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Abstract. In this paper is introduced a new type of generalization of metric spaces called Sb

metric space. For this new kind of spaces it has been proved a common fixed point theorem
for four mappings which satisfy generalized contractive condition. We also present example
to confirm our theorem.

c⃝ 2016 IAUCTB. All rights reserved.

Keywords: Common fixed point, Sb-metric spaces, compatible mappings, Cauchy
sequence.

2010 AMS Subject Classification: Primary: 47H10; Secondary: 54H25.

1. Introduction

The Banach contraction principle is the most celebrated fixed point theorem and has
been generalized in various directions, see ([1]-[12]). Fixed point problems for contractive
mappings in metric spaces with a partially order have been studied by many authors.
Sedghi and Shobe [12] proved a common fixed point of four maps in complete metric
spaces. Abbas et al. in [1] proved a common fixed points of four mappings satisfying a
generalized weak contractive condition in the partially ordered metric spaces. Roshan et
al. [8] proved a common fixed point of four maps in b-metric spaces.

The aim of this paper is to present some common fixed point results for four mappings
satisfying generalized contractive condition in a Sb-metric space, where the Sb-metric is
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94 S. Radenović et al. / J. Linear. Topological. Algebra. 05(02) (2016) 93-104.

not necessary continuous. First we recall some notions, lemmas and examples which will
be useful later.

Definition 1.1 [10] Let X be a nonempty set. A S-metric on X is a function S : X3 →
[0,∞) that satisfies the following conditions for all x, y, z, a ∈ X.

(S1) 0 < S(x, y, z) for all x, y, z ∈ X with x ̸= y ̸= z ̸= x,
(S2) S(x, y, z) = 0 ⇔ x = y = z,
(S3) S(x, y, z) ⩽ S(x, x, a) + S(y, y, a) + S(z, z, a) for all x, y, z, a ∈ X.

The pair (X,S) is called a S-metric space.

Example 1.2 [10] Let X = R2 and d be an ordinary metric on X. Therefore S(x, y, z) =
d(x, y) + d(x, z) + d(y, z) for all x, y, z ∈ R2, is a S-metric on X.

Lemma 1.3 [9] In a S-metric space we have S(x, x, y) = S(y, y, x).

Definition 1.4 [11] Let (X,S) be a S-metric space. For r > 0 and x ∈ X we define
the open ball BS(x, r) and closed ball BS [x, r] with center x and radius r as follows
respectively:

Bs(x, r) = {y ∈ X : S(y, y, x) < r},

Bs[x, r] = {y ∈ X : S(y, y, x) ⩽ r}.

Definition 1.5 [11] Let (X,S) be a S-metric space and A ⊆ X.

(1) If for every x ∈ X there exists r > 0 such that Bs(x, r) ⊆ A, then the subset A
is called open subset of X.

(2) Subset A ofX is said to be S-bounded if there exists r > 0 such that S(x, x, y) < r
for all x, y ∈ A.

(3) A sequence {xn} in X convergents to x if and only if S(xn, xn, x) → 0 as n →
∞. That is for each ε > 0, there exists n0 ∈ N such that for each n ⩾ n0,
S(xn, xn, x) < ε and we denote by lim

n−→∞
xn = x.

(4) Sequence {xn} in X is called a Cauchy sequence if for each ε > 0, there exists
n0 ∈ N such that for each n,m ⩾ n0, S(xn, xn, xm) < ε.

(5) The S-metric space (X,S) is said to be complete if every Cauchy sequence is
convergent.

(6) Let τ be the of all A ⊆ X witch x ∈ A if and only if there exists r > 0 such that
Bs(x, r) ⊆ A. Then τ is a topology on X.

Lemma 1.6 [11] Let (X,S) be a S-metric space. If there exist sequence {xn}, {yn}
such that lim

n−→∞
xn = x and lim

n−→∞
yn = y, then lim

n−→∞
S(xn, xn, yn) = S(x, x, y).

Following the results of Czerwik [3] and Bakhtin [2] in the next definition we introduced
the notion of Sb−metric space, as a generalization of S− metric space in which the
triangular inequality has been replaced by weaker one.

Definition 1.7 Let X be a nonempty set and b ⩾ 1 be a given real number. Suppose
that a mapping S : X3 → [0,∞) satisfies :

(Sb1) 0 < S(x, y, z) for all x, y, z ∈ X with x ̸= y ̸= z ̸= x,
(Sb2) S(x, y, z) = 0 ⇔ x = y = z,
(Sb3) S(x, y, z) ⩽ b(S(x, x, a) + S(y, y, a) + S(z, z, a)) for all x, y, z, a ∈ X
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Then S is called a Sb-metric and the pair (X,S) is called a Sb-metric space.

Remark 1 It should be noted that, the class of Sb-metric spaces is effectively larger than
that of S-metric spaces. Indeed each S-metric space is a Sb-metric space with b = 1.

Following example shows that a Sb-metric on X need not be a S-metric on X.

Example 1.8 Let (X,S) be a S-metric space, and S∗(x, y, z) = S(x, y, z)p, where p > 1
is a real number. Note that S∗ is a Sb-metric with b = 22(p−1). Obviously, S∗ satisfies
condition (Sb1), (Sb2) of Definition 1.7, so it suffice to show (Sb3) holds. If 1 < p < ∞,
then the covexity of the function f(x) = xp, (x > 0) implies that (a+b)p ⩽ 2p−1(ap+bp).
Thus, for each x, y, z, a ∈ X, we obtain

S∗(x, y, z) = S(x, y, z)p

⩽ ([S(x, x, a) + S(y, y, a)] + S(z, z, a))p

⩽ 2p−1([S(x, x, a) + S(y, y, a)]p + S(z, z, a)p)

⩽ 2p−1(2p−1(S(x, x, a)p + S(y, y, a)p) + S(z, z, a)p)

⩽ 2(p−1)(2p−1(S(x, x, a)p + S(y, y, a)p) + 2p−1S(z, z, a)p)

= 22(p−1)(S(x, x, a)p + S(y, y, a)p + S(z, z, a)p)

= 22(p−1)(S∗(x, x, a) + S∗(y, y, a) + S∗(z, z, a))

so, S∗ is a Sb-metric with b = 22(p−1).

Also in the above example, (X,S∗) is not necessarily a S-metric space. For example,
let X = R and S∗(x, y, z) = (|y + z − 2x| + |y − z|)2 is a Sb-metric on R, with p = 2,
b = 22(2−1) = 4, for all x, y, z ∈ R. But it is not a S-metric on R.

To see this, let x = 3, y = 5, z = 7, a =
7

2
. Hence, we get

S∗(3, 5, 7) = (|5 + 7− 6|+ |5− 7|)2 = 82 = 64

S∗(3, 3,
7

2
) = (

∣∣∣∣3 + 7

2
− 6

∣∣∣∣+ ∣∣∣∣3− 7

2

∣∣∣∣)2 = 12 = 1

S∗(5, 5,
7

2
) = (

∣∣∣∣5 + 7

2
− 10

∣∣∣∣+ ∣∣∣∣5− 7

2

∣∣∣∣)2 = 32 = 9

S∗(7, 7,
7

2
) = (

∣∣∣∣7 + 7

2
− 14

∣∣∣∣+ ∣∣∣∣7− 7

2

∣∣∣∣)2 = 72 = 49.

Therefore, S∗(3, 5, 7) = 64 ⩾ 59 = S∗(3, 3,
7

2
) + S∗(5, 5,

7

2
) + S∗(7, 7,

7

2
).

Now we present some definitions and propositions in Sb-metric space.

Definition 1.9 Let (X,S) be a Sb-metric space. Then, for x ∈ X, r > 0 we defined
the open ball BS(x, r) and closed ball BS [x, r] with center x and radius r as follows
respectively:

BS(x, r) = {y ∈ X : S(y, y, x) < r},

BS [x, r] = {y ∈ X : S(y, y, x) ⩽ r}.
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Example 1.10 Let X = R. Denote S(x, y, z) = (|y + z − 2x| + |y − z|)2 is a Sb-metric
on R with b = 22(2−1) = 4, for all x, y, z ∈ R. Thus

BS(1, 2) = {y ∈ R : S(y, y, 1) < 2}

= {y ∈ R : |y − 1| <
√
2

2
}

= {y ∈ R : 1−
√
2

2
< y < 1 +

√
2

2
}

= (1−
√
2

2
, 1 +

√
2

2
).

Lemma 1.11 In a Sb-metric space, we have

S(x, x, y) ⩽ bS(y, y, x)

and

S(y, y, x) ⩽ bS(x, x, y)

Proof. By third condition of Sb-metric, we have

S(x, x, y) ⩽ b(2S(x, x, x) + S(y, y, x)) = bS(y, y, x)

and similarly

S(y, y, x) ⩽ b(2S(y, y, y) + S(x, x, y)) = bS(x, x, y).

■

Lemma 1.12 Let (X,S) be a Sb-metric space. Then

S(x, x, z) ⩽ 2bS(x, x, z) + b2S(y, y, z).

Proof. By third condition of Sb-metric and lemma (1.3), we have

S(x, x, z) ⩽ b(S(x, x, y) + S(x, x, y) + S(z, z, y))

⩽ b(2S(x, x, y) + bS(y, y, z))

= 2bS(x, x, y) + b2S(y, y, z).

■

The notions of convergence and Cauchy sequence is introducing as in the case of
S−metric spaces.

Definition 1.13 Let (X,S) be a Sb-metric space. A sequence {xn} in X is said to be :
(1) Sb-Cauchy sequence if, for each ε > 0, there exists n0 ∈ N such that S(xn, xn, xm) < ε
for each m,n ⩾ n0.
(2) Sb-convergent to a point x ∈ X if, for each ε > 0, there exists a positive integer
n0 such that S(xn, xn, x) < ε or S(x, x, xn) < ε for all n ⩾ n0 and we denote by
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lim
n−→∞

xn = x.

Definition 1.14 A Sb-metric space (X,S) is called complete if every Sb-Cauchy sequence
is Sb-convergent in X.

Definition 1.15 Let (X,S) and (X ′, S′) be Sb-metric spaces, and let f : (X,S) →
(X ′, S′) be a function. Then f is said to be continuous at a point a ∈ X if and only if for
every sequence xn in X, S(xn, xn, a) → 0 implies S′(f(xn), f(xn), f(a)) → 0. A function
f is continuous at X if and only if it is continuous at all a ∈ X.

The term of compatible mappings is introduced analogously as in the case of S−metric
spaces.

Definition 1.16 Let (X,S) be a Sb-metric space. A pair {f, g} is said to be compatible
if and only if lim

n−→∞
S(fgxn, fgxn, gfxn) = 0, whenever {xn} is a sequence in X such

that lim
n−→∞

fxn = lim
n−→∞

gxn = t for some t ∈ X.

Lemma 1.17 Let (X,S) be a Sb-metric space with b ⩾ 1, and suppose that {xn} is a
Sb-convergent to x, then we have

1

b2
S(x, x, y) ⩽ lim inf

n−→∞
S(xn, xn, y) ⩽ lim sup

n−→∞
S(xn, xn, y) ⩽ b2S(x, x, y).

In particular, if x = y, then we have lim
n−→∞

S(xn, xn, y) = 0.

Proof. By (Sb3) and Lemma 1.12, we have

S(xn, xn, y) ⩽ 2bS(xn, xn, x) + b2S(x, x, y),

and

1

b2
S(x, x, y) ⩽ 2S(xn, xn, x) + S(xn, xn, y).

Taking the upper limit as n → ∞ in the first inequality and the lower limit as n → ∞
in the second inequality we obtain the desired result. ■

Lemma 1.18 Let (X,S) be a Sb-metric space. If there exist two sequences {xn} and
{yn} such that lim

n−→∞
S(xn, xn, yn) = 0, whenever {xn} is a sequence in X such that

lim
n−→∞

xn = t for some t ∈ X then lim
n−→∞

yn = t.

Proof . By a triangle inequality in a Sb-metric space, we have

S(yn, yn, t) ⩽ b(2S(yn, yn, xn) + bS(xn, xn, t)).

Now, by taking the upper limit when n → ∞ in the above inequality we get

lim sup
n−→∞

S(yn, yn, t) ⩽ b2(lim sup
n−→∞

2S(xn, xn, yn) + lim sup
n−→∞

S(xn, xn, t)) = 0.

Hence lim
n−→∞

yn = t.
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2. Main results

Our first results is the following common fixed point theorem.

Theorem 2.1 Suppose that f , g, M and T are self mappings on a complete Sb-metric
space (X,S) such that f(X) ⊆ T (X), g(X) ⊆ M(X). If

S(fx, fx, gy) ⩽ q

b4
max{S(Mx,Mx, Ty), S(fx, fx,Mx), S(gy, gy, Ty), (1)

1

2
(S(Mx,Mx, gy) + S(fx, fx, Ty))}

holds for each x, y ∈ X with 0 < q < 1 and b ⩾ 3
2 , then f , g, M and T have a unique

common fixed point in X provided that M and T are continuous and pairs {f,M} and
{g, T} are compatible.

Proof. Let x0 ∈ X. As f(X) ⊆ T (X), there exists x1 ∈ X such that fx0 = Tx1. Since
gx1 ∈ M(X), we can choose x2 ∈ X such that gx1 = Mx2. In general, x2n+1 and x2n+2

are chosen in X such that fx2n = Tx2n+1 and gx2n+1 = Mx2n+2. Define a sequence yn
in X such that y2n = fx2n = Tx2n+1, and y2n+1 = gx2n+1 = Mx2n+2, for all n ⩾ 0.
Now, we show that yn is a Cauchy sequence. Consider

S(y2n, y2n, y2n+1) = S(fx2n, fx2n, gx2n+1)

⩽ q

b4
max

{
S(Mx2n,Mx2n, Tx2n+1), S(fx2n, fx2n,Mx2n),

S(gx2n+1, gx2n+1, Tx2n+1),

1

2
(S(Mx2n,Mx2n, gx2n+1) + S(fx2n, fx2n, Tx2n+1))

}
=

q

b4
max

{
S(y2n−1, y2n−1, y2n), S(y2n, y2n, y2n−1),

S(y2n+1, y2n+1, y2n),

1

2
(S(y2n−1, y2n−1, y2n+1) + S(y2n, y2n, y2n))

}
⩽ q

b4
max

{
S(y2n−1, y2n−1, y2n), bS(y2n−1, y2n−1, y2n),

S(y2n+1, y2n+1, y2n),
S(y2n−1, y2n−1, y2n+1)

2

}
⩽ q

b4
max

{
S(y2n−1, y2n−1, y2n), bS(y2n−1, y2n−1, y2n), S(y2n+1, y2n+1, y2n),

b

2

(
S(y2n−1, y2n−1, y2n) + S(y2n−1, y2n−1, y2n) + S(y2n+1, y2n+1, y2n)

)}
⩽ q

b4
max

{
S(y2n−1, y2n−1, y2n), bS(y2n−1, y2n−1, y2n), bS(y2n, y2n, y2n+1),

b

2

(
2S(y2n−1, y2n−1, y2n) + bS(y2n+1, y2n+1, y2n)

)}
.
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Now, since

S(y2n−1, y2n−1, y2n) ⩽ bS(y2n−1, y2n−1, y2n)

⩽ bS(y2n−1, y2n−1, y2n) +
b2

2
S(y2n, y2n, y2n+1)

we have

S(y2n, y2n, y2n+1) ⩽ max
{
bS(y2n, y2n, y2n+1),

bS(y2n−1, y2n−1, y2n) +
b2

2
S(y2n, y2n, y2n+1)

}
.

If max = bS(y2n, y2n, y2n+1) we obtain

S(y2n, y2n, y2n+1) ⩽
q

b3
S(y2n, y2n, y2n+1) < S(y2n, y2n, y2n+1).

Contradiction. So, max = bS(y2n−1, y2n−1, y2n) +
b2

2 S(y2n, y2n, y2n+1) and we have

S(y2n, y2n, y2n+1) ⩽
q

b4
(
bS(y2n−1, y2n−1, y2n) +

b2

2
S(y2n, y2n, y2n+1)

)
i.e.,

S(y2n, y2n, y2n+1) ⩽
2q

2b3 − qb
S(y2n−1, y2n−1, y2n).

Let λ = 2q
2b3−qb . Since b ⩾ 3

2 we have that 0 < λ < 1. Now,

S(y2n, y2n, y2n+1) ⩽ λS(y2n−1, y2n−1, y2n) ⩽ λ2S(y2n−2, y2n−2, y2n−1)

⩽ . . . ⩽ λnS(y0, y0, y1).

Hence, for all n ⩾ 2, we obtain

S(yn−1, yn−1, yn) ⩽ ... ⩽ λn−1S(y0, y0, y1). (2)
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Using Lemma 1.11 and (Sb3), and (2) for all n > m, we have

S(ym, ym, yn) ⩽ b(2S(ym, ym, ym+1) + S(yn, yn, ym+1))

⩽ 2bS(ym, ym, ym+1) + b2S(ym+1, ym+1, yn)

⩽ 2bS(ym, ym, ym+1) + 2b3S(ym+1, ym+1, ym+2)

+b4S(ym+2, ym+2, yn) ⩽ . . .

⩽ 2b(S(ym, ym, ym+1) + b2S(ym+1, ym+1, ym+2)

+ · · ·+ b2(n−m−1)S(yn−1, yn−1, yn))

⩽ 2b(λm + b2λm+1 + · · ·+ b2(n−m−1)λn−1)S(y0, y0, y1)

⩽ 2bS(y0, y0, y1)(λ
m + b2λm+1 + . . . )

⩽ 2bλm

1− b2λ
S(y0, y0, y1).

On taking limit as m,n → ∞, we have S(ym, ym, yn) → 0 as b2λ < 1. Therefore {yn} is a
Cauchy sequence. Since X is a complete Sb-metric space, there is some y in X such that

lim
n−→∞

fx2n = lim
n−→∞

Tx2n+1 = lim
n−→∞

gx2n+1 = lim
n−→∞

Mx2n+2 = y.

We show that y is a common fixed point of f , g, M and T . Since M is continuous,
therefore

lim
n−→∞

M2x2n+2 = My and lim
n−→∞

Mfx2n = My.

Since a pair {f,M} is compatible, lim
n−→∞

S(fMx2n, fMx2n,Mfx2n) = 0. So by Lemma

1.18, we have lim
n−→∞

fMx2n = My. Putting x = Mx2n and y = x2n+1 in (1) we obtain

S(fMx2n, fMx2n, gx2n+1) ⩽
q

b4
max

{
S(M2x2n,M

2x2n, Tx2n+1),

S(fMx2n, fMx2n,M
2x2n), S(gx2n+1, gx2n+1, Tx2n+1),

1

2

(
S(M2x2n,M

2x2n, gx2n+1) + S(fMx2n, fMx2n, Tx2n+1)
)}

.

(3)
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Taking the upper limit as n → ∞ in (3) and using Lemma 1.17, we get

S(My,My, y)

b2
⩽ lim sup

n−→∞
S(fMx2n, fMx2n, gx2n+1)

⩽ q

b4
max

{
lim sup
n−→∞

S(M2x2n,M
2x2n, Tx2n+1),

lim sup
n−→∞

S(fMx2n, fMx2n,M
2x2n),

lim sup
n−→∞

S(gx2n+1, gx2n+1, Tx2n+1),

1

2

(
lim sup
n−→∞

S(M2x2n,M
2x2n, gx2n+1)

+lim sup
n−→∞

S(fMx2n, fMx2n, Tx2n+1)
)}

⩽ q

b4
max

{
b2S(My,My, y), 0, 0,

b2

2
(S(My,My, y) + S(My,My, y))

}
=

q

b4
b2S(My,My, y) =

q

b2
S(My,My, y).

Consequently, S(My,My, y) ⩽ qS(My,My, y). As 0 < q < 1, so My = y. Using continu-
ity of T , we obtain lim

n−→∞
T 2x2n+1 = Ty and lim

n−→∞
Tgx2n+1 = Ty. Since g and T are com-

patible, lim
n−→∞

S(gTxn, gTxn, T gxn) = 0. So, by Lemma 1.18, we have lim
n−→∞

gTx2n = Ty.

Putting x = x2n and y = Tx2n+1 in (1), we obtain

S(fx2n, fx2n, gTx2n+1) ⩽
q

b4
max

{
S(Mx2n,Mx2n, T

2x2n+1),

S(fx2n, fx2n,Mx2n), S(gTx2n+1, gTx2n+1, T
2x2n+1),

1

2

(
S(Mx2n,Mx2n, gTx2n+1) + S(fx2n, fx2n, T

2x2n+1)
)}

.

(4)

Taking upper limit as n → ∞ in (4) and using Lemma 1.17, we obtain

S(y, y, Ty)

b2
⩽ lim sup

n−→∞
S(fx2n, fx2n, gTx2n+1)

⩽ q

b4
max{b2(S(y, y, Ty), 0, 0, b

2

2
S(y, y, Ty) + S(y, y, Ty))}

=
qS(y, y, Ty)

b2
,

which implies that Ty = y. Also, we can apply condition (1) to obtain

S(fy, fy, gx2n+1) ⩽
q

b4
max

{
S(My,My, Tx2n+1), S(fy, fy,My),

S(gx2n+1, gx2n+1, Tx2n+1),
1

2

(
S(My,My, gx2n+1)

+ S(fy, fy, Tx2n+1)
)}

.

(5)
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Taking upper limit n → ∞ in (5), and using My = Ty = y, we have

S(fy, fy, y)

b2
⩽ q

b4
max{b2S(My,My, y), b2S(fy, fy,My), b2S(y, y, y),

b2

2
(S(My,My, y) + S(fy, fy, y))

=
q

b2
S(fy, fy, y),

which implies that S(fy, fy, y) = 0 and fy = y as 0 < q < 1. Finally, from condition
(1), and the fact My = Ty = fy = y, we have

S(y, y, gy) = S(fy, fy, gy)

⩽ q

b4
max{S(My,My, Ty), S(fy, fy,My), S(gy, gy, Ty),

1

2
(S(My,My, gy) + S(fy, fy, Ty))

⩽ q

b3
S(y, y, gy)

⩽ qS(y, y, gy),

which implies that S(y, y, gy) = 0 and gy = y. Hence My = Ty = fy = gy = y. If there
exists another common fixed point x in X for f , g, M and T , then

S(x, x, y) = S(fx, fx, gy)

⩽ q

b4
max{S(Mx,Mx, Ty), S(fx, fx,Mx), S(gy, gy, Ty),

1

2
(S(Mx,Mx, gy) + S(fx, fx, Ty))

=
q

b4
max{S(x, x, y), S(x, x, x), S(y, y, y), 1

2
(S(x, x, y) + S(x, x, y))}

=
q

b4
S(x, x, y)

⩽ qS(x, x, y),

which further implies that S(x, x, y) = 0 and hence, x = y. Thus, y is a unique common
fixed point of f , g, M and T . ■

Example 2.2 Let X = [0, 1] be endowed with Sb-metric S∗(x, y, z) = (|y+z−2x|+ |y−
z|)2, where b = 4. Define f , g, M and T on X by f(x) = (x4 )

8, g(x) = (x8 )
4, M(x) = (x4 )

4,
T (x) = (x8 )

2.
Obviously, f(X) ⊆ T (X) and g(X) ⊆ M(X). Furthermore, the pairs {f,M} and {g, T}
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are compatible. For each x, y ∈ X, we have

S(fx, fx, gy) = (|gy − fx|+ |fx− gy|)2

= (2|fx− gy|)2

= 4((
x

4
)8 − (

y

8
)4)2

= 4((
x

4
)4 + (

y

8
)2)2.((

x

4
)4 − (

y

8
)2)2

⩽ (
1

44
+

1

82
)2S(Mx,Mx, Ty)

=
25
44

44
S(Mx,Mx, Ty),

where 25
44 ⩽ q ⩽ 1 and b = 4. Thus, f , g, M and T satisfy all condition of Theorem 2.1.

Moreover 0 is the unique common fixed point of f , g, M and T .

Corollary 2.3 Let (X,S) be a complete Sb-metric space and f, g : X → X two mappings
such that

S(fx, fx, gy) ⩽ q

b4
max{S(x, x, y), S(fx, fx, x), S(gy, gy, y), 1

2
(S(x, x, gy) + S(fx, fx, y))},

holds for all x, y ∈ X with 0 < q < 1 and b ⩾ 3
2 . Then, there exists a unique point y ∈ X

such that fy = gy = y.

Proof. If we take M = T = IX(identity mapping on X), then theorem (2.1) gives that
f and g have a unique common fixed point. ■

Proof. If we take f and g as identity maps on X, then Theorem 2.1 gives that M and
T have a unique common fixed point. ■

Corollary 2.4 Let (X,S) be a complete Sb-metric space and f : X → X mapping such
that

S(fx, fx, fy) ⩽ q

b4
max{S(x, x, y), S(fx, fx, x), S(fy, fy, y), 1

2
(S(x, x, fy) + S(fx, fx, y))},

holds for all x, y ∈ X with 0 < q < 1 and b ⩾ 3
2 . Then f has a unique fixed point in X.

Proof. Take M and T as identity maps on X and f = g and then apply Theorem 2.1.
■
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