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Abstract. This paper uses the classical Lie method to determine symmetry reductions and
exact solutions of the time-dependent Calogero-Bogoyavlenskii-Schiff equation (vCBS). This
classical method generates some exact arbitrary solutions and exhibits various qualitative
behaviors. Here, we derived the infinitesimal symmetries and six basic combinations of vec-
tor fields in the linear forms that can be utilized to transform the given equation into the
PDEs with their variables. Further, we obtain comprehensive invariant solutions of the vCBS
equation. Next, we apply a direct method to explore conservation laws. Finally, we determine
the conservation laws of the vCBS equation via the Bluman-Anco homotopy formula.
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1. Introduction

In 2020, Wazwaz introduced three new completely integrable Calogero Bogoyavlenskii
Schiff (CBS) equations:

• Extended CBS (eCBS);

• Time-dependent CBS (vCBS);

• Time-dependent negative-order CBS (vnCBS),

which appear in propagation of waves [15]. Several integrable models have been generated
and proposed in the context of (2+1)-dimensional equations. Multidimensional integrable
systems have been primarily used for solving the problems in integrable systems. It is
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essential to keep the symmetry for solving the equations, as it is the key for solving
non-linear differential equations. Moreover, it is vital for understanding many physical
phenomena in various fields, such as physics science and dynamics of fluids problems
[2, 3, 6]. Such phenomena can be described as a system of differential equations and, in
potential form, a fourth-order partial differential equation. The classical and non-classical
methods generate some exact arbitrary function and thus exhibit various solutions. The
symmetry group of equations is known as the most fundamental transformation local
group, acting on the dependent and independent variables in the system [9–11].

Moreover, the symmetry group of differential equations enables transforming the solu-
tions into other valuable solutions in the system. Non-linear evolution equations have
been derived and broadly used to interpret the fundamental characteristics of non-
linearity and to obtain the peculiar nature of non-linearity in science and engineering
phenomena [5, 7]. In this study, we explore the time-dependent Calogero-Bogoyavlenskij-
Schiff (vCBS) equation written as follows:

f(t)uxt + αuxxxy + 2βuxuxy + βuxxuy = 0. (1)

In order to calculate the solutions for partial differential equations (PDEs) in non-linear
forms, we analyzed their corresponding symmetry groups, as they are the most common
and powerful techniques for solving such equations [4, 8]. In this approach, first, the
symmetry groups for the non-linear PDEs are recognized. Next, the identified symmetry
groups are used to construct the certain solutions and eventually transform them into
other solutions. In the analysis of PDEs, the conservation laws play a crucial role in
analyzing the fundamental properties of the solutions and in particular, the study of
their stability, existence, and uniqueness [1, 14]. The current work will be described
with the following structure: Section 2 classifies a group of vCBS equations. In the next
section (Section 3), we obtain the optimal one-dimensional subalgebra for the problem.
In Section 4, we earn the reductions for Eq. (1) and present definite solutions. In the last
section (Section 5), we obtain the associated conservation laws for Eq. (1) using direct
methods and provide concluding remarks.

2. Symmetry classification of the vCBS equation

We first consider a system of p-th order differential equations in the form of

∆α(X,U (p)) = 0, α = 1, ..., t, (2)

is a system of PDE of order pth, where X = (x1, ..., xm) and U = (u1, ..., un) are m
independent and n dependent variables respectively, and U (i) is the i− order derivative
of U with respect to x, 0 ⩽ i ⩽ p. Infinitesimal transformations Lie group acts on both
X and U are

x̂i = xi + δφi(X,U) + o
(
δ2
)
, i = 1, . . . ,m,

ûj = uj + δϕj(X,U) + o
(
δ2
)
, j = 1, . . . , n.

In equations mentioned above, φi and ϕj are the infinitesimal transformations for{
x1, . . . xm

}
and

{
u1, . . . , un

}
respectively. We can define an arbitrary generator based
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on the transformation group as follows:

V =

p∑
i=1

φi(X,U)∂xi +

q∑
j=1

ϕj(X,U)∂uj . (3)

To use the Lie group procedure for Eq. (1) and obtain infinitesimal transformations,
we examine a one-parameter Lie group: (we apply x, y, t in replacement of x1, x2, x3

respectively). So x1 = x, x2 = y, x3 = t, u1 = u and

x̃ = x+ δφ1(x, y, t, u) + o
(
δ2
)
,

ỹ = y + δφ2(x, y, t, u) + o
(
δ2
)
,

t̃ = t+ δφ3(x, y, t, u) + o
(
δ2
)
,

û = u+ δϕ1(x, y, t, u) + o
(
δ2
)
.

The obtained symmetry generator can be described in the following form:

V = φ1(x, y, t, u)∂x+ φ2(x, y, t, u)∂y + φ3(x, y, t, u)∂t+ ϕ1(x, y, t, u)∂u. (4)

The condition of being invariance for the equation is

pr(4)v [f(t)uxt + αuxxxy + 2βuxuxy + βuxxuy] = 0,

with

f(t)uxt + αuxxxy + 2βuxuxy + βuxxuy = 0.

Assuming φ1, φ2, φ3 and ϕ1 are the only dependents for x, y, t and u, we adjust the
individual coefficients to be zero. The total number of these equations is 99. We cannot
reach the solution of the above PDE equations with the arbitrary function f . But if
f(t) = et, by finding solutions for the above PDE equations, we obtain the results as
follows:

Theorem 2.1 The point symmetries Lie groups of Eq. (1) contain Lie algebra generated
by Eq. (4). The obtained coefficients are the infinitesimals in the following forms:

ϕ1 =
1

2β

(
uβc2e

−t + 2et(∂tF1(t))y + 2F2(t)β + u(c1 + c6)β + (yc2 − c5)x
)
,

φ1 = −1

2
xc2e

−t + F1(t) +
1

2
(−c1 − c6)x,

φ2 = (−yc2 + c5)e
−t + yc6 + c4,

φ3 = c1 + c2e
−t + c3e

t,

where ci ∈ R, i = 1, . . . , 6 and F1(t) and F2(t) are arbitrary function.

Corollary 2.2 All one-parameter Lie groups of point symmetries for Eq. (1) have the
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following infinitesimal generators:

ν6 = −1

2
x∂x + ∂t +

1

2
u∂u,

ν5 = −1

2
xe−t∂x − ye−t∂y + e−t∂t +

1

2

(uβe−t + yx)∂u
β

,

ν4 = et∂t,

ν3 = ∂y,

ν2 = e−t∂y −
1

2

x∂u
β

,

ν1 = −1

2
x∂x + y∂y +

1

2
u∂u,

νµ = µ(t)∂x +
et(∂tµ(t))y

β
∂u, νθ = θ(t)∂u,

where µ = F1 and θ = F2 are arbitrary function.

We provide Lie algebra for Eq. (1) by Table (1). The expression [νi, νj ] = νiνj − νjνi
determines the entry in row ith and column jth , i, j = 1, . . . , 6. The Gi groups containing
one parameter produced by the νi are described in the following expressions:

exp (εvi) (x, y, t, u) =
(
x̃, ỹ, t̃, ũ

)
:

G1 : (xe
− 1

2
ε, ye4, t, ue

1

2
ε),

G2 : (x, e
−tε+ y, t,−1

2

xε

β
+ u),

G3 : (x, ε+ y, t, u),

G4 :
(
xe−

1

2
ε, y, ε+ t, ue

1

2
ε
)
.

Table 1. Lie algebra for Eq(1).

[ , ] ν1 ν2 ν3 ν4 ν5 ν6
ν1 0 −ν2 −ν3 0 0 0
ν2 ν2 0 0 ν3 0 ν2
ν3 ν3 0 0 0 −ν2 0
ν4 0 −ν3 0 0 ν1 − 2ν6 −ν4
ν5 0 0 ν2 −ν1 + 2ν6 0 ν5
ν6 0 −ν2 0 ν4 −ν5 0

Table 2. Adjoint representation of the Lie algebra.

Ad ν1 ν2 ν3 ν4 ν5 ν6
ν1 ν1 e−s1ν2 e−s1ν3 ν4 ν5 ν6
ν2 ν1 s2ν1 + ν2 + s2ν6 ν3 + s2ν4 ν4 ν5 ν6
ν3 ν1 ν2 − s3ν5 s3ν1 + ν3 ν4 ν5 ν6
ν4 ν1 + s4ν5 ν2 −s4ν2 + ν3 ν4 + s24ν5 − s4ν6 ν5 −2s4ν5 + ν6
ν5 ν1 − s5ν4 ν2 + s5ν3 ν3 ν4 s25ν4 + ν5 + s5ν6 2s5ν4 + ν6
ν6 ν1 e−s1ν2 e−s1ν3 ν4 ν5 ν6
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3. Classification of one-Dimensional subalgebras

We can now employ the developed symmetry group and determine the optimal system
with one parameter group for Eq. (1). It should be noted that obtaining the subgroups
of the system is vital. These subgroups offer various types of solutions for the equation.
Thus, it is essential to find solutions that remain unaffected. The proposed approach
provides an expression for an optimal group of subalgebras [12, 13]. The classification
procedure of subalgebras would be homogenous with the classification for representation
orbits that are adjoined. The solution for a problem with an optimal group of subalgebras
can be obtained by assigning one representative from every subalgebra group within the
system. The adjoint representation of all νt, t = 1, . . . , 6 would be defined as

Ad (exp (sνt) νr) = νr − s [νt, νr] +
s2

2
[νt, [νt, νr]]− . . . .

In this representation, s is a variable and [νt, νr] is defined in Table 1 for t, r = 1, . . . , 6.
We assume g to be the Lie algebra determined by the Corollary 2.2. Then we can obtain
the adjoint action for the equation in Table 2. Further, we can set up an optimal system
of the subalgebras for Eq. (1).

Theorem 3.1 A one-dimensional optimal system of Eq. (1) is given by

(1) ν6 + c1ν1 + c2ν2 + c3ν3 + c4ν4 + c5ν5,
(2) ν5 + c1ν3 + c2ν4,
(3) ν4 + c1ν2,
(4) ν3 + c1ν1,
(5) ν2 + c1ν1,
(6) ν1.

Proof. Looking at Table 1, it is enough to determine the subalgebras of
⟨ν1, ν1, ν2, ν3, ν4, ν5, ν6⟩ . Function F s

t : g → g defined by x → Ad (exp (sνi)x) is a linear
map, for i = 1, . . . , 6. The six matrices ms

t of F s
i , i = 1, . . . , 6, with respect to basis, are

the followings:

A1 =


1 0 0 0 0 0
0 e−s1 0 0 0 0
0 0 e−s1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , A2 =


1 0 0 0 0 0
s2 1 0 0 0 s2
0 0 1 s2 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , A3 =


1 0 0 0 0 0
0 1 0 0 −s3 0
s3 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

A4 =


1 0 0 0 s4 0
0 1 0 0 0 0
0 −s4 1 0 0 0
0 0 0 1 s24 −s4
0 0 0 0 1 0
0 0 0 0 −2s4 1

 , A5 =


1 0 0 −s5 0 0
0 1 s5 0 0 s2
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 s25 1 s5
0 0 0 2s5 0 1

 , A6 =


1 0 0 0 0 0
0 e−s6 0 0 0 0
0 0 1 0 0 0
0 0 0 es6 0 0
0 0 0 0 e−s6 0
0 0 0 0 0 1

 .

Alternatively, by acting these matrices on x =
∑6

i=1 ciνi, x is a vector field, x can be
simplified as follows:
By taking c6 ̸= 0, the vector x can be transformed into the case (1).

For c6 = 0 and c5 ̸= 0, the coefficients of ν1 and ν2 can be disappeared by setting

s4 =
−c1
c5

and s3 =
c2
c5

respectively. If needed, by scaling x, we assume c5 = 1. Thus, x

can be converted to the case (2).
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For c6 = c5 = 0 and c4 ̸= 0, the coefficients of ν1 and ν3 can be disappeared by setting
s2 = −c3

c4
and s5 = c1

c4
respectively. If needed, by scaling x, we assume c5 = 1. Thus, x

can be converted to the case (3).

For c6 = c5 = c4 = 0 and c3 ̸= 0 we can remove the coefficient ν2 by setting s5 = −c2
c3
.

If needed by scaling x, we assume c3 = 1. Therefore, x can be converted to the case (4).

For c6 = c5 = c4 = c3 = 0 and c2 ̸= 0, if needed by scaling x, we assume c2 = 1.
Therefore, x can be converted to the case (5).

For c6 = c5 = c4 = c3 = c2 = 0 and c1 ̸= 0, x transforms into the case (6). ■

Table 3. The parameters of Lie invariants and the similarity solutions.

i Hi ξi ηi wi ui

1 ν1 t
y

x2
xu

1

x
h(ξ, η)

2 ν2 t x −u

2
− 1

4β
yxet − 1

2β
yxet − 2h(ξ, η)

3 ν3 t x u h(ξ, η)
4 ν4 x y u h(ξ, η)

5 ν5
y

x2
2 ln(x) + t −xu− x2et

2β
− 1

2β
xety − 1

x
h(ξ, η)

6 ν6 y 2 ln(x) + t u h(ξ, η)
7 ν3 + ν4 x −(yet + 1)e−t u h(ξ, η)

8 ν4 + ν6 y
xe

1

2
t

√
et + 1

u h(ξ, η)

9 ν4 + ν6 + ν1 x
(et + 1)e−t

y
u h(ξ, η)

Table 4. Reduced equations.

1 2f(ξ)ηhξη − f(ξ)hξ + 8αη3hηηη + 24αηhηηη
+6αηhηη + 12βηhηhηη + 2βηheta− 4βηhhηη = 0,

2 2βf(ξ)hξη − 2βeξhη − ξeξβhηη = 0,
3 f(ξ)hξη = 0,
4 αhξξξη + 2βhξhξη + βhξhη = 0,
5 −4ξβhξη + 4βhηη − 2βhη = 0,
6 8αhξηηη − 24αhξηη + 22αhξη − 6αhξ + 8βhηhξη

−10βhηhξ − 4βhhξη + 4βhhξ + 4βhξhηη = 0,
7 −αhξξξη − 2βhξhξη − βhξhηhξη = 0,
8 ηhηη + 2hη2αhξηηη + 4βhηhξη + 2βhηηhξ = 0,
9 −hξη − αηhξηηη − 2βηhξhξη − βηhξξhη = 0.

4. Similarity reduction of Eq. (1)

Now, we perform the classification of symmetry reductions of Eq. (1) in the follow-
ing section regarding subalgebras. Therefore, we must find a new expression for Eq. (1)
in particular coordinates and reduce the equation. This specific coordinate can be de-
termined by calculating ξ, η, (independent invariant), and h regarding the infinitesimal
generator. The similarity variables ξi, ηi, hi for Eq. (1) are represented in Table 3.
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For example, we calculated the invariants related to subalgebra H6 = ν6 = −1

2
∂x +

∂t+
1

2
∂u, by solving the characteristic equation as follows:

−2∂x

x
=

∂y

1
=

∂t

1
=

2∂u

u
.

Thus, the new variables are

ξi = y, ηi = 2 ln(x) + t, wi = 6,

where u = h(ξ, η) meets a reduced PDE with two variables as:

8αhξηηη − 24αhξηη + 22αhξη − 6αhξ

+ 8βhηhξη − 10βhηhξ − 4βhhξη + 4βhhξ + 4βhξhηη = 0. (5)

Subalgebra ν6 and the reduced Eq. (5) are presented in Tables 3 and 4 by case (6).

Equivalent solution of Eq. (5) becomes u(x, y, t) = e
1

2
tF (y), where F is a function of

ξ = y. Indeed, by Table 3, h(ξ, η) = u(x, y, t). This solution does not depend on x. Using
a similar argument for H7 = ν3 + ν4, the Eq. (1) is reduced as:

−αhξξξη − 2βhξhξη − βhξhηhξη = 0, (6)

Equivalent solution of Eq. (6) becomes

h(ξ, η) = u(x, y, t) = c1x+ F (−(yet + 1)e−t),

where F is a function of η = −(yet + 1)e−t Again using a similar argument for H8 =
ν4 + ν6, the reduced equation and equivalent solution of Eq(1) become

ηhηη + 2hη2αhξηηη + 4βhηhξη + 2βhηηhξ = 0, (7)

h(ξ, η) = u(x, y, t) =
c1xe

1

2
t + c2

√
et + 1√

et + 1x
. (8)

For H9 = ν4 + ν6 + ν1 the reduced equation and equivalent solution of Eq(1) become:

− hξη − αηhξηηη − 2βηhξhξη − βηhξξhη = 0,

h(ξ, η) = u(x, y, t) = c1x+ F

(
(et + 1)e−t

y

)
,

where F is a function of η =
(et + 1)e−t

y
.

5. Conservation laws

Many techniques, such as Noether and direct methods, etc., are used to explore
conservation laws. In the current section, we utilize the direct method to analyze the
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conservation laws. Assume a differential equation in the form of ρ{x, u} with k order
and independent variables of n, where x can be described as x =

(
x1, . . . , xn

)
and U

is a dependent variable, represented by ρ[u] = ρ
(
x,U, ∂U, . . . , ∂kU

)
= 0. Assuming

a multiplier with Λ
(
x,U, ∂U, . . . , ∂tU

)
can derived a conservation law in the form of

Λ[U ]ρ[U ] = Diϕ
i[U ] = 0 for the equation ρ{x, u} contingent upon

EU

(
Λ
(
x,U, ∂U, . . . , ∂tU

)
ρ
(
x,U, ∂U, . . . , ∂kU

))
≡ 0.

By taking U(x) as an expression for arbitrary functions into account, the expression EU ,
which is the Euler operator acting on U , is described below:

EU = ∂U −Di∂U + · · ·+ (−1)sDi1 . . . Dis∂Ui1 . . .is

Since the CBS equation is concerned about u, x, y, t, it results in multipliers that
further provide locally configured conservation laws for Eq. (1) in the format of
Λ = Λ (x, y, t, U, UxUy, Ut). We can now determine all nontrivial local conservation
laws connected to the equation from multipliers. Subsequently, the expression Λ =
Λ (x, y, t, U, ∂xU, ∂yU, ∂tU) is a conservation law multiplier concerning the Eq. (1) based
on

EU [Λ(x, y, t, U, ∂xU, ∂yU, ∂tU)(f(t)uxt + αuxxx y + 2rβuxuxy + βuxxuy) ≡ 0

for U(x, y, t) in the form of an arbitrary function. We then identify all potential multipli-
ers in the format of Λ = Λ (x, y, t, u, ∂Ux, ∂Uy, ∂Ut) for the Eq. (1). Therefore, the Euler
operator is determined to be as follows:

EU = ∂U −Di∂Ui + · · ·+ (−1)3Di1 . . . Di3∂Ui1 . . .i3

and the determining equation becomes

EU [Λ(x, y, t, U, ∂Ux, ∂Uy, ∂Ut)(f(t)uxt + αuxxx y + 2rβuxuxy + βuxxuy) ≡ 0,

where U(x, y, t) is an arbitrary function. The above equation can be separated concerning
Ux, Uy, Ut to derive the over-determined equations:

ΛU,t,t =
−3fΛU,tft − gΛUft,t − ΛUf

2
t

f2
, Λx,x = 0, Λx,y =

−ΛU,tf − ΛUft
β

,

Λt,x =
UxΛU,tf + UxΛUft − Λxft

f
, ΛU,x = 0, ΛUx,x = ΛU , ΛUΛUt,y = 0,

ΛUy,x = 0, ΛUt,x = 0, Λy,y = 0, ΛU,y = 0, ΛUx,y = 0, ΛUy,y = 2,

ΛUx,t =
2ΛUβUy − ΛUx

ft − Λyβ

f
, ΛUy,t =

2ΛUβUx − 2Λxβ − ΛUy
ft

f
,

ΛUt,t = 4ΛU , ΛU,U = 0, ΛU,Ux
= 0, ΛU,Uy

= 0, ΛU,Ut
= 0, ΛUx,Ux

= 0,

ΛUx,Uy
= 0, ΛUtUx

= 0, ΛUyUy
= 0, ΛUt,Uy

= 0, ΛUtUt
= 0,
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Solving the set of above equations, we find the infinite set of local multipliers:

Λl(x, y, t, U, Ux, Uy, Ut) = C1Ut + F (t).

We then use homotopy formula (see [4]) and determine the conserved elements ϕt, ϕx

and ϕy corresponding to Λ in the following format:

ϕt =
1

3
U(2βUxUxy + βUxxUy)C1 +

1

2
UxC1Utf +

1

2
U(fUtx + αUxxxy)C1 + UxF (t)f,

ϕx =
2

3
U1C1UtβUxy −

1

3
U (C1βUyUtx + C1UtβUxy) + UxC1UtβUy

+
1

2
UF (t)βUxy −

1

2
UxyC1αUtx −

1

2
U (C1Utft + C1fUtt) +

1

2
UxxyC1Utα

+
1

2
UyC1αUtxx +

3

2
UxF (t)βUy − U (F (t)ft + F2(t)ft) + UxxyF (t)α,

ϕy =
1

3
UC1UtβUxx −

1

3
U (2C1βUxUtx + 2C1UtβUxx)−

1

2
UF (t)βUxx −

1

2
UC1αUtxxx.

For case C1, we have

Λ(x, y, t, U, Ux, Uy, Ut) = Ut,

ϕt =
2

3
UβUxUxy +

1

3
UβUxxUy +

1

2
UxUtf +

1

2
UfUtx +

1

2
UαUxxxy,

ϕx =
1

3
UUtβUxy −

1

3
UβUyUtx + UxUtβUy −

1

2
UxyαUtx −

1

2
UUtft −

1

2
UfUtt

+
1

2
UxxyUtα+

1

2
UyαUtxx,

ϕy = −1

3
UUtβUxx −

2

3
UβUxUtx −

1

2
UαUtxxx.

So, in this case, we find the following conservation law of Eq. (1):

Dtϕ
t +Dxϕ

x +Dyϕ
y = 0.

For case F, we obtain the following:

Λ(x, y, t, U, Ux, Uy, Ut) = F (t),

ϕt = UxF (t)f,

ϕx =
1

2
UF (t)βUxy +

3

2
UxF (t)βUy − UFtf − UF (t)ft + UxxyF (t)α,

ϕy = −1

2
UF (t)βUxx.

Theorem 5.1 We have the following conservation law for Eq. (1):

Dtϕ
t +Dxϕ

x +Dyϕ
y = 0.
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