m+ 1 in (3) gives:

ϖm+1 = pn−1(m+ 1)ϖn−1 + pn−2(m+ 1)ϖn−2 + . . .+ p1(m+ 1)ϖ + p0(m+ 1)e. (12)

By comparing (11) and (12), one can give the following equations:

pn−1(m+ 1) = bn−1pn−1(m) + pn−2(m), (13)

...

pn−i(m+ 1) = bn−ipn−1(m) + pn−i−1(m), (14)

...

p2(m+ 1) = b2pn−1(m) + p1(m), (15)

p1(m+ 1) = b1pn−1(m) + p0(m), (16)

p0(m+ 1) = b0pn−1(m). (17)

From (17), p0(m) = b0pn−1(m− 1). Substituting this relation in (16) gives:

p1(m) = b1pn−1(m− 1) + b0pn−1(m− 2). (18)

By substituting (18) in (15) yields:

p2(m) = b2pn−1(m− 1) + b1pn−1(m− 2) + b0pn−1(m− 3).

Similarly, for the index i one can easily get the following equation:

pi(m) = bipn−1(m− 1) + . . .+ b1pn−1(m− i) + b0pn−1(m− i− 1)
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and for the index n− 1,

pn−1(m) = bn−1pn−1(m− 1) + . . .+ b1pn−1(m− n− 1) + b0pn−1(m− n).

According to the above discussion, the equations (13)-(17) can be reformulated as follow:

p0(m) = b0pn−1(m− 1),

p1(m) = b1pn−1(m− 1) + b0pn−1(m− 2),

p2(m) = b2pn−1(m− 1) + b1pn−1(m− 2) + b0pn−1(m− 3),

... (19)

pi(m) = bipn−1(m− 1) + . . .+ b1pn−1(m− i) + b0pn−1(m− i− 1),

...

pn−1(m) = bn−1pn−1(m− 1) + . . .+ b1pn−1(m− n− 1) + b0pn−1(m− n).

By using the last equation of (19) and the fact that bi = −ai (i = 0, 1, . . . , n − 1), we
have

pn−1(m) + an−1pn−1(m− 1) + . . .+ a1pn−1(m− n− 1) + a0pn−1(m− n) = 0. (20)

By computing the pn−1(m) of (20) and the other pj(m) for j = 0, 1, . . . , n−2 of (19), the
ϖm is obtained. In fact, the characteristic polynomial for the recurrence relation (20) is

zn + an−1z
n−1 + . . .+ a1z + a0 = 0. (21)

One can see (21) is equal to the minimal polynomial of ϖ as in (9). Now, based on
Theorem 3.1, pn−1(i) for i ⩾ 1 can be found. Here, if λ1, . . . , λk for 1 ⩽ k ⩽ n are
distinct roots of (21) and each λi has multiplicity ni, then Theorem 3.1 implies

pn−1(m) = (α
(n−1)
11 + α

(n−1)
12 m+ . . .+ α

(n−1)
1n1

mn1−1)λm1

+ (α
(n−1)
21 + α

(n−1)
22 m+ . . .+ α

(n−1)
2n2

mn2−1)λm2

+ · · ·+ (α
(n−1)
k1 + α

(n−1)
k2 m+ . . .+ α

(n−1)
knk

mnk−1)λmk , (22)

where each α
(n−1)
ij is a complex number and determines from the initial condition of

recurrence relation. In fact, pn−1(n) = −an−1, pn−1(n − 1) = 1, and pn−1(i) = 0 for
i = 1, 2, . . . , n − 2. Now, by substituting pn−1(m) into (19), the other pj(m) for j =
0, 1, . . . , n − 2 can be found. Therefore, by using (3), ϖm for m ∈ N is computed. The
other pj(m) for j = 0, 1, . . . , n− 2 are obtained as the same as pn−1(m) in (22), i.e.,

pj(m) = (α
(j)
11 + α

(j)
12m+ . . .+ α

(j)
1n1
mn1−1)λm1

+ (α
(j)
21 + α

(j)
22m+ . . .+ α

(j)
2n2
mn2−1)λm2

+ · · ·+ (α
(j)
k1 + α

(j)
k2m+ . . .+ α

(j)
knk

mnk−1)λmk . (23)
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ϖm can be shown in another way different from (3). In fact, if we substitute pn−1(m)
and the other pj(m) for j = 0, 1, . . . , n− 2 into (3), then

ϖm = [(α
(n−1)
11 + α

(n−1)
12 m+ . . .+ α

(n−1)
1n1

mn1−1)ϖn−1 + . . .

+ (α
(0)
11 + α

(0)
12 m+ . . .+ α

(0)
1n1
mn1−1)e]λm1

+ [(α
(n−1)
21 + α

(n−1)
22 m+ . . .+ α

(n−1)
2n2

mn2−1)ϖn−1 + . . .

+ (α
(0)
21 + α

(0)
22 m+ . . .+ α

(0)
2n2
mn2−1)]λm2

...

+ [(α
(n−1)
k1 + α

(n−1)
k2 m+ . . .+ α

(n−1)
knk

mnk−1)ϖn−1 + . . .

+ (α
(0)
k1 + α

(0)
k2m+ . . .+ α

(0)
knk

mnk−1)e]λmk .

By classifying and summarizing the above equation, ϖm can be written briefly as follows:

ϖm = (mn1−1λm1 )S11 + (mn1−2λm1 )S12 + . . .+ λm1 S1n1

+ (mn2−1λm2 )S21 + (mn2−2λm2 )S22 + . . .+ λm2 S2n2

+ · · ·+ (mnk−1λmk )Sk1 + (mnk−2λmk )Sk2 + . . .+ λmk Sknk
, (24)

where Sij are the linear combinations of {ϖi}n−1
i=0 , i.e.,

Sij = α
(n−1)
ini−j+1ϖ

n−1 + α
(n−2)
ini−j+1ϖ

n−2 + . . .+ α
(0)
ini−j+1e. (25)

Remark 2 For some annihilated element ϖ and applying the following minimal polyno-
mial

ψ(z) = zn + an−1z
n−1 + . . .+ a1z + a0,

we have a0 = a1 = · · · = ar for some 0 ≤ r ≤ n− 2. Hence, the relations (13)-(17) imply
p0 = p1 = · · · = pr ≡ 0 and so

ϖm = pn−1(m)ϖn−1 + pn−2(m)ϖn−2 + . . .+ pr+1(m)ϖr+1.

In such a situation, pn−1(m) can be derived by the initial values pn−1(r) = pn−1(r+1) =
pn−1(n − 2) = 0, pn−1(n − 1) = 1 and pn−1(n) = bn−1. Actually, in this case, there is
no polynomial Q(z) so that represent ϖm as superposition of e,ϖ, · · · , ϖn−1, for which
e,ϖ, · · · , ϖr having non-zero coefficient (since the minimal polynomial of ϖ has the
factor zr, and any other polynomial Q with Q(ϖ) = 0 should have this factor).

Remark 3 Although (23) gives the canonical form of pj(m) for j = 1, 2, · · · , k and

m ≥ n, but in most situations, we do not need to determine the exact values of a
(j)
i,r . We

can use the identity

pj(m) = bjpn−1(m−1)+. . .+b1pn−1(m−j)+b0pn−1(m−j−1) , (1 ≤ j ≤ n−1) (26)
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and pj(m) can be derived from pn−1(m−1), pn−1(m−2), · · · , pn−1(m−j), pn−1(m−j−1).
In other word, to compute ϖm, we just need to compute pn−1(m), pn−1(m−1), pn−1(m−
2), · · · , pn−1(m−j), pn−1(m−j−1). Then, (26) gives other pj(m)s. Actually, to compute

pj(m) by (23) ( for simplicity, ignore the necessary calculations to obtain a
(j)
i,r ), we must

have k(m + 1) +
∑n

i=1
ni(ni+1)

2 summers and multiplications; and taking sum over j, at

least we have n
(
k(m+ 1) +

∑n
i=1

ni(ni+1)
2

)
operation. But using the recurrent relation

(26) to drive pj(m), we need 2(j+1) operation; and ϖm obtain by (n+1)(n+2) operation.
This reduction in computations is due to recurrent relationships between pj(m)s i.e. (19).
However, in the Hermite interpolation or Jordan canonical method, our results are the
existence of pj(m) and Corollary 2.6 or Theorem 5 does not give any information about
the relations between pj(m)s.

Remark 4 If ϖ ∈ A satisfies the conclusions of Theorem 2.5 (c), then

ϖ−1 = −a1/a0e− a2/a0ϖ − · · · − 1/a0ϖ
n−1.

In this case, we have p0(0) = 1 and pi(0) = 0 for i = 1, 2, . . . , n − 1. Thus, (13)-(17)
change as follow:

p0(0) = b0pn−1(−1) = 1

p1(0) = b1pn−1(−1) + p0(−1) = 0

... (27)

pn−i(0) = bn−ipn−1(−1) + pn−i−1(−1) = 0

...

pn−1(0) = bn−1pn−1(−1) + pn−2(−1) = 0.

This implies pj(−1) = −aj+1/a0 with assumption an = 1. Thus,

ϖ−1 = pn−1(−1)ϖn−1 + pn−2(−1)ϖn−2 + · · ·+ p1(−1)ϖ + p0(−1)e, (28)

which means the expression (3) is also valid for m = −1. In fact, when ϖ is invertible,
(3) is valid for all m ∈ Z. This can be done by induction; let for some m < 0, we have

ϖm = pn−1(m)ϖn−1 + pn−2(m)ϖn−2 + · · ·+ p1(m)ϖ + p0(m)e. (29)

By multiplying (29) in ϖ−1, we get that

ϖm−1 = pn−1(m)ϖn−2 + pn−2(m)ϖn−3 + · · ·+ p1(m)e+ p0(m)ϖ−1. (30)

By substituting (28) in (30), we have

ϖm−1 =
1

b0
p0(m)ϖn−1 +

(−bn−1

b0
p0(m) + pn−1(m)

)
ϖn−2

+ · · ·+
(−b2
b0

p0(m) + p2(m)
)
ϖ +

(−b1
b0

p0(m) + p1(m)
)
e. (31)
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Now, (13)-(17) imply that −bi
b0
p0(m) + pi(m) = −bipn−1(m− 1) + pi(m) = pi−1(m− 1),

which means (31) can be written as

ϖm−1 = pn−1(m− 1)ϖn−1 + pn−2(m− 1)ϖn−2 + · · ·+ p1(m− 1)ϖ + p0(m− 1)e.

This statement about m < 0 is the consequences of equations (13)-(17); i.e. these equa-
tions are valid even for m < 0, enabled us to conclude the expression (30). The functional
equations (13)-(17) are valid for every m ∈ R. So, one would expect that for every x ∈ Q,
ϖx =

∑n−1
i=0 pi(x)ϖ

i, and this is what the next theorem says:

Theorem 3.2 Let ϖ be an annihilated invertible element of Banach algebra A and
consider the closed form of ϖm in (29). Then, for every p/q ∈ Q, ϖp/q has the following
representation:

ϖq/p =

n−1∑
i=0

pi(q/p)ϖ
i (32)

Proof. Since ϖ is an annihilated invertible element, by Theorem 2.4 (a), ϖ has roots of
all order in A. Suppose that ϑ is one of this p-th roots. Also, Theorem 2.3 and 2.5 implies
that each eigenvalue of ϑ is an p-th root of some eigenvalue of ϖ. Therefore, using the
expansion (24), ϑq for every q ∈ Z can be written as the following form:

ϑq =

(
qd1−1(λ

1

p

1 )
q

)
U11 +

(
qd1−2(λ

1

p

1 )
q

)
U12 + . . .+ (λ

1

p

1 )
qU1d1

+

(
qd2−1(λ

1

p

2 )
q

)
U21 +

(
qd2−2(λ

1

p

2 )
q

)
U22 + . . .+ (λ

1

p

2 )
qU2d2

+ · · ·+
(
qdk−1(λ

1

p

k )
q

)
Uk1 +

(
qdk−2(λ

1

p

k )
q

)
Uk2 + . . .+ (λ

1

p

k )
qUkdk

(33)

where Uij has the same definition as (25). Put q = mp for m ∈ Z. Thus, we have

ϑmp =

(
(mp)d1−1(λ

1

p

1 )
mp

)
U11 +

(
(mp)d1−2(λ

1

p

1 )
mp

)
U12 + . . .+ (λ

1

p

1 )
mpU1d1

(34)

+

(
(mp)d2−1(λ

1

p

2 )
mp

)
U21 +

(
(mp)d2−2(λ

1

p

2 )
mp

)
U22 + . . .+ (λ

1

p

2 )
mpU2d2

+ . . .+

(
(mp)dk−1(λ

1

p

k )
mp

)
Uk1 +

(
(mp)dk−2(λ

1

p

k )
mp

)
Uk2 + . . .+ (λ

1

p

k )
mpUkdk

By considering ϑmp = (ϑp)m = ϖm and (λ
1

p

j )
mp = λmj for j = 1, 2, . . . , k, we have

ϖm = (md1−1λm1 )(pd1−1)U11 + (md1−2λm1 )(pd1−2)U12 + . . .+ λm1 U1d1

+ (md2−1λm2 )(pd2−1)U21 + (md2−2λm2 )(pd2−2)U22 + . . .+ λm2 U2d2

+ · · ·+ (mdk−1λmk )(pdk−1)Uk1 + (mdk−2λmk )(pdk−2)Uk2 + . . .+ λmk Ukdk
(35)

Here, by comparing ϖm in (24), (35) and the uniqueness representation of ϖm in the
terms of its eigenvalues, we have di = ni and Uij = 1

pdi−jSij . Substituting (35) in (33)
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and summarizing yields:

ϖ
q

p = ϑq =

(
(
q

p
)d1−1S11 + (

q

p
)d1−2S12 + . . .+ S1d1

)
λ

q

p

1

+

(
(
q

p
)d2−1S21 + (

q

p
)d2−2S22 + . . .+ S2d2

)
λ

q

p

2

+ . . .+

(
(
q

p
)dk−1Sk1 + (

q

p
)dk−2Sk2 + . . .+ Skdk

)
λ

q

p

k

=

n−1∑
i=0

pi(
q

p
)ϖi. (36)

■

Remark 5 Theorem 3.2 requires some comments.
(a) In Remark 3, if m is an integer, then the recurrent relations (26) can be used to reduce
the computations. But in the case m ∈ Q, we have to calculate pn−1(·) as in (22) and
then the other pj(·)s can be derived from (26). However, (26) still is useful in reducing
the computations in comparison with Hermit and Jordan methods for p-th roots.
(b) In the case A =Mn(C), where Mn(C) is an n×n nonsingular matrix with k distinct
eigenvalues. Then it has pk distinct p-th roots ([2], Theorem 7.1 p. 173). The principle
p-th root of the non-singular matrix A can be obtained by taking the principle branch of

λ
1

p

j in (36) for j = 1, 2, . . . , k. Furthermore, the other p-th roots are given by taking the

other branches of λ
1

p

j in (36). Hence, all the pk distinct p-th roots are accessible.

Example 3.3 In this example, we consider the following non-diagonalizable 10 × 10
matrix A, and calculate Am using all three methods which we described.

A =



1 1 1 −2 1 −1 2 −2 4 −3
−1 2 3 −4 2 −2 4 −4 8 −6
−1 0 5 −5 3 −3 6 −6 12 −9
−1 0 3 −4 4 −4 8 −8 16 −12
−1 0 3 −6 5 −4 10 −10 20 −15
−1 0 3 −6 2 −2 12 −12 24 −18
−1 0 3 −6 2 −5 15 −13 28 −21
−1 0 3 −6 2 −5 12 −11 32 −24
−1 0 3 −6 2 −5 12 −14 37 −26
−1 0 3 −6 2 −5 12 −14 36 −25


.

(a) The Jordan canonical method: the Jordan block structure of a matrix is difficult to
determine, since the set of n × n diagonalizable matrices is dense in Mn(C), and thus,
small changes in a matrix can radically alter its Jordan form. Golub and Loan [[1], p.
248] illustrate the difficulty of calculating the Jordan canonical form of the matrix A.
Also, Li et al. [3] used the algorithm (based on symbolic computation) to obtain the
Jordan canonical form of A. They obtained the minimal polynomial of A as follow

ψ(z) = z6 − 13z5 + 69z4 − 191z3 + 290z2 − 228z + 72 (37)

and then, using the symbolic computations (which are very difficult and long), they
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found the Jordan canonical form J = diag(2I3+N3, 3I2+N2, 1, 2I2+N2, 3I2+N2) of A.
However, their method is unable to compute the matrix Z ∈ M10(C) which Z−1AZ =
J . To conclude Z, assume that we are written J = diag

(
J(λ1), · · · , J(λk)

)
, where for

i = 1, · · · , k and J(λi) ∈ Mdi×di
(C) denotes the Jordan block corresponding to the

eigenvalue λi and di is the repeated order of λi in the characteristic polynomial of A.
Moreover, suppose that Z = [Z1, Z2, · · · , Zk], where Zi ∈ Mn×di

(C) are the columns of
Z associated with i-th Jordan block J(λi), which AZi = ZiJi. Let vi,js are the columns
of Zi and Zi = [vi,1, vi,2, · · · , vi,ni

]. Then Avi,1 = λivi,1 and Avi,j = vi,j−1 + λivi,j for
i = 1, 2, · · · , k and j = 1, 2, · · · , ni. The vectors vi,j are called generalized eigenvectors.
vi,js can be found by following algorithm:
(1) Solve (A−λiI10)vi,1 = 0. This step finds all the eigenvectors associated with λi. The
number of eigenvectors depends on rank(A − λiI10). For example, if rank(A − λiI10) =
n− 1, there is only one eigenvector.
(2) For each independent vi,1 from (1), solve (A − λiI10)vi,2 = vi,1. The number of
linearly independent solutions at this step depends on rank(A− λiI10)

2. If, for example
rank(A−λiI10)2 = n−2, there are two linearly independent solutions to the homogeneous
equation (A − λiI10)

2vi,2 = 0. One of these solutions is vi,1; since (A − λiI10)
2vi,1 =

(A− λiI10)0 = 0. The other solution is the desired generalized eigenvectors.
(3) For each independent vi,2 from step (2), solve (A−λiI10)vi,3 = vi,2 and continue until
the total number of independent generalized eigenvectors vi,1, · · · , vi,ni

found.
Unfortunately, this natural-looking procedure can fail to find all Jordan vectors. For

more extensive treatments, see, for example, [4] and [6]. Determination of eigenvectors
and generalized eigenvectors is obviously very tedious for anything beyond simple prob-
lems (n = 2 or 3, say). Attempts to do such calculations in finite-precision floating-point
arithmetic, generally prove unreliable. There are significant numerical difficulties inherent
in attempting to compute the Jordan canonical form.

In the best situation, for n × n matrix, we can find Z with the algorithm described
above, by solving at least n non-homogeneous linear system of n variables and n equa-
tion, which their coefficient matrix is not invertible. If we use the L − U -factorization
method or Gaussian elimination method to solving each system of equation in the above
algorithm, it can be shown that the number of computations has the order O(n3) [[8],
page 56]. And so, the number of whole computations for finding Z, is at least from
order O(n4). In addition, we did not concluded the computations for finding the Jordan
canonical form.
(b) Hermite interpolation method: using the minimal polynomial of A in (37), we have

λ1 = 1, n1 = 1 and ϕ1(t) =
tm

(t−2)3(t−3)2

λ2 = 2, n2 = 3 and ϕ2(t) =
tm

(t−1)(t−3)2

λ3 = 3, n3 = 2 and ϕ3(t) =
tm

(t−2)3(t−1)

Doing the arithmetic computations, we obtain
ϕ1(1) = −1

4

ϕ3(3) =
3m

2 and ϕ′3(3) = 3m(m6 − 7
4)

ϕ2(2) = 2m , ϕ′2(2) = 2m(m2 + 1) and ϕ
(2)
2 (2) = 2m(m

2

4 + 3m
4 + 4)
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Assume that for i = 1, 2, 3,

Φi(t) =

ni−1∑
j=0

1

j!
ϕ
(j)
i (λi)(t− λi)

j

∏
r ̸=i

(t− λr)
nr


Then 

Φ1(t) = −1
4(t− 2)3(t− 3)2

Φ3(t) = 3m
(
1
2 + (m6 − 7

4)(t− 3)
)
(t− 1)(t− 2)3

Φ2(t) = 2m
(
1 + (m2 + 1)(t− 2) + (m

2

8 + 3m
8 + 2)(t− 2)2

)
(t− 1)(t− 3)2

which can be written as:

Φ1(t) = −1

4

(
t5 − 12t4 + 57t3 − 134t2 + 156t− 72

)
,

Φ3(t) = 3m
(
(
m

6
− 7

4
)t5 + (18− 5m

3
)t4 + (

13m

2
− 287

4
)t3 − (

37m

3
− 277

2
)t2

)
+ 3m

(
(
34m

3
− 129)t− 4m+ 46

)
,

Φ2(t) = 2m
(
(
m2

8
+

3m

8
+ 2)t5 − (

11m2

8
+

29m

8
+ 21)t4 + (

47m2

8
+

105m

8
+ 86)t3

)
− 2m

(
(
97m2

8
+

175m

4
+ 172)t2 − (12m2 +

33m

2
+ 168)t+

9

2
m2 +

9

2
m+ 63

)
.

Now, the Hermite interpolation polynomial is

p(t) = Φ1(t) + Φ2(t) + Φ3(t)

= p5(m)t5 + p4(m)t4 + p3(m)t3 + p2(m)t2 + p1(m)t+ p0(m)

where

p5(m) = (2 +
3m

8
+
m2

8
)2m + (

m

6
− 7

4
)3m − 1

4
, (38)

p4(m) = (−21− 29m

8
− 11m2

8
)2m + (18− 5m

3
)3m + 3, (39)

p3(m) = (86 +
105m

8
+

47m2

8
)2m + (

13m

2
− 287

4
)3m − 57

4
, (40)

p2(m) = (−172− 175m

8
− 97m2

8
)2m + (

277

2
− 37m

3
)3m +

67

2
, (41)

p1(m) = (168 +
33m

2
+ 12m2)2m + (

34m

3
− 129)3m − 39, (42)

p0(m) = (−63− 9m

2
− 9m2

2
)2m + (46− 4m)3m + 18. (43)
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Thus,

Am = p5(m)A5 + p4(m)A4 + p3(m)A3 + p2(m)A2 + p1(m)A+ p0(m)I10. (44)

Rewriting (44), we can find the representation (25) which we described in Theorem 3.1

Am =
(
m2(2)m

)
S11 +

(
m(2)m

)
S12 + (2m)S13 +

(
m(3)m

)
S21 + (3m)S22 + S31,

where

S11 =
1

8
A5 − 11

8
A4 +

47

8
A3 − 97

8
A2 + 12A− 9

2
I10

S12 =
3

8
A5 − 29

8
A4 +

105

8
A3 − 175

8
A2 +

33

2
A− 9

2
I10

S13 = 2A5 − 21A4 + 86A3 − 172A2 + 168A− 63I10

S21 =
1

6
A5 − 5

3
A4 +

13

2
A3 − 37

3
A2 +

34

3
A− 4I10

S22 = −7

4
A5 + 18A4 − 287

4
A3 +

277

2
A2 − 129A+ 46I10

S31 = −1

4
A5 + 3A4 − 57

4
A3 +

67

2
A2 − 39A+ 18I10

One of difficulties of this method is calculating ϕ
(j)
i s for j = 1, · · · , ni and i = 1, · · · , k.

For each i = 1, 2, · · · , k, we can write

ϕi(t) = tm
∏
r ̸=i

(t− λr)
−nr .

Using multinomial formula of general Leibnitz rule, we get that

ϕ
(j)
i (t) =

∑
r1+···+rn=j

(
j

r1, · · · , rn

)
(tm)(r1)

∏
q ̸=i
t ̸=1

(
(t− λq)

−nq
)(rt),

where
(

j
r1,··· ,rn

)
= j!

r1!···rn! . The number of calculation works for obtaining Φi(t) is at

least from order O(n4i ); and the whole calculation is at least from order O(s4), where
s = n1 + n2 + · · ·+ n4.

The other difficulty is involving symbolic calculations with polynomials, rational func-
tions of polynomials and their product or differentials, which are boring and nerve-
racking.
Our method: we first give some description about computation works of our method,
and some explanations for obtaining the functions pj(m)s. Assume that the conditions
of Theorem 3.1 are satisfied. By relation (23), for j = 0, 1, · · · , n− 1, we can write:

pj(m) = (αj,1,1 + αj,1,2m+ . . .+ αj,1,n1
mn1−1)λm1

+ (αj,2,1 + αj,2,2m+ . . .+ αj,2,n2
mn2−1)λm2

+ · · ·+ (αj,k,1 + αj,k,2m+ . . .+ αj,k,nk
mnk−1)λmk (45)
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According to (44), pj(q) = 0 for q ̸= j, n − 1; pj(j) = 1 and pj(n − 1) = −aj . By this
initial values, αj,r,qs must satisfies the linear system of s equations in s variables:



λ1 λ1 · · · λ1 · · · · · · λk λk · · · λk λk

λ21 2λ21 · · · 2d1λ21 · · · · · · λ2k 2λ2k · · · 2dk−1λ2k 2dkλ2k
λ31 3λ31 · · · 3d1λ31 · · · · · · λ3k 3λ3k · · · 3dk−1λ3k 3dkλ3k
...

...
. . .

...
...

...
...

. . .
...

...

λj1 jλ
j
1 · · · jd1λj1 · · · · · · λjk jλ

j
k · · · jdk−1λjk jdkλjk

...
...

. . .
...

...
...

...
. . .

...
...

λd1 dλ
d
1 · · · dd1λd1 · · · · · · λdk dλdk · · · ddk−1λdk d

dkλdk
λn1 nλ

n
1 · · · nd1λn1 · · · · · · λnk nλnk · · · ndk−1λnk n

dkλnk





αj,1,1

αj,1,2
...

αj,1,n1

...
αj,k,1

αj,k,2
...

αj,k,n1


=



0
0
...
0

1

0
...
0

−an−1


.

where d = n−1 and di = ni−1 for i = 1, 2, · · · , k, and 1 appears in the j-th coordinate in
the right hand of equality. Invertibility of coefficient matrix follows from the uniqueness
of Hermite interpolation polynomial. Assume that we are written the above system in
the form Cαj = bj , where C is the coefficient matrix, αj is the matrix of unknown αj,i,rs,

and bj is the constant terms matrix. Moreover, let C−1 = (ci,r)
n
i,r=1 be the inverse of C.

Then

αj =



αj,1,1

αj,1,2
...

αj,1,n1

...
αj,k,1

αj,k,2
...

αj,k,nk


= C−1bj =



c1,j − an−1c1,n
c2,j − an−1c2,n

...
cn1,j − an−1cn1,n

...
cn−nk,j − an−1cn−nk,n

cn−nk+1,j − an−1cn−nk+1,n
...

cn,j − an−1cn,n


It can be shown that for every s×s matrix, the number of computations for obtaining it’s
inverse by Gaussian elimination method, has the order O(s3) ([8], page 57). Then, each
αj can be concluded by 3s computation and whole αjs are derived by 3s2 computation.

Thus, all the computations which we need to drive pj(m)s has the order O(s3), which is
so less than Hermite interpolation and Jordan methods.

In the special case, for the matrix A which introduced above, the coefficient matrix C
and the constant term matrix b are as follow:

C =


2 2 2 3 3 1
4 8 16 9 18 1
8 24 72 27 81 1
16 64 256 81 324 1
32 160 800 243 1215 1
64 384 2304 729 4374 1

 , b =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−72 228 −290 191 −69 13

 .



38 M. Ghorbanzadeh et al. / J. Linear. Topological. Algebra. 07(01) (2018) 21-38.

Then, by the relation α = C−1b, we obtain
α0,1,1 α1,1,1 α2,1,1 α3,1,1 α4,1,1 α5,1,1

α0,1,2 α1,1,2 α2,1,2 α3,1,2 α4,1,2 α5,1,2

α0,1,3 α1,1,3 α2,1,3 α3,1,3 α4,1,3 α5,1,3

α0,2,1 α1,2,1 α2,2,1 α3,2,1 α4,2,1 α5,2,1

α0,2,2 α1,2,2 α2,2,2 α3,2,2 α4,2,2 α5,2,2

α0,3,1 α1,3,1 α2,3,1 α3,3,1 α4,3,1 α5,3,1

 =


−63 168 −172 86 −21 2
−9

2
33
2 −175

8
105
8 −29

8
3
8

−9
2 12 −97

8
47
8 −11

8
1
8

46 −129 277
2 −287

4 18 −7
4

−4 34
3 −37

3
13
2 −5

3
1
6

18 −39 67
2 −57

4 3 −1
4


which is agree with equations (38)-(43). As we mentioned before, the computation works
in the Hermite method is at least O(s4), and in Jordan method (in the best case, when
the numerical problems dose not occur) is at least O(n4). But in our method, we reduced
the number of computation works to O(s3). Another advantage of this method to the
Jordan method, is that we do not need to obtain the Jordan canonical form. Also, we get
the same result just by solving one non-homogeneous linear system which the coefficient
matrix is invertible, instead of solving n non-homogeneous linear system of n variables
and n equation, which their coefficient matrix is not invertible. The other preference
than Hermite interpolation method, we can say that in this method, we removed the
boring symbolic calculation with polynomials and rational functions of polynomials and
their differentials; and we obtained the same answer as Hermite interpolation method.
In other word, we replaced the nonlinear computation of Hermite method, by the linear
computations, and we reduced the question to finding out the answer of a linear system
of equations.
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