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Abstract. With an aim to investigate the effect of externally imposed body acceleration on
two-dimensional, pulsatile blood flow through a stenosed artery is under consideration in this
article. The blood flow has been assumed to be non-linear, incompressible and fully developed.
The artery is assumed to be an elastic cylindrical tube and the geometry of the stenosis
considered as time dependent, and a comparison has been made with the rigid ones. The
shape of the stenosis in the arterial lumen is chosen to be axially non-symmetric but radially
symmetric in order to improve resemblance to the in-vivo situations. The resulting system
of non-linear partial differential equations is numerically solved using the Crank-Nicolson
scheme by exploiting the suitably prescribed conditions. The blood flow characteristics such
as the velocity profile, the volumetric flow rate and the resistance to flow are obtained and
effects of the severity of the stenosis, the body acceleration on these flow characteristics are
discussed. The present results are compared with literature and found to be in agreement.
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1. Introduction

Global cardiovascular deaths are projected to increase from 16.7 million in 2002 to 23.3
million in 2030 [15]. Among the various cardiovascular diseases, atherosclerosis is one of
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the most common of these diseases, which is a constriction due to the multiple plaques
formation and the accumulation of fatty material and cholesterol inside the lumen of
medium and large sized blood vessels and causes narrowing of the blood vessels. The
effect of such constriction significantly reduces blood transport in the region beyond the
narrowing. Depending on the location of the stenosed vessel, atherosclerosis can increase
risk of myocardial infarction and stroke. Many researchers have noted that the initiation
and development of atherosclerosis are strongly related to the blood flow characteristics,
and the study of the hemodynamic factors of blood flow through an artery is essential
in the understanding and treatment of cardiovascular disease [8, 9, 11, 12, 27, 30].

Deshpande et al. [4] investigated the steady, laminar, and Newtonian blood flow
through an axisymmetric stenosed artery. They assumed the artery as a rigid cylindrical
tube with a uniform cross section. Chakravarty and Mandal take blood flow as non-linear
and incompressible through stenosed artery and investigated the blood flow character-
istics. They noted that assumption of rigid of vessels is not acceptable, so the vessels is
assumed to be an elastic and the geometry of the stenosis considered as time-dependent
[3]. Marques et al. have investigated the pulsatile blood flow in a human artery that the
vessel is assumed as being a straight wall tube, and the blood flow is considered to be
incompressible and axisymmetric. Also, the effect of pulsatile flow was taken into account
by imposing the velocity profile of the cardiac cycle [14]. Belardinelli and Cavalcanti [20]
in separate studies presented a mathematical model for the local study of nonlinear, two-
dimensional, and unsteady blood motion in tapered arteries. In these two studies, blood
flow is assumed as incompressible Newtonian fluid and the geometry of the stenosis is
timevariant. In their investigations, nonlinear terms in the Navier Stokes equations were
considered and the radial and axial velocity profiles were calculated in the form of power
series with less complexity. They studied the effect of several factors such as nonlinearity,
severity of the stenosis and wall motion on blood flow characteristics. Ponalagusmy and
Selvi have developed a mathematical model for blood flow through arterial stenosis with
the two-fluid model, consisting of a core region of Casson fluid and a peripheral layer of
Newtonian fluid. They concluded that the downstream of the stenotic regions is more
important for the diagnosis of vessel diseases [19].

The flow of blood under the influence of body acceleration is significantly affected, while
driving a vehicle or flying in an aircraft, because the blood flow in vibration environment,
and due to which there may occur serious health problems such as loss of vision, headache,
increase of pulse rate and hemorrhage in face, neck and brain. Sankar and Lee have
studied the pulsatile flow of blood through an arterial stenosis by considering blood as
a core region of Casson fluid and a peripheral layer of Newtonian fluid under periodic
body acceleration [24]. Also Shit and Roy examined the pulsatile flow of blood through
a stenosed artery under the influence of periodic body acceleration and then analyzed
the heat transfer phenomena with constant blood viscosity [25].

Haghighi and Asl, solved the two-dimensional and pulsatile model of blood flow
through a tapered artery with overlapping stenosis by using the explicit scheme and
indicated that affects the blood flow characteristics [7]. With the above mentioned dis-
cussion, we have investigated the blood flow under the body acceleration. The stenosed
artery change in to a rectangular and smooth artery, Actually, it is necessary to trans-
form a real physical domain in to a rectangular computational domain with using the
coordinate transformation. Since, the basis of the finite difference is Taylor expansion
and it is just on the straight line. So, we have subdivided the rectangular domainin to
a network by drawing straight lines parallel to the coordinate axes. The numerical solu-
tion is obtained by using finite difference Crank-Nicolson scheme. The variation of flow
variables such as velocity, flow rate and resistive to flow with different parameters are
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shown diagrammatically and discussed.

2. The geometry of the stenosis

Consider a two-dimensional, laminar, unsteady, fully developed and axially symmetric
flow of blood through a stenosed artery. Cylindrical polar coordinate system (r, θ, z)
is used to analyze the flow, where r and z are taken along the radial and axial
directions respectively, and θ is taken along the circumferential directions. The geom-
etry of the time variant stenosis is constructed mathematically as: (see Fig 1) [22, 28, 29].

R(z, t) =

{
1−A[ln−1

0 (z − d)− (z − d)n]a1(t), d ⩽ z ⩽ d+ l0

a1(t), otherwise

where A = δ
R0Ln

0

nn(n−1)

(n−1) , R(z, t) is the radius of the stenosed artery, R0 is the constant

radius of the normal artery outside the stenotic region, L is taken to be the finite length
of the arterial segment, l0 is the length of the stenosis, d is the upstream length of the
artery and τm is the critical height of the stenosis. n ⩾ 2 is the parameter representing
the asymmetry of the stenosis, where n = 2 represents that the stenosis is symmetric.
The time variant parameter a1(t) is given by a1(t) = 1+ krcos(wt+φ) [9, 21], where kr
is representing the amplitude parameter and φ is the phase angle.

3. Mathematical formulation and analysis

Let (r∗, θ∗, z∗) be the cylindrical polar coordinates system in which z is taken along the
axial direction. The velocity components u∗ and v∗ are taken along the axial and radial
directions. The governing equations for the blood flow may be written in the form:

∂u∗

∂z∗
+

∂v∗

∂r∗
+

v∗

r∗
= 0, (1)

ρ(
∂u∗

∂t∗
+ v∗

∂u∗

∂r∗
+ u∗

∂u∗

∂z∗
) =

−∂p∗

∂z∗
+ µ(

∂2u∗

∂r∗2
+

1

r∗
∂u∗

∂r∗
+

∂2u∗

∂z∗2
) + ρG∗(t∗), (2)

ρ(
∂v∗

∂t∗
+ v∗

∂v∗

∂r∗
+ u∗

∂v∗

∂z∗
) =

−∂p∗

∂r∗
+ µ(

∂2v∗

∂r∗2
+

1

r∗
∂v∗

∂r∗
+

∂2v∗

∂z∗2
− v∗

r∗2
). (3)
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where p is the pressure, ρ is the density and µ is the viscosity of the fluid.
For t∗ > 0, the flow is assumed to have a periodic body vibration G∗(t∗) and has the

expression of the form:

G∗(t∗) = a∗cos(wbt
∗ + φg). (4)

where a∗ is the amplitude of body acceleration, wb is the frequency of body acceleration,
and φg is the phase difference.

The non-dimensional variables are obtained as follows:

u =
u∗

U
, v =

v∗

U
, r =

r∗

R0
, l0 =

l∗0
R0

, z =
z∗

R0
,

t =
t∗U

R0
, d =

d∗

R0
, p =

p∗

ρU2
, Re =

ρUR0

µ
.

Using non-dimensional variables in the Eqs.(1)-(3) we get: [10, 16, 26]

∂u

∂z
+

∂v

∂r
+

v

r
= 0, (5)

∂u

∂t
+ v

∂u

∂r
+ u

∂u

∂z
=

−∂p

∂z
+

1

α2
(
∂2u

∂r2
+

1

r

∂u

∂r
+

∂2u

∂z2
) +

1

α2
G(t), (6)

∂v

∂t
+ v

∂v

∂r
+ u

∂v

∂z
=

−∂p

∂r
+

1

α2
(
∂2v

∂r2
+

1

r

∂v

∂r
+

∂2v

∂z2
− v

r2
). (7)

The non-dimensional parameters appearing in Eqs.(6)-(7) is defined as Womersley
parameter α2 = UR0

ν [26].

Using the non-dimensional quantities a0 = R2
0a

∗
0

νU and b = wb

w , the body acceleration
expression defined in the following form [26]:

G(t) = a0cos(bt+ φg). (8)

The dimensionless pressure gradient ∂p
∂z appearing in Eqs.(5)-(7) is given by [5, 6]:
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−∂p

∂z
= A0 +A1cosωt, t > 0 (9)

where A0 is the constant amplitude of the pressure gradient, A1 is the amplitude of the
pulsatile component giving rise to the systolic and diastolic pressures and w = 2πfp, fp
is the pulse frequency.

The boundary conditions are:

r = 0 : v(r, z, t) = 0,
∂u(r, z, t)

∂r
= 0, (10)

r = R(z) : v(r, z, t) =
∂R

∂t
, u(r, z, t) = 0. (11)

The initial conditions are as follows [10, 17]:

u(r, z, 0) = 2u[1− (
r

R
)2], v(r, z, 0) = 0. (12)

where u is the mean axial velocity at any given cross section.

4. Transformation of the governing equations

In order to immobilize the vessel wall in the transformed coordinate ξ, we introduce the

radial coordinate transformation given by ξ =
r

R
[2, 10, 13, 17, 18, 23]. By using this

transformation, the constricted tube is transformed into a straight tube. Using this trans-
formation, Eqs.(5)-(7) and prescribed boundary conditions (10)-(12) taken the following
form:

∂u

∂t
= −∂p

∂z
+

1

R

∂u

∂ξ

[
ξ

(
u
∂R

∂z
+

∂R

∂t

)
− v

]
− u

∂u

∂z

+
1

α2

[
1

R2

{
1 + (ξ

∂R

∂z
)2
}
∂2u

∂ξ2

+
1

ξR2

{
1 + 2(ξ

∂R

∂z
)2 − ξ2R

∂2R

∂z2

}
∂u

∂ξ
+

∂2u

∂z2

]
+

1

α2
G(t), (13)

1

R

∂v

∂ξ
+

v

ξR
+

∂u

∂z
− ξ

R

∂R

∂z

∂u

∂ξ
= 0, (14)
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ξ = 0 : v(ξ, z, t) = 0,
∂u(ξ, z, t)

∂ξ
= 0, (15)

ξ = 1 : v(ξ, z, t) =
∂R

∂t
, u(ξ, z, t) = 0, (16)

u(ξ, z, 0) = 2u(1− ξ2), z(ξ, z, 0) = 0. (17)

In the following the aim is to derive the radial velocity component by using the con-
tinuity equation. Multiplying Eq.(14) by ξR and integrating with respect to ξ between
limits 0 to ξ, one obtains:

∫ ξ

0
ξ
∂v

∂ξ
dξ +

∫ ξ

0
vdξ +

∫ ξ

0
ξR

∂u

∂z
dξ −

∫ ξ

0
ξ2

∂R

∂z

∂u

∂ξ
dξ = 0, (18)

ξv(ξ, z, t) +R

∫ ξ

0
ξ
∂u

∂z
dξ − ∂R

∂z
ξ2u+

∂R

∂z

∫ ξ

0
2ξudξ = 0, (19)

v(ξ, z, t) = −R

ξ

∫ ξ

0
ξ
∂u

∂z
dξ +

∂R

∂z
(ξu− 2

ξ

∫ ξ

0
ξudξ). (20)

Using the boundary conditions (16) at ξ = 1, Eq. (20) becomes:

1

R

∂R

∂t
= −

∫ 1

0
ξ
∂u

∂z
dξ − 2

R

∂R

∂z

∫ 1

0
ξudξ. (21)

and has the form:

∫ 1

0
ξ
∂u

∂z
dξ = −

∫ 1

0

2

R

∂R

∂z
ξudξ +

∫ 1

0

1

R

(
∂R

∂t
ξf(ξ)

)
dξ. (22)

Where f(ξ) represents an arbitrary function satisfying
∫ 1
0 ξf(ξ)dξ = 1. Let f(ξ) is of

the form: f(ξ) = 4
(
1 − ξ2

)
. Taking the approximation of treating the equality between

the integrals to integrands, Eq.(22) can be written as follows:

∂u

∂z
= − 2

R

∂R

∂z
u− 4

R

(
1− ξ2

)∂R
∂t

. (23)
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By substituting (22) into (20), the radial velocity component can be obtained as follows:

v(ξ, z, t) = ξ

[
∂R

∂z
u+

∂R

∂t

(
2− ξ2

)]
. (24)

5. Computational scheme

The Crank-Nicolson scheme are carried out for solving Eq.(13). The central difference
formula is used to express the spatial derivatives and the forward difference formula is
applied to the time derivative and these are given by:

∂u

∂ξ
=

1

2
[
(u)ki,j+1 − (u)ki,j−1

2∆ξ
+

(u)k+1
i,j+1 − (u)k+1

i,j−1

2∆ξ
], (25)

∂u

∂z
=

(u)ki+1,j − (u)ki−1,j

2∆z
, (26)

∂2u

∂ξ2
=

1

2
[
(u)ki,j+1 − 2(u)ki,j + (u)ki,j−1

∆ξ2
+

(u)k+1
i,j+1 − 2(u)k+1

i,j + (u)k+1
i,j−1

∆ξ2
], (27)

∂2u

∂z2
=

(u)ki+1,j − 2(u)ki,j + (u)ki−1,j

∆z2
, (28)

∂u

∂t
=

(u)k+1
i,j − (u)ki,j

∆t
. (29)

We define:


ξj = (j − 1)∆ξ, (j = 1, 2, ..., N + 1)

zi = (i− 1)∆z, (i = 1, 2, ...,M + 1)

tk = (k − 1)∆t, (k = 1, 2, ...)

where ∆ξ, ∆z, ∆t are the increments in the radial, the axial and the time directions re-
spectively. Using the presented transformation and the Crank-Nicolson scheme, Eqs.(13),
take the following forms:

Ai,ju
k+1
i,j−1 +Bi,ju

k+1
i,j + Ci,ju

k+1
i,j+1 = Di,j , (30)
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Ai,j =
∆t

4Rk
i∆ξ

[ξj(ui,j(
∂R

∂z
)ki + (

∂R

∂t
)ki )− vi,j ]−

∆t

2α2(Rk
i )

2∆ξ2
{1 + (ξj(

∂R

∂z
)ki )

2}

+
∆t

4α2(Rk
i )

2ξj∆ξ
{1 + 2(ξj(

∂R

∂z
)ki )

2 − ξ2jR
k
i (
∂2R

∂z2
)ki },

Bi,j = 1 +
∆t

α2(Rk
i )

2∆ξ2
{1 + (ξj(

∂R

∂z
)ki )

2},

Ci,j =
−∆t

4Rk
i∆ξ

[ξj(ui,j(
∂R

∂z
)ki + (

∂R

∂t
)ki )− vi,j ]−

∆t

2α2(Rk
i )

2∆ξ2
{1 + (ξj(

∂R

∂z
)ki )

2}

− ∆t

2α2(Rk
i )

2ξj∆ξ
{1 + 2(ξj(

∂R

∂z
)ki )

2 − ξ2jR
k
j (
∂2R

∂z2
)ki }],

Di,j = uki,j −∆t(
∂R

∂z
) +

∆t

4Rk
i∆ξ

((u)ki,j+1 − (u)ki,j−1)[ξj(ui,j(
∂R

∂z
)ki + (

∂R

∂t
)ki )

−vi,j ]−
∆t

2∆z
(u)ki,j((u)

k
i+1,j − (u)ki−1,j) +

∆t

2α2(Rk
i )

2∆ξ2
((u)ki,j+1 − 2(u)ki,j

+(u)ki,j−1){1 + (ξj(
∂R

∂z
)ki )

2}+ ∆t

4α2(Rk
i )

2ξj∆ξ2
{1 + 2(ξj(

∂R

∂z
)ki )

2 − ξ2jR
k
i (
∂2R

∂z2
)ki }

((u)ki,j+1 − (u)ki,j−1) +
∆t

α2∆z2
((u)ki+1,j − 2(u)ki,j + (u)ki−1,j) + ∆t(

G(t)

α2
).

After computing the velocity distribution in the flow domain, one can compute
the volumetric flow rate (Q), and the resistive impedance (Λ) by using the following
formulas[1, 6]:

Qk
i = 2π(Rk

i )
2

∫ 1

0
ξj(u)

k
i,jdξj , (31)

Λk
i =

∣∣L(∂p∂z )ki ∣∣
Qk

i

. (32)
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6. Numerical results and discussion

Numerical computations have been carried out using the following parameter values
[3, 10, 18]:

∆t = 0.001,∆ξ = 0.0125,∆z = 0.1, d = 10, R0 = 1.52, b = 1,

L = 30, l0 = 14, A0 = 0.1, A1 = 0.2A0, α = 4,

kr = 0.05, φg =
π

4
, φ = 0, fp = 1.2.

Figure 2 shows the axial velocity profile for the stenosed artery at a specific location
of z = 17 in the stenotic region. According to Fig 2, the numerical method is compared
with the corresponding results obtained by Shaw et al. [23] and Mandal et al. [13] at the
time t = 2 and τm = 0.2R0. The present results are in agreement with Shaw et al. and
Mandal et al.

Figure 3 illustrates the dimensionless axial velocity profiles of the flowing blood for
different stenosis sizes at t = 3 and n = 2. Fig 3 depicted that the axial velocity decreases
by increasing the size of stenosis. The present figure also includes the axial velocity at
the time t = 2 through an elastic and rigid artery that the axial velocity in rigid artery
is more than the axial velocity in elastic artery and this shows the importance of the
assumption of elastic nature of blood arteries.

Figures 4 give the variation of the axial velocity for different amplitudes of body
acceleration at the time t = 3 and τm = 0.2R0 and n = 2. It is observed from Fig 4 that
the axial velocity increases as the amplitude of body acceleration increases. Thus, in the
presence of vibration, environmental system may produce an increase in blood velocity.

The rate of flow in the stenosed artery for different the stenosis size. It is seen that
the flow rate through the elastic artery at the time t = 3, n = 2 is less than the flow rate
through the rigid artery. Also, the rate of flow decreases with the increase in the stenosis
size. It is clear that, the volumetric flow rate behavior is corresponding to the geometry
of the stenosis so that, at the onest of the stenosis volumetric flow rate dropped and at
the stenosis critical height reaches to its lowest level.

The variation of the flow rate with time, for different amplitudes of body acceleration
is illustrated in Fig 6. According to this figure, the flow rate increases with the increase
of amplitudes of body acceleration. Thus, the volumetric flow has an enhancing effect
with its peak value of oscillation on the vibration environmental system.

Figure 7 displays the flow rate through a stenosed artery for different parameters
asymmetry of the stenosis at time t = 3. According to this figure, the flow rate increases
with the increase in the parameters asymmetry of the stenosis.

The resistive impedance in the stenosed artery for different stenosis sizes at the time t =
3 and n = 2 is shown in Fig 8. According to this figure, the resistive impedance increases
with the increase in the stenosis size. Moreover, comparing the resistive impedance of
elastic and rigid arteries indicates that the impedance of the elastic artery is more than
the rigid artery.

Resistive impedance with time through a stenosed artery for different amplitudes of
body acceleration at the time t = 3 is presented in Fig 9. In this figure the resistive
impedance decreases with the increase of amplitudes of body acceleration. Considering
Eq.(32) the volumetric flow rate and the resistive impedance are inversely related.

Figures 10 shows the profiles for resistive impedance is stenosed artery with three
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different parameters asymmetry of the stenosis at time t = 3. It is clear that the resistive
impedance decreases by increasing the parameters asymmetry of the stenosis.

Fig.11 depicts the blood flow patterns for different values of parameters asymmetry
of the stenosis and stenosis size. Panels (a) and (b) show flow pattern for the stenosis
artery τm = 0.2R0 and τm = 0.7R0 at the time t=3. Obviously, increasing the size of
stenosis at t=3 leads to the decrease of the flow lines, thus, increasing the size of stenosis
gives rise to the decrease of the axial velocity. Panel (c) and (d) describes the flow lines
for the parameters asymmetry of the stenosis n=4 and n=11 at the time t=3.

7. Conclusions

The two-dimensional, unsteady and laminar blood flow through a stenosed artery has
been studied. Using the Crank-Nicolson method, the discretized form of the velocity
profile, the volumetric flow rate and the resistive impedance have been achieved. The
influences of the effective parameters on flow characteristics such as the velocity profile,
the volumetric flow rate and the resistive to flow, under the periodic body acceleration,
are examined. The blood flow characteristics through elastic artery has been compared
with the rigid ones and this difference between the axial velocity of the rigid and the
elastic arteries shows the important of the assumption of elastic blood vessels. The results
demonstrate that the axial velocity and the rate of flow decrease with the increase in the
stenosis size. For this reason, the rate of flow and the resistive impedance are inversely
related with the increase in the amplitudes of body acceleration.
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Figure 1. Geometry of the stenosed artery
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Figure 2. Comparison of the dimensionless axial velocity profile (z=17, t=2, τm = 0.2R0, n=2)
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Figure 3. Dimensionless axial velocity profile for different stenosis size (t=3, n=2, a0 = 1)
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Figure 4. Dimensionless axial velocity profile for different amplitudes of body acceleration (t=3, τm = 0.2R0,
n=2)

0 10 20 30
1

2

3

3.5

z

Q

 

 

τ
m

=0.7R
0

τ
m

=0.6R
0

τ
m

=0.4R
0

τ
m

=0.2R
0

τ
m

=0.2R
0

Rigid artery

Figure 5. Distribution of the rate of flow for different stenosis size (t=3, n=2, a0 = 1)
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Figure 6. Distribution of volumetric flow rate with time for different amplitudes of body acceleration (τm = 0.2R0,
n=2)
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Figure 7. The volumetric flow rate for different parameters asymmetry of the stenosis (t=3, τm = 0.2R0, a0 = 1)
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Figure 8. Distribution of the resistive impedance for different stenosis size (t=3, n=2, a0 = 1)
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Figure 9. Distribution of the resistive impedance with time for different amplitudes of body acceleration (τm =
0.2R0, n=2)
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Figure 10. Distribution of the resistive impedance for different parameters asymmetry of the stenosis (τm = 0.2R0,
a0 = 1)
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Figure 11. Instantaneous flow patterns of streaming blood (t=3, n=2, a0 = 1)


