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Abstract. In this paper is introduced a new type of generalization of metric spaces called Sy
metric space. For this new kind of spaces it has been proved a common fixed point theorem
for four mappings which satisfy generalized contractive condition. We also present example
to confirm our theorem.
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1. Introduction

The Banach contraction principle is the most celebrated fixed point theorem and has
been generalized in various directions, see ([1]-[12]). Fixed point problems for contractive
mappings in metric spaces with a partially order have been studied by many authors.
Sedghi and Shobe [12] proved a common fixed point of four maps in complete metric
spaces. Abbas et al. in [1] proved a common fixed points of four mappings satisfying a
generalized weak contractive condition in the partially ordered metric spaces. Roshan et
al. [8] proved a common fixed point of four maps in b-metric spaces.

The aim of this paper is to present some common fixed point results for four mappings
satisfying generalized contractive condition in a Sp-metric space, where the Sp-metric is
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not necessary continuous. First we recall some notions, lemmas and examples which will
be useful later.

Definition 1.1 [10] Let X be a nonempty set. A S-metric on X is a function S : X? —
[0, 00) that satisfies the following conditions for all z,y, z,a € X.

(S1) 0 < S(x,y,z) for all x,y,z € X with z # y # z # =z,
(S2) S(z,y,2) =0 =y =z,
(S3) S(z,y,2) < S(z,z,a) + S(y,y,a) + S(z,z,a) for all x,y,z,a € X.

The pair (X, S) is called a S-metric space.

Ezxzample 1.2 [10] Let X = R? and d be an ordinary metric on X. Therefore S(z,y,2) =
d(z,y) + d(z, 2) + d(y, 2) for all z,y, 2 € R?, is a S-metric on X.

Lemma 1.3 [9] In a S-metric space we have S(z,z,y) = S(y,y, ).

Definition 1.4 [11] Let (X, S) be a S-metric space. For r > 0 and x € X we define
the open ball Bg(x,r) and closed ball Bg [z,r] with center z and radius r as follows
respectively:

Bs(z,r)={ye X : S(y,y,z) <r},
Bslz,r] ={y € X : S(y,y,z) <r}.

Definition 1.5 [11] Let (X,S) be a S-metric space and A C X.

(1) If for every x € X there exists r > 0 such that Bg(x,r) C A, then the subset A
is called open subset of X.

(2) Subset A of X is said to be S-bounded if there exists r > 0 such that S(z,z,y) < r
for all x,y € A.

(3) A sequence {x,} in X convergents to x if and only if S(zy,zn,z) = 0 as n —
oo. That is for each € > 0, there exists ng € N such that for each n > ng,

S(zy,Tn,x) < € and we denote by lim z, = x.
n——oo

(4) Sequence {x,} in X is called a Cauchy sequence if for each ¢ > 0, there exists
no € N such that for each n,m = ng, S(xn, Tn, Tm) < €.

(5) The S-metric space (X, S) is said to be complete if every Cauchy sequence is
convergent.

(6) Let 7 be the of all A C X witch x € A if and only if there exists » > 0 such that
Bs(x,r) C A. Then 7 is a topology on X.

Lemma 1.6 [11] Let (X,S) be a S-metric space. If there exist sequence {zy},{yn}

such that lim x, =z and lim y, =y, then lim S(x,,zn,yn) = S(z,x,y).
n—00 n—o0 n—aoo

Following the results of Czerwik [3] and Bakhtin [2] in the next definition we introduced
the notion of Sp—metric space, as a generalization of S— metric space in which the
triangular inequality has been replaced by weaker one.

Definition 1.7 Let X be a nonempty set and b > 1 be a given real number. Suppose
that a mapping S : X3 — [0, 00) satisfies :

(Spl) 0 < S(x,y,2) for all x,y,z € X with © # y # z # z,

(Sp2) S(z,y,2) =0 =y =z,

(Se3) S(x,y,2) < b(S(x,z,a) + S(y,y,a) + S(z, z,a)) for all x,y,z,a € X
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Then S is called a Sp-metric and the pair (X, S) is called a Sp-metric space.

Remark 1 It should be noted that, the class of Sy-metric spaces is effectively larger than
that of S-metric spaces. Indeed each S-metric space is a Sp-metric space with b = 1.

Following example shows that a Sy-metric on X need not be a S-metric on X.

Example 1.8 Let (X, S) be a S-metric space, and Si(z,y,z) = S(z,y, 2)P, where p > 1
is a real number. Note that S, is a Sp-metric with b = 22(p—1) Obviously, S, satisfies
condition (Spl), (Sp2) of Definition 1.7, so it suffice to show (533) holds. If 1 < p < oo,
then the covexity of the function f(x) = 2P, (z > 0) implies that (a+b)P < 2P~1(aP +bP).
Thus, for each z,y, 2,0 € X, we obtain

S*(x,y,z) = S(Ivyvz)p
([S(w,2,a) + S(y,y,a)] + S(z, 2,a))”
< 2P N([S(x, x,a) + S(y, y,a) P + S(2,2,a))
<271 2PN (S(x 2, a)P + S(y,y,0)P) + S(z, 2, a)P)
<20 (2PN (S (@, 2,0) + S(y,y, a)F) + 2715 (2, 2,0)P)
= 220"(S(z,2,a)” + S(y.y,a)” + S(z,2,a))
= 22=U(S, (2, 2,a) + S.(y,y,a) + Si(2, 2,a))

so, Sy is a Sp-metric with b = 22(p—1)

Also in the above example, (X, S.) is not necessarily a S-metric space. For example,
let X =R and Si(7,9,2) = (Jy + 2z — 22| + |y — 2|)? is a Sp-metric on R, with p = 2,
b= 2221 = 4 for all x,1y, 2z € R. But it is not a S-metric on R.

7
To see this, let t =3,y =5,2=7,a = ok Hence, we get

S.(3,5,7) = (|5+7—6|+1[5—7|)* =8 =64

7 7 Tle 9
* ,0, =) = _ — —_ = :1 :1
$.(3,3.5) = (3 +3 6‘+‘3 o)
7 7 7
* —) = 7—1 — = 2: 2:
5.(5.5,5) = (|5 + 3 0’+‘5 S =3=09
7 7 7
S.(7,7,5) = (|7T+5 ’+’7 S =T =49

7 7 7
Therefore, S,(3,5,7) = 64 > 59 = S,(3, 3, 5) + S.«(5,5, 5) + S.(7,7, 5)

Now we present some definitions and propositions in Sp-metric space.

Definition 1.9 Let (X,S) be a Sy-metric space. Then, for x € X, r > 0 we defined
the open ball Bg(x,r) and closed ball Bglz,r] with center x and radius r as follows
respectively:

Bs(ZE,T) = {y €X: S(yay7$) < ’l“},
Bglz,r|={y € X : S(y,y,z) <r}.
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Ezxzample 1.10 Let X = R. Denote S(z,y,2) = (Jy + z — 2z| + |y — z|)? is a Sp-metric
on R with b = 222=1) — 4 for all z,y, z € R. Thus

Bs(1,2) ={y e R: S(y,y,1) <2}

Z{?JER:Iy—1I<\f}
:{yERzl—?<y<1+\g§}
-2 Y2
2 2

Lemma 1.11 In a Sp-metric space, we have

S(I‘,[E, y) < bS(ya y?'%')

and

S(y,y,z) < bS(z,z,y)

Proof. By third condition of Sp-metric, we have
S(x,z,y) <b2S(z,2,2) + Sy, y,x)) = bS(y,y,x)

and similarly

S(y,y,x) < b(2S(y,y,y) + S(z,2,y)) = bS(x,x,y).

]
Lemma 1.12 Let (X, S) be a Sp-metric space. Then
S(x,x,2) < 2b8(x, x,2) + b2S(y, v, 2).
Proof. By third condition of Sp-metric and lemma (1.3), we have
Sz, x,2) <b(S(x,x,y) + S(z,2,y) + 5(2,2,9))
< O(25(x,2,y) +05(y, , 2))
= 2bS(x, z,y) + b°S(y, y, 2).
]

The notions of convergence and Cauchy sequence is introducing as in the case of
S—metric spaces.

Definition 1.13 Let (X, S) be a Sp-metric space. A sequence {x,} in X is said to be :
(1) Sp-Cauchy sequence if, for each € > 0, there exists ng € N such that S(z,, pn, Tm) < €
for each m,n > ny.

(2) Sp-convergent to a point x € X if, for each £ > 0, there exists a positive integer
no such that S(xy,,zn,x) < € or S(z,z,z,) < ¢ for all n > ny and we denote by
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lim xz, = x.
n—roo

Definition 1.14 A Sp-metric space (X, .5) is called complete if every Sp-Cauchy sequence
is Sp-convergent in X.

Definition 1.15 Let (X,S) and (X’,S’) be Sp-metric spaces, and let f : (X,S) —
(X’,S") be a function. Then f is said to be continuous at a point @ € X if and only if for
every sequence T, in X, S(zy,x,,a) — 0 implies S'(f(xy), f(xn), f(a)) = 0. A function
f is continuous at X if and only if it is continuous at all a € X.

The term of compatible mappings is introduced analogously as in the case of S—metric
spaces.

Definition 1.16 Let (X, S) be a Sp-metric space. A pair {f, g} is said to be compatible
if and only if h_r)n S(fgxn, fgxn,gfry) = 0, whenever {x,} is a sequence in X such
n o

that lim fz, = lim gz, =t for some t € X.
n—m—ao0 n——ao0

Lemma 1.17 Let (X, S) be a Sp-metric space with b > 1, and suppose that {z,} is a
Sp-convergent to x, then we have

1
—S(z,z,y) < UminfS(zy,, zn,y) < limsupS(z,, z,,y) < b2S(z, z,7).
b2 n—=oo n—>o0

In particular, if z = y, then we have lim S(x,,z,,y) =0.
n—-aoo

Proof. By (5,3) and Lemma 1.12, we have
S(.%'n, Tn, y) < 2bS(l’n, Tn, :U) + bQS(.%', Z, y)a

and

1
ﬁS(fB,x,y) < 28(zp, xp, ) + S(@n, Tn, y).

Taking the upper limit as n — oo in the first inequality and the lower limit as n — oo
in the second inequality we obtain the desired result. [ |

Lemma 1.18 Let (X,S) be a Sy-metric space. If there exist two sequences {x,} and
{yn} such that h_r>n S(zn, Tn,yn) = 0, whenever {x,} is a sequence in X such that
n oo
lim x, =t for some t € X then lim y, =t.
—00

n—aoo n
Proof. By a triangle inequality in a Sp-metric space, we have

S(Yns Ynst) < b(2S(Yn, Yn, Tn) + bS(Tn, Ty, t)).
Now, by taking the upper limit when n — oo in the above inequality we get

lim supsS (Yo, Yn, t) < b2 (lim sup2S(x,, T, yp ) + limsupS(zp, £,,t)) = 0.

n—aoo n—:aoo n—-ao0

Hence lim y, =t.
n—aoo
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2. Main results

Our first results is the following common fixed point theorem.

Theorem 2.1 Suppose that f, g, M and T are self mappings on a complete Sy-metric
space (X, S) such that f(X) C T'(X), g(X) C M(X). If

S(fa, f2.9y) < 1y max{S(Ma, M, Ty), S(fz, fz. Ma), S(gy, 99, Ty). (1)

%(S(Mx, Mz, gy) + S(fz, fz, Ty))}

holds for each z,y € X with 0 < ¢ < 1 and b > %, then f, g, M and T have a unique
common fixed point in X provided that M and T are continuous and pairs {f, M} and
{g,T} are compatible.

Proof. Let g € X. As f(X) C T(X), there exists x; € X such that fzg = Tx;. Since
gr1 € M(X), we can choose 25 € X such that gry = Mxo. In general, x9,11 and zop, 4o
are chosen in X such that fxo, = Txony1 and gran+1 = Mxon1o. Define a sequence y,
in X such that yo, = fro, = Txopt1, and yopt1 = gxont1 = Mxopyo, for all n > 0.
Now, we show that y,, is a Cauchy sequence. Consider

S(Y2n, Yon, Yon+1) = S(fron, fron, g9Tont1)
< I% max {S(Mx%’w M$2n7 T«T2n+1>7 S(f.an, f$2n7 ngn),

nn

(9Z2n+1, 9%2n+1, TZ2n+1),

*(S(Ml’gn, MxZn: gw?n—l—l) + S(f.l‘gn, fona TxZn—{—l))}

o NI

= 34 ax {S(Wan—1,y2n-1,y2n), S(W2n, Y2n, Y2n—1);

S(y2n+17 Yan+1, y?”)?
1
i(S(an—l, Yon—1,Y2n+1) + S(Y2n, Yon, Y2n)) }

q
ﬁ max {S(y2n717 Yon—1, y2n)a b‘s’(y2n717 Yon—1, y2n)7

N

S(an—la Yan—1, y2n+1) }

S(Y2n+1, Y2n+1, Yon),

2
q
< 2 max {S(Wan—1,y2n-1,y2n), bS (Y2n—1, Y2n—1,Y2n), S (Y2n+1, Y2n+1, Y2n),
b
3 (S(y2n—1,Y2n—1,Y2n) + S(Y2n—1, Y2n—1, Y2n) + S(Y2n+1, Y2n+1, Y2n)) }
q
< 7z max {S(Wan—1,y2n-1,y2n), bS (Y2n—1, Yan—1, Y2n), bS (Y2n, Y2n: Y2nt1),
b

B (25 (yan—1, Y2n—1, Y2n) + bS(Y2nt1, Y2n+1,Y2n)) } -
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Now, since

S(Yan—1,Yon—1, Y2n) < bS(Y2n—1,Y2n—1, Y2n)
2
< bS(Y2n—1,Yon—1, Y2n) + 55(24271, Yo, Y2n+1)

we have

S(Yan, Yon, Yant1) < max {bS(Yon, Yon, Yoant1),
2
bS(Yan—1, Y2n—1,Y2n) + ES(me Yon, Yoant1) }-

If max = bS(yan, Yon, Yon+1) We obtain
q
S(Yon, Yon, Yon+1) < ﬁs(y%’qunaan—&—l) < S(Y2n, Y2n, Yon+1)-

Contradiction. So, max = bS(yan—1, Y2n—1,Y2n) + %S(ygn, Yan, Yon+1) and we have

g 2

S(y2na Yon, y2n+1) < 1 (bS(yanla Yon—1, y2n) + Es(y%u Yon, y2n+1))

S

i.e.,

2q

ms(y%—l, Yon—1, Y2n)-

S(y2n7 Yon, y2n+l) <

Let A = %3273(16. Since b > % we have that 0 < A < 1. Now,

AS (Yon—1, Y2n—1, Y2n) < AN2S(Y2n—2, Y2n—2, Y2n—1)

S(y2n7y2n7y2n+1) <
<. < AS (Yo, Yo, y1)-

Hence, for all n > 2, we obtain

S(Yn—1Yn—1,Yn) < oo < X1 (Y0, Y0, 1)-

99



100 S. Radenovié et al. / J. Linear. Topological. Algebra. 05(02) (2016) 93-104.

Using Lemma 1.11 and (533), and (2) for all n > m, we have

SYms Yms Yn) < (28 (Y, Yms Ym+1) + S Yns Yns Ymt1))

< 268 (Y, Yms Ym41) + b2 S (Y1, Y1, Yn)

< 265 (Yms Yo Y1) + 26° S (Ymtt s Y1 Ymr2)
+6"S (Yt 2, Ymr2, Yn) < -

< 26(S (Yrms Y Ymet1) + 0 S (Yrmt 15 Y1, Yme2)

4.4 bZ(nfmil)S(yn_l, Yn—1, yn))

<2\ + B2AMHL g p2reme D) An=1y G0 )
< 2bS(y07 Yo, Z/l)(/\m + b2)\7n+1 4+ ... )

26\
< ms(y()a Yo, yl)

On taking limit as m,n — oo, we have S(Ym, Ym, yn) — 0 as b2\ < 1. Therefore {y,} is a
Cauchy sequence. Since X is a complete Sp-metric space, there is some y in X such that

lim fxo, = lim Txopy1 = lim gaop1 = lim Mzoyio =y.
n—-oo n—aoo n—aoo n—oo

We show that y is a common fixed point of f, g, M and T. Since M is continuous,
therefore

lim M2l’2n+2 = My and lim M fxo, = My.

n—aoo n—aoo

Since a pair {f, M} is compatible, lim S(fMuzay,, fMxzo,, M fzo,) = 0. So by Lemma
n—aoo

1.18, we have h_)m fMzxo, = My. Putting © = Mz, and y = 22,41 in (1) we obtain
n o

S(f Moy, f Mxay, gToni1) < b% max {S(M>22, M*x2n, Txont1),

S(fMxon, fMxon, M*22,), S(9T9n41, 9T2n+1, TT2011),

1
3 (S(MPm9p, MPx9n, gTont1) + S(fMaon, fMan, Too41)) }
(3)
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Taking the upper limit as n — oo in (3) and using Lemma 1.17, we get

My, M
S(My, My, y) < limsupS(f Moy, fMzon, gTon+1)

b2 n—ao0

< 2 ax {lim supS(M32xa,, M2 2oy, Txon, 1),

bt n—so0
lim SupS(foQna J Moy, M2$2n)7
n—»00

lim supS(9xan+1, 9Zon+1, TTan+1),
n—-oo

L.
9 (hm supS(Mngm M2x2n7 gx2n+1)

n—aoo

+limsupS(f Mzoy,, f Moy, Tx2n+1)) }
n—aoo
2

q b
< @maX{bQS(My,My,y),QO, 5 (S(My, My, y) + S(My, My,y))}

q q
Consequently, S(My, My,y) < ¢S(My, My,y). As0 < ¢ < 1, so My = y. Using continu-
ity of T', we obtain lim T2x2n+1 =Tyand lim Tgxo,11 = Ty. Since g and T are com-
n—--ao0 n—aoo

patible, lim S(¢Txy,,gTz,,Tgx,) = 0. So, by Lemma 1.18, we have lim ¢gTx9, = Ty.
n—»o0 n—m>00

Putting x = 9, and y = T'xro,41 in (1), we obtain

S<f1'2nu fx2n7 ngQn-i—l) < Z% max {S(Mx%u Mxan T2x2n+1)7
S(fony fx2n7 M$2n)7 S(QT$2n+1’ gT$2n+1a T2$2n+1)7 (4)

1
3 (S(Mzon, Mxon, gTx2n11) + S(f22n, fron, TTont1)) }-

Taking upper limit as n — oo in (4) and using Lemma 1.17, we obtain

T
5(y,y, Ty) < limsupS(fxon, fron, 9TTon+1)
b2 n—>00
q 2 v
< gy max{b*(S(y, 4, Ty),0,0, - S(y,4, Ty) + S(y, 5, Ty))}
_ a5y, Ty)
ey b2 )

which implies that Ty = y. Also, we can apply condition (1) to obtain

S(fya fyvngnJrl) < b% max {S(Mya My7T$2n+1)7 S(fyv fya My)7

1
(S(My, My, grani1) (5)

S(9x2n+1, 9T2n+1, TT2n+1), B

+S(fy, fy. Txans1)) }-
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Taking upper limit n — oo in (5), and using My = Ty = y, we have

S(fy, fy.9) _ a
b2 S bt
2

5(S(My, My,y) + S(fy, fy,vy))

7S(fy7 fy7y)7

max{b>S(My, My, y),b*S(fy, fy, My),b*S(y,y,y),

which implies that S(fy, fy,y) = 0 and fy = y as 0 < ¢ < 1. Finally, from condition
(1), and the fact My = Ty = fy =y, we have

Sy, y,9y) = S(fv, fy, 9y)

< b% max{S(My, My, Ty),S(fy, fy, My), S(g9y, 9y, Ty),

%(S(My, My, gy) + S(fy, fy, Ty))

q

<qS(y,y,9Y),

which implies that S(y,y,gy) = 0 and gy = y. Hence My = Ty = fy = gy = y. If there
exists another common fixed point = in X for f, g, M and T, then

S(z,z,y) = (f:L‘, fr,gy)

<y I max{S(Mz, Mz, Ty), S(fx, fx, Mx), S(gy, gy, Ty),

%(S(Mx, Mz, gy) + S(fz, fz, Ty))

q 1
= prmax{S(z,2,y). S(z, 2,2), 5(y,y,y), 5 (S, 2,y) + Sz, 2,9))}

b4S(x x,y)

X qS(:L‘7 x’ y)7

which further implies that S(x,z,y) = 0 and hence, x = y. Thus, y is a unique common
fixed point of f, g, M and T. [ |

Ezxample 2.2 Let X = [0, 1] be endowed with Sp-metric S
x
4

o(@9,2) = (ly+2=2x[+]y -
z|)?, where b = 4. Define f, g, M and T on X by f(z) = (%)%, g(z) = (£)*, M(z) = (%)%,
T(z) = (§)*.

Obviously, f(X) C T(X) and g(X) C M(X). Furthermore, the pairs {f, M} and {g,T}

v,
(z
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are compatible. For each z, y € X, we have

S(fx, fz,gy) = (lgy — fz| + |fz — gy|)?
(Ifw—gy\)

1 1

82) S(Mx, Mz, Ty)

25
44S(M:L' Mz, Ty),

where ii < g<1landb=4. Thus, f, g, M and T satisfy all condition of Theorem 2.1.
Moreover O is the unique common ﬁxed point of f, g, M and T.

Corollary 2.3 Let (X, S) be a complete Sp-metric space and f,g : X — X two mappings
such that

S(fz, f,9y) < 3 4 max{S(z,z,y), S(fx, fz,x), S(gy, 99, ), %(S(:U,x,gy) +S(fx, fz,y))},

holds for all z,y € X with 0 < ¢ <1 and b > % Then, there exists a unique point y € X
such that fy =gy =vy.

Proof. If we take M =T = Ix(identity mapping on X), then theorem (2.1) gives that
f and g have a unique common fixed point. [ ]

Proof. If we take f and g as identity maps on X, then Theorem 2.1 gives that M and
T have a unique common fixed point. [ ]

Corollary 2.4 Let (X, S) be a complete Sp-metric space and f : X — X mapping such
that

S(fr o fu) < S max{S(a, ), S(Fr, f2.0), S(Fy, F3,9), 5(S(,w, fy) + S(fr. fo.9)},

holds for all z,y € X with0 < ¢ <1 and b > % Then f has a unique fixed point in X.

Proof. Take M and T as identity maps on X and f = g and then apply Theorem 2.1.
|
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