Characterization of (δ, ε)-double derivations on rings and algebras

Z. Jokar ${ }^{\text {a,* }}$, A. Niknam ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Mashhad Branch, Islamic Azad University-Mashhad, Iran.
${ }^{\mathrm{b}}$ Department of Mathematics, Ferdowsi University of Mashhad and Center of Excellence in Analysis on Algebraic Structures (CEAAS) Ferdowsi University, Mashhad, Iran.

Received 9 August 2017; Revised 11 November 2017; Accepted 12 November 2017.

Abstract. This paper is an attempt to prove the following result:
Let $n>1$ be an integer and let \mathcal{R} be a $n!$-torsion-free ring with the identity element. Suppose that d, δ, ε are additive mappings satisfying

$$
\begin{equation*}
d\left(x^{n}\right)=\sum_{j=1}^{n} x^{n-j} d(x) x^{j-1}+\sum_{j=1}^{n-1} \sum_{i=1}^{j} x^{n-1-j}\left(\delta(x) x^{j-i} \varepsilon(x)+\varepsilon(x) x^{j-i} \delta(x)\right) x^{i-1} \tag{1}
\end{equation*}
$$

for all $x \in \mathcal{R}$. If $\delta(e)=\varepsilon(e)=0$, then d is a $\operatorname{Jordan}(\delta, \varepsilon)$-double derivation. In particular, if \mathcal{R} is a semiprime algebra and further, $\delta(x) \varepsilon(x)+\varepsilon(x) \delta(x)=\frac{1}{2}\left[(\delta \varepsilon+\varepsilon \delta)\left(x^{2}\right)-(\delta \varepsilon(x)+\right.$ $\varepsilon \delta(x)) x-x(\delta \varepsilon(x)+\varepsilon \delta(x))]$ holds for all $x \in \mathcal{R}$, then $d-\frac{\delta \varepsilon+\varepsilon \delta}{2}$ is a derivation on \mathcal{R}.
(C) 2017 IAUCTB. All rights reserved.

Keywords: Derivation, Jordan derivation, (δ, ε)-double derivation, n-torsion free semiprime ring.

2010 AMS Subject Classification: 47B47, 13N15, 17B40.

[^0]
1. Introduction and Preliminaries

In this paper, \mathcal{R} represents an associative unital ring with center $Z(\mathcal{R})$ such that e will show its unit element and $x^{0}=e$ for all $x \in \mathcal{R}$. The center of \mathcal{R} is

$$
Z(\mathcal{R})=\{x \in \mathcal{R} \mid x y=y x, \forall y \in \mathcal{R}\} .
$$

A ring \mathcal{R} is n-torsion free, where $n>1$ is an integer, in case $n x=0, x \in \mathcal{R}$ implies $x=0$. Like most authors, we denote the commutator $x y-y x$ by $[x, y]$ for all pair $x, y \in \mathcal{R}$. Recall that \mathcal{R} is prime if $x \mathcal{R} y=\{0\}$ implies $x=0$ or $y=0$, and is semiprime if $x \mathcal{R} x=\{0\}$ implies $x=0$.

As well, the above-mentioned statements are considered for algebras. An additive mapping $d: \mathcal{R} \rightarrow \mathcal{R}$, where \mathcal{R} is an arbitrary ring, is called a derivation if $d(x y)=$ $d(x) y+x d(y)$ holds for all pairs $x, y \in \mathcal{R}$, and is called a Jordan derivation when $d\left(x^{2}\right)=d(x) x+x d(x)$ is fulfilled for all $x \in \mathcal{R}$. A derivation d is inner if there exists $a \in \mathcal{R}$ such that $d(x)=[a, x]$ holds for all $x \in \mathcal{R}$. Every derivation is a Jordan derivation. The converse is not true in general. A classical result of Herstein [7], asserts that any Jordan derivation on a 2 - torsion free prime ring (prime ring with characteristic different from two) is a derivation. A brief proof of Herstein's result can be found Brešar and Vukman [2]. Cusack [5] generalized Herstein's result to 2 -torsion free prime rings (see also [1] for an alternative proof). A series of results related to derivations on prime and semiprime rings, can be found in $[3,4,10,11,13]$.

Mirzavaziri and Omidvar Tehrani [9] defined a (δ, ε)-double derivation as follows. Suppose that $\delta, \varepsilon: \mathcal{R} \rightarrow \mathcal{R}$ are two additive mappings. An additive mapping $d: \mathcal{R} \rightarrow \mathcal{R}$ is said to be a (δ, ε)-double derivation, when for all $x, y \in \mathcal{R}$,

$$
d(x y)=d(x) y+x d(y)+\delta(x) \varepsilon(y)+\varepsilon(x) \delta(y) .
$$

Similar to the Jordan derivations, an additive mapping d is called a Jordan (δ, ε)-double derivation if

$$
d\left(x^{2}\right)=d(x) x+x d(x)+\delta(x) \varepsilon(x)+\varepsilon(x) \delta(x)
$$

holds for all $x \in \mathcal{R}$. Clearly, this notion includes ordinary derivation (Jordan derivation), when $\delta(x) \varepsilon(y)+\varepsilon(x) \delta(y)=0$ for all $x, y \in \mathcal{R}$.

Vukman and Ulbl [12] considered the following result: Let $n>1$ be an integer and let \mathcal{R} be an $n!$-torsion free semiprime ring with identity element. Suppose that there exists an additive mapping $D: \mathcal{R} \rightarrow \mathcal{R}$ such that

$$
D\left(x^{n}\right)=\sum_{j=1}^{n} x^{n-j} D(x) x^{j-1}
$$

is fulfilled for all $x \in \mathcal{R}$. In this case, D is a derivation. In [8], Hosseini presented some characterizations of δ-double derivations on rings and algebras. In this note, by methods mentioned above, we prove notions of a general characterization of (δ, ε) - double derivations on rings and algebra by some equations. Let $n>1$ be an integer and d, δ, ε :
$\mathcal{R} \rightarrow \mathcal{R}$ be additive mappings such that

$$
d\left(x^{n}\right)=\sum_{j=1}^{n} x^{n-j} d(x) x^{j-1}+\sum_{j=1}^{n-1} \sum_{i=1}^{j} x^{n-1-j}\left(\delta(x) x^{j-i} \varepsilon(x)+\varepsilon(x) x^{j-i} \delta(x)\right) x^{i-1}
$$

is fulfilled for all $x \in \mathcal{R}$. If \mathcal{R} is a unital $n!$-torsion free ring and $\delta(e)=\varepsilon(e)=0$, then d is a Jordan (δ, ε)-double derivation. In particular, if \mathcal{R} is a semiprime algebra and further,

$$
\delta(x) \varepsilon(x)+\varepsilon(x) \delta(x)=\frac{1}{2}\left[(\delta \varepsilon+\varepsilon \delta)\left(x^{2}\right)-(\delta \varepsilon(x)+\varepsilon \delta(x)) x-x(\delta \varepsilon(x)+\varepsilon \delta(x))\right]
$$

for all $x \in \mathcal{R}$, then $d-\frac{\delta \varepsilon+\varepsilon \delta}{2}$ is an ordinary derivation on \mathcal{R}.

2. Main results

Let \mathcal{A} be an algebra, and δ, ε be two additive mappings on \mathcal{A}. An additive mapping $d: \mathcal{A} \rightarrow \mathcal{A}$ is called a (δ, ε)-double derivation, if

$$
d(a b)=d(a) b+a d(b)+\delta(a) \varepsilon(b)+\varepsilon(a) \delta(b)
$$

for every pair $a, b \in \mathcal{A}$. Similar to Jordan derivation, an additive mapping d is called Jordan (δ, ε)-double derivation if

$$
d\left(a^{2}\right)=d(a) a+a d(a)+\delta(a) \varepsilon(a)+\varepsilon(a) \delta(a)
$$

holds for all $a \in \mathcal{A}$. By a δ-double derivation we mean a (δ, δ)-double derivation.
Also, an additive mapping $D: \mathcal{A} \rightarrow \mathcal{A}$ is called a (δ, ε)-double left derivation, if $D(a b)=a D(b)+b D(a)+\delta(a) \varepsilon(b)+\delta(b) \varepsilon(a)$ for each pair $a, b \in \mathcal{A}$ and is called a Jordan (δ, ε)-double left derivation in case $D\left(a^{2}\right)=2 a D(a)+2 \delta(a) \varepsilon(a)$ is fulfilled for all $a \in \mathcal{A}$.

Lemma 2.1 If δ, ε are derivations on \mathcal{A}, then each (δ, ε)-double derivation $d: \mathcal{A} \rightarrow \mathcal{A}$ is of the form $d=\frac{\delta \varepsilon+\varepsilon \delta}{2}+\gamma$, where $\gamma: \mathcal{A} \rightarrow \mathcal{A}$ is a derivation.

Proof. Suppose that $\gamma=d-\frac{\delta \varepsilon+\varepsilon \delta}{2}$. It is routine to show that γ is a derivation.
Lemma 2.2 Let \mathcal{A} be a semiprime algebra and let δ, ε be Jordan derivations on \mathcal{A}. If $d: \mathcal{A} \rightarrow \mathcal{A}$ is a Jordan (δ, ε)-double derivation, then d is a (δ, ε)-double derivation.
Proof. By using Lemma 2.1 and Theorem 1 of [1], we deduce that $d=\frac{\delta \varepsilon+\varepsilon \delta}{2}+\gamma$, where $\gamma: \mathcal{A} \rightarrow \mathcal{A}$ is a derivation. Therefore,

$$
\begin{aligned}
d(x y) & =\left(\frac{\delta \varepsilon+\varepsilon \delta}{2}\right)(x y)+\gamma(x y) \\
& =\left(\frac{\delta \varepsilon+\varepsilon \delta}{2}+\gamma\right)(x) y+x\left(\frac{\delta \varepsilon+\varepsilon \delta}{2}+\gamma\right)(y)+\delta(x) \varepsilon(y)+\varepsilon(x) \delta(y) \\
& =d(x) y+x d(y)+\delta(x) \varepsilon(y)+\varepsilon(x) \delta(y), \quad x, y \in \mathcal{R}
\end{aligned}
$$

Hence d is a (δ, ε)-double derivation.

Theorem 2.3 Let $n>1$ be an integer and let \mathcal{R} be a $n!$-torsion-free ring with the identity element. Suppose that d, δ, ε are additive mappings satisfying

$$
\begin{equation*}
d\left(x^{n}\right)=\sum_{j=1}^{n} x^{n-j} d(x) x^{j-1}+\sum_{j=1}^{n-1} \sum_{i=1}^{j} x^{n-1-j}\left(\delta(x) x^{j-i} \varepsilon(x)+\varepsilon(x) x^{j-i} \delta(x)\right) x^{i-1} \tag{2}
\end{equation*}
$$

for all $x \in \mathcal{R}$. If $\delta(e)=\varepsilon(e)=0$, then d is a Jordan (δ, ε)-double derivation. In particular, if \mathcal{R} is a semiprime algebra and further, $\delta(x) \varepsilon(x)+\varepsilon(x) \delta(x)=\frac{1}{2}\left[(\delta \varepsilon+\varepsilon \delta)\left(x^{2}\right)-(\delta \varepsilon(x)+\right.$ $\varepsilon \delta(x)) x-x(\delta \varepsilon(x)+\varepsilon \delta(x))]$ holds for all $x \in \mathcal{R}$, then $d-\frac{\delta \varepsilon+\varepsilon \delta}{2}$ is an ordinary derivation on \mathcal{R}.

Proof. Let c be an element of $Z(\mathcal{R})$ so that $d(c), \delta(c)$, and $\varepsilon(c)$ are zero. By putting $x+c$ instead of x in (1), we obtain

$$
\begin{aligned}
& \sum_{i=0}^{n}\binom{n}{i} d\left(x^{n-i} c^{i}\right) \\
& =\sum_{i=0}^{n-1}\binom{n-1}{i} x^{n-1-i} c^{i} d(x)+\sum_{i=0}^{n-2}\binom{n-2}{i} x^{n-2-i} c^{i} d(x)(x+c)+\cdots \\
& \left.+d(x) \sum_{i=0}^{n-1}\binom{n-1}{i} x^{n-1-i} c^{i}+\sum_{i=0}^{n-2}\binom{n-2}{i} x^{n-2-i} c^{i}\left[\begin{array}{l}
\\
i
\end{array}\right) \varepsilon(x)+\varepsilon(x) \delta(x)\right] \\
& +\sum_{i=0}^{n-3}\binom{n-3}{i} x^{n-3-i} c^{i}[\delta(x)((x+c) \varepsilon(x)+\varepsilon(x)(x+c)) \\
& +\varepsilon(x)((x+c) \delta(x)+\delta(x)(x+c))]+\cdots+\left[\begin{array}{c}
\delta(x)\left(\sum_{i=0}^{n-2}\binom{n-2}{i} x^{n-2-i} c^{i} \varepsilon(x)\right. \\
\left.+\sum_{i=0}^{n-3}\binom{n-3}{i} x^{n-3-i} c^{i} \varepsilon(x)(x+c)+\cdots+\varepsilon(x) \sum_{i=0}^{n-2}\binom{n-2}{i} x^{n-2-i} c^{i}\right) \\
+\varepsilon(x)\left(\sum_{i=0}^{n-2}\binom{n-2}{i} x^{n-2-i} c^{i} \delta(x)+\sum_{i=0}^{n-3}\binom{n-3}{i} x^{n-3-i} c^{i} \delta(x)(x+c)+\cdots\right. \\
\left.\left.+(x+c) \delta(x) \sum_{i=0}^{n-3}\binom{n-3}{i} x^{n-3-i} c^{i}+\delta(x) \sum_{i=0}^{n-2}\binom{n-2}{i} x^{n-2-i} c^{i}\right)\right]
\end{array}\right.
\end{aligned}
$$

for all $x \in \mathcal{R}$. Using (1) and collecting together terms of the above-mentioned relations involving the same number of factors of c, we achieve

$$
\begin{equation*}
\sum_{i=1}^{n-1} f_{i}(x, c)=0 \quad x \in \mathcal{R} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
f_{i}(x, c) & =\binom{n}{i} d\left(x^{n-i} c^{i}\right)-\binom{n-1}{i} x^{n-1-i} c^{i} d(x)-\left(\binom{n-2}{i}\binom{1}{0} x^{n-2-i} c^{i} d(x) x\right. \\
& \left.+\binom{n-2}{i-1}\binom{1}{1} x^{n-1-i} c^{i} d(x)\right)-\cdots-\binom{n-1}{i} d(x) x^{n-1-i} c^{i} \\
& -\binom{n-2}{i} x^{n-2-i} c^{i}(\delta(x) \varepsilon(x)+\varepsilon(x) \delta(x)) \\
& -\left[\binom{n-3}{i} x^{n-3-i} c^{i}((\delta(x) x \varepsilon(x)+\delta(x) \varepsilon(x) x)+(\varepsilon(x) x \delta(x)+\varepsilon(x) \delta(x) x))\right. \\
& \left.+\binom{n-3}{i-1} x^{n-2-i} c^{i}(2 \delta(x) \varepsilon(x)+2 \varepsilon(x) \delta(x))\right]-\cdots \\
& -\left[\begin{array}{c}
\delta(x)\left(\binom{n-2}{i} x^{n-2-i} c^{i} \varepsilon(x)+\binom{n-3}{i}\binom{1}{0} x^{n-3-i} c^{i} \varepsilon(x) x\right. \\
\\
\end{array}+\binom{n-3}{i-1}\binom{1}{1} x^{n-2-i} c^{i} \varepsilon(x)+\cdots+\binom{n-2}{i} \varepsilon(x) x^{n-2-i} c^{i}\right) \\
& +\varepsilon(x)\left(\binom{n-2}{i} x^{n-2-i} c^{i} \delta(x)+\binom{n-3}{i}\binom{1}{0} x^{n-3-i} c^{i} \delta(x) x\right. \\
& \left.\left.+\binom{n-3}{i-1}\binom{1}{1} x^{n-2-i} c^{i} \delta(x)+\cdots+\binom{n-2}{i} \delta(x) x^{n-2-i} c^{i}\right)\right]
\end{aligned}
$$

Having replaced $c, 2 c, 3 c, \ldots,(n-1) c$ instead of c in (2), we obtain a system of $n-1$ homogeneous equations as follows:

$$
\left\{\begin{array}{c}
\sum_{i=1}^{n-1} f_{i}(x, c)=0 \\
\sum_{i=1}^{n-1} f_{i}(x, 2 c)=0 \\
\sum_{i=1}^{n-1} f_{i}(x, 3 c)=0 \\
\cdot \\
\cdot \\
\sum_{i=1}^{n-1} f_{i}(x,(n-1) c)=0
\end{array}\right.
$$

It is observed that the coefficient matrix of the above system is equal to the following matrix:

$$
A=\left[\begin{array}{ccccc}
\binom{n}{1} & \binom{n}{2} & \binom{n}{3} & \cdots & \binom{n}{n-1} \\
2\binom{n}{1} & 2^{2}\binom{n}{2} & 2^{3}\binom{n}{3} & \cdots & 2^{n-1}\binom{n}{n-1} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
(n-1)\binom{n}{1} & (n-1)^{2}\binom{n}{2} & (n-1)^{3}\binom{n}{3} & \cdots & (n-1)^{n-1}\binom{n}{n-1}
\end{array}\right]
$$

Since the determinant of A is different from zero, it follows that the system has only a trivial solution. In particular, $f_{n-2}(x, e)=0$, that is

$$
\begin{aligned}
0 & =\binom{n}{n-2} d\left(x^{2}\right)-\binom{n-1}{n-2} x d(x)-\binom{n-2}{n-2} d(x) x-\binom{n-2}{n-3} x d(x)-\cdots-\binom{n-1}{n-2} d(x) x \\
& -(\delta(x) \varepsilon(x)+\varepsilon(x) \delta(x))-2(\delta(x) \varepsilon(x)+\varepsilon(x) \delta(x))-\cdots-(n-1)(\delta(x) \varepsilon(x)+\varepsilon(x) \delta(x)),
\end{aligned}
$$

for all $x \in \mathcal{R}$. The above equation reduces to

$$
\begin{aligned}
\frac{n(n-1)}{2} d\left(x^{2}\right) & =(n-1) x d(x)+d(x) x+(n-2) x d(x)+\cdots+(n-1) d(x) x+(\delta(x) \varepsilon(x) \\
& +\varepsilon(x) \delta(x))+2(\delta(x) \varepsilon(x)+\varepsilon(x) \delta(x))+\cdots+(n-1)(\delta(x) \varepsilon(x)+\varepsilon(x) \delta(x)),
\end{aligned}
$$

for all $x \in \mathcal{R}$. Thus, we have

$$
\begin{equation*}
\frac{n(n-1)}{2} d\left(x^{2}\right)=\left(\sum_{i=1}^{n-1} i\right)(d(x) x+x d(x)+\delta(x) \varepsilon(x)+\varepsilon(x) \delta(x)), \tag{4}
\end{equation*}
$$

for all $x \in \mathcal{R}$. Since \mathcal{R} is $n!$-torsion free, it follows from (3) that

$$
\begin{equation*}
d\left(x^{2}\right)=d(x) x+x d(x)+\delta(x) \varepsilon(x)+\varepsilon(x) \delta(x), \tag{5}
\end{equation*}
$$

for all $x \in \mathcal{R}$. In other words, d is a Jordan (δ, ε)-double derivation. Now suppose that \mathcal{R} is a semiprime algebra and further $\delta(x) \varepsilon(x)+\varepsilon(x) \delta(x)=\frac{1}{2}\left[(\delta \varepsilon+\varepsilon \delta)\left(x^{2}\right)-(\delta \varepsilon(x)+\right.$ $\varepsilon \delta(x)) x-x(\delta \varepsilon(x)+\varepsilon \delta(x))]$ for all $x \in \mathcal{R}$. This equation with (4) imply that $d-\frac{\delta \varepsilon+\varepsilon \delta}{2}$ is a jordan derivation. It follows from Theorem 1 of [1] that $d-\frac{\delta \varepsilon+\varepsilon \delta}{2}$ is an ordinary derivation on \mathcal{R}.

Using the above theorem, we obtain the following result.
Corollary 2.4 Let $n>1$ be an integer, \mathcal{A} be a unital semiprime algebra. Suppose that $d, \delta, \varepsilon: \mathcal{A} \rightarrow \mathcal{A}$ are additive mappings satisfying

$$
d\left(a^{n}\right)=\sum_{j=1}^{n} a^{n-j} d(a) a^{j-1}+\sum_{j=1}^{n-1} \sum_{i=1}^{j} a^{n-1-j}\left(\delta(a) a^{j-i} \varepsilon(a)+\varepsilon(a) a^{j-i} \delta(a)\right) a^{i-1}
$$

for all $a \in \mathcal{A}$. If δ, ε are two derivations, then d is a (δ, ε)-double derivation.
Proof. According to the previous theorem and Lemma 2.2, d is a (δ, ε)-double derivation.

Theorem 2.5 Let \mathcal{A} be a unital Banach algebra and $d, \delta, \varepsilon: \mathcal{A} \rightarrow \mathcal{A}$ be additive mappings satisfying

$$
\begin{equation*}
d(a)=-a d\left(a^{-1}\right) a-a \delta\left(a^{-1}\right) \varepsilon(a)-a \varepsilon\left(a^{-1}\right) \delta(a) \tag{6}
\end{equation*}
$$

for all invertible element $a \in \mathcal{A}$. If $\delta(a)=-a \delta\left(a^{-1}\right) a$ and $\varepsilon(a)=-a \varepsilon\left(a^{-1}\right) a$ for all invertible element a, then d is a Jordan (δ, ε)-double derivation.

In particular, if \mathcal{A} is semiprime and $\delta(b) \varepsilon(b)+\varepsilon(b) \delta(b)=\frac{1}{2}\left[(\delta \varepsilon+\varepsilon \delta)\left(b^{2}\right)-(\delta \varepsilon(b)+\right.$ $\varepsilon \delta(b)) b-b(\delta \varepsilon(b)+\varepsilon \delta(b))]$ holds for all $b \in \mathcal{A}$, then $d-\frac{\delta \varepsilon+\varepsilon \delta}{2}$ is an ordinary derivation.

Proof. Let b be an arbitrary element from \mathcal{A} and let n be a positive number so that $\left\|\frac{b}{n-1}\right\|<1$. It is evident that $\left\|\frac{b}{n}\right\|<1$, too. If we consider $a=n e+b$, then we have $\frac{a}{n}=$ $e-\frac{-b}{n}$. Since $\left\|\frac{-b}{n}\right\|<1$, it follows from Theorem 1.4.2 of [6] that $e-\frac{-b}{n}$ is invertible and consequently, a is invertible. Similarly, we can show that $e-a$ is also an invertible element of \mathcal{A}. In the following, we use the well-known Hua identity $a^{2}=a-\left(a^{-1}+(e-a)^{-1}\right)^{-1}$. Applying the relation (5) it is obtained that

$$
\begin{aligned}
& d\left(a^{2}\right)=d(a)-d\left(\left(a^{-1}+(e-a)^{-1}\right)^{-1}\right) \\
& =d(a)+\left(a^{-1}+(e-a)^{-1}\right)^{-1} d\left(a^{-1}+(e-a)^{-1}\right)\left(a^{-1}+(e-a)^{-1}\right)^{-1} \\
& +\left(a^{-1}+(e-a)^{-1}\right)^{-1} \delta\left(a^{-1}+(e-a)^{-1}\right) \varepsilon\left(\left(a^{-1}+(e-a)^{-1}\right)^{-1}\right) \\
& +\left(a^{-1}+(e-a)^{-1}\right)^{-1} \varepsilon\left(a^{-1}+(e-a)^{-1}\right) \delta\left(\left(a^{-1}+(e-a)^{-1}\right)^{-1}\right) \\
& =d(a)+a(e-a) d\left(a^{-1}\right) a(e-a)+a(e-a) d\left((e-a)^{-1}\right) a(e-a) \\
& +a(e-a) \delta\left(a^{-1}+(e-a)^{-1}\right) \varepsilon(a(e-a))+a(e-a) \varepsilon\left(a^{-1}+(e-a)^{-1}\right) \delta(a(e-a)) \\
& =d(a)-a(e-a) a^{-1} d(a) a^{-1} a(e-a)-a(e-a) a^{-1} \delta(a) \varepsilon\left(a^{-1}\right) a(e-a) \\
& -a(e-a) a^{-1} \varepsilon(a) \delta\left(a^{-1}\right) a(e-a)+a(e-a)(e-a)^{-1} d(a)(e-a)^{-1} a(e-a) \\
& +a(e-a)(e-a)^{-1} \delta(a) \varepsilon\left((e-a)^{-1}\right) a(e-a) \\
& +a(e-a)(e-a)^{-1} \varepsilon(a) \delta\left((e-a)^{-1}\right) a(e-a) \\
& +a(e-a) a^{-1} \delta(a) a^{-1}\left(a-a^{2}\right) \varepsilon\left(a^{-1}\right)\left(a-a^{2}\right) \\
& +a(e-a) a^{-1} \delta(a) a^{-1}\left(a-a^{2}\right) \varepsilon\left((e-a)^{-1}\right)\left(a-a^{2}\right) \\
& -a(e-a)(e-a)^{-1} \delta(a)(e-a)^{-1}\left(a-a^{2}\right) \varepsilon\left(a^{-1}\right)\left(a-a^{2}\right) \\
& -a(e-a)(e-a)^{-1} \delta(a)(e-a)^{-1}\left(a-a^{2}\right) \varepsilon\left((e-a)^{-1}\right)\left(a-a^{2}\right) \\
& +a(e-a) a^{-1} \varepsilon(a) a^{-1}\left(a-a^{2}\right) \delta\left(a^{-1}\right)\left(a-a^{2}\right) \\
& +a(e-a) a^{-1} \varepsilon(a) a^{-1}\left(a-a^{2}\right) \delta\left((e-a)^{-1}\right)\left(a-a^{2}\right) \\
& -a(e-a)(e-a)^{-1} \varepsilon(a)(e-a)^{-1}\left(a-a^{2}\right) \delta\left(a^{-1}\right)\left(a-a^{2}\right) \\
& -a(e-a)(e-a)^{-1} \varepsilon(a)(e-a)^{-1}\left(a-a^{2}\right) \delta\left((e-a)^{-1}\right)\left(a-a^{2}\right) \\
& =a d(a)+d(a) a-\delta(a) \varepsilon\left(a^{-1}\right) a+\delta(a) \varepsilon\left(a^{-1}\right) a^{2}+a \delta(a) \varepsilon\left(a^{-1}\right) a-a \delta(a) \varepsilon\left(a^{-1}\right) a^{2} \\
& -\varepsilon(a) \delta\left(a^{-1}\right) a+\varepsilon(a) \delta\left(a^{-1}\right) a^{2}+a \varepsilon(a) \delta\left(a^{-1}\right) a-a \varepsilon(a) \delta\left(a^{-1}\right) a^{2} \\
& +a \delta(a)(e-a)^{-1} \varepsilon(e-a)(e-a)^{-1} a(e-a)+a \varepsilon(a)(e-a)^{-1} \delta(e-a)(e-a)^{-1} a(e-a) \\
& -\delta(a) a^{-1} \varepsilon(a)+\delta(a) a^{-1} \varepsilon(a) a+\delta(a) \varepsilon(a)+a \delta(a) a^{-1} \varepsilon(a)-a \delta(a) a^{-1} \varepsilon(a) a-a \delta(a) \varepsilon(a) \\
& +a \delta(a)(e-a)^{-1} \varepsilon(a)-a \delta(a)(e-a)^{-1} \varepsilon(a) a-\varepsilon(a) a^{-1} \delta(a) \\
& -a \delta(a)(e-a)^{-1} a \varepsilon(a)+\varepsilon(a) a^{-1} \delta(a) a+\varepsilon(a) \delta(a)+a \varepsilon(a) a^{-1} \delta(a)-a \varepsilon(a) a^{-1} \delta(a) a \\
& -a \varepsilon(a) \delta(a)+a \varepsilon(a)(e-a)^{-1} \delta(a)-a \varepsilon(a)(e-a)^{-1} \delta(a) a-a \varepsilon(a)(e-a)^{-1} a \delta(a) .
\end{aligned}
$$

Putting $\delta(x)=-x \delta\left(x^{-1}\right) x$ and $\varepsilon(x)=-x \varepsilon\left(x^{-1}\right) x$ Thus

$$
\begin{aligned}
d\left(a^{2}\right) & =a d(a)+d(a) a+\delta(a) \varepsilon(a)-a \delta(a) \varepsilon(a)+a \delta(a)(e-a)^{-1} \varepsilon(a)+\varepsilon(a) \delta(a) \\
& -a \delta(a)(e-a)^{-1} a \varepsilon(a)-a \varepsilon(a) \delta(a)+a \varepsilon(a)(e-a)^{-1} \delta(a)-a \varepsilon(a)(e-a)^{-1} a \delta(a) \\
& =a d(a)+d(a) a+\delta(a) \varepsilon(a)+\varepsilon(a) \delta(a)
\end{aligned}
$$

Note that $\delta(e)=-e \delta\left(e^{-1}\right) e$ and $\varepsilon(e)=-e \varepsilon\left(e^{-1}\right) e$. Hence $\delta(e)=\varepsilon(e)=0$ and it implies that $d(e)=0$. Having put $a=n e+b$ in the previous equation, we obtain

$$
d\left(n^{2}+2 n b+b^{2}\right)=d(b)(n e+b)+(n e+b) d(b)+\delta(b) \varepsilon(b)+\varepsilon(b) \delta(b)
$$

We, therefore, have $d\left(b^{2}\right)=b d(b)+d(b) b+\delta(b) \varepsilon(b)+\varepsilon(b) \delta(b)$ for all $b \in \mathcal{A}$, i.e. d is a $\operatorname{Jordan}(\delta, \varepsilon)$-derivation. Now, assume that $\delta(b) \varepsilon(b)+\varepsilon(b) \delta(b)=\frac{1}{2}\left[(\delta \varepsilon+\varepsilon \delta)\left(b^{2}\right)-(\delta \varepsilon(b)+\right.$ $\varepsilon \delta(b)) b-b(\delta \varepsilon(b)+\varepsilon \delta(b))]$ for all $b \in \mathcal{A}$. Hence,

$$
d\left(b^{2}\right)=b d(b)+d(b) b+\frac{1}{2}\left[(\delta \varepsilon+\varepsilon \delta)\left(b^{2}\right)-(\delta \varepsilon(b)+\varepsilon \delta(b)) b-b(\delta \varepsilon(b)+\varepsilon \delta(b))\right]
$$

equivalently we have,

$$
\left(d-\frac{1}{2}(\delta \varepsilon+\varepsilon \delta)\right)\left(b^{2}\right)=b\left(d-\frac{1}{2}(\delta \varepsilon+\varepsilon \delta)\right)(b)+\left(d-\frac{1}{2}(\delta \varepsilon+\varepsilon \delta)\right)(b) b
$$

It means that $d-\frac{\delta \varepsilon+\varepsilon \delta}{2}$ is a Jordan derivation. At this point, Theorem 1 of [1] completes the argument.

Acknowledgements

The authors would like to thank from the anonymous reviewers for carefully reading of the manuscript and giving useful comments, which will help to improve the paper.

References

1] M. Brear, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 140 (4) (1988), 1003-1006.
[2] M. Brear, J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321-322.
[3] M. Brear, Characterizations of derivations on some normed algebras with involution, Journal of Algebra. 152 (1992), 454-462.
[4] D. Bridges, J. Bergen, On the derivation of x^{n} in a ring, Proc. Amer. Math. Soc. 90 (1984), 25-29.
[5] J. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 1104-1110.
[6] H. G. Dales, P. Aiena, J. Eschmeier, K. Laursen, G. A. Willis, Introduction to Banach Algebras, and Harmonic Analysis, Cambridge University Press, 2003.
[7] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
[8] A. Hosseini, A characterization of δ-double derivations on rings and algebras, Journal of Linear and Topological Algebra. 06 (01) (2017), 55-65.
[9] M. Mirzavaziri, E. Omidvar Tehrani, δ-Double derivations on c^{*}-algebras, Bulletin of the Iranian Mathematical Society. 35 (1) (2009), 147-154.
[10] J. Vukman, I. Kosi-Ulbl, On derivations in rings with involution, Int. Math. J. 6 (2005), 81-91.
[11] J. Vukman, I. Kosi-Ulbl, On some equations related to derivations in rings, Int. J. Math. Math. Sci. 17 (2005), 2703-2710.
[12] J. Vukman, I. Kosi-Ulbl, A note on derivation in semiprime rings, Int. J. Math. Math. Sci. 17 (2005), 33473350.
[13] J. Vukman, A note on generalized derivations of semiprime rings, Taiwanese Journal of Mathematics. 11 (2) (2007), 367-370.

[^0]: *Corresponding author.
 E-mail address: jokar.zahra@mshdiau.ac.ir, jokar.zahra@yahoo.com (Z. Jokar); dassamankin@yahoo.co.uk (A. Niknam).

