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Abstract. In this paper we prove a unique common coupled fixed point theorem for two
pairs of w-compatible mappings in Sb-metric spaces satisfying a contractive type condition.
We furnish an example to support our main theorem. We also give a corollary for Jungck
type maps.
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1. Introduction

In 2012, Sedghi et al. [10] introduced the notion of S-metric space and proved several
results, for example, refer [7, 11]. On the other hand, the concept of b-metric space was
introduced by Czerwik [2].

Recently, Sedghi et al. [8] defined Sb-metric spaces by using the concepts of S and
b-metric spaces and proved common fixed point theorem for four maps in Sb-metric
spaces.
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Bhaskar and Lakshmikantham [3] introduced the notion of coupled fixed point and
proved some coupled fixed point results . Several authors proved coupled fixed point
theorems in various spaces,for example, see the references[5, 6] and the references therein.

The aim of this paper is to prove a unique common coupled fixed point theorem for
four mappings in Sb-metric spaces. Throughout this paper R+ and N denote the set
of all non-negative real numbers and positive integers respectively. First we recall some
definitions, lemmas and examples.

Definition 1.1 ([10]) Let X be a non-empty set. A S-metric on X is a function S :
X3 → R+ that satisfies the following conditions for each x, y, z, a ∈ X,

(S1) : 0 < S(x, y, z) for all x, y, z ∈ X with x ̸= y ̸= z,
(S2) : S(x, y, z) = 0 ⇔ x = y = z,
(S3) : S(x, y, z) ⩽ S(x, x, a) + S(y, y, a) + S(z, z, a) for all x, y, z, a ∈ X.

Then the pair (X,S) is called a S-metric space.

Definition 1.2 ([2]) Let X be a non-empty set and s ⩾ 1 a given real number. A
function d : X ×X → R+ is called a b-metric if the following axioms are satisfied for all
x, y, z ∈ X,

(b1) d(x, y) = 0 if and only if x = y,
(b2) d(x, y) = d(y, x),
(b3) d(x, y) ⩽ s[d(x, z) + d(z, y)].

The pair (X, d) is called a b-metric space.

Definition 1.3 ([8]) Let X be a non-empty set and b ⩾ 1 be given real number. Suppose
that a mapping Sb : X

3 → R+ be a function satisfying the following properties:

(Sb1) 0 < Sb(x, y, z) for all x, y, z ∈ X with x ̸= y ̸= z,
(Sb2) Sb(x, y, z) = 0 ⇔ x = y = z,
(Sb3) Sb(x, y, z) ⩽ b(Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)) for all x, y, z, a ∈ X.

Then the function Sb is called a Sb-metric on X and the pair (X,Sb) is called a Sb-metric
space.

Remark 1 ([8])It should be noted that, the class of Sb-metric spaces is effectively larger
than that of S-metric spaces. Indeed each S-metric space is a Sb-metric space with b = 1.

Following example shows that a Sb-metric on X need not be a S-metric on X.

Example 1.4 ([8]) Let (X,Sb) be a Sb-metric space and Sb(x, y, z) = S(x, y, z)p, where
p > 1 is a real number. Note that Sb is a Sb-metric with b = 22(p−1). Also, (X,Sb) is not
necessarily a S-metric space.

Definition 1.5 ([8]) Let (X,Sb) be a Sb-metric space. Then, for x ∈ X and r > 0, we
defined the open ball BSb

(x, r) and closed ball BSb
[x, r] with center x and radius r as

follows respectively:

BSb
(x, r) = {y ∈ X : Sb(y, y, x) < r},

BSb
[x, r] = {y ∈ X : Sb(y, y, x) ≤ r}.

Lemma 1.6 ([8])In a Sb-metric space, we have

Sb(x, x, y) ≤ bSb(y, y, x)
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and

Sb(y, y, x) ≤ bSb(x, x, y).

Lemma 1.7 ([8])In a Sb-metric space, we have

Sb(x, x, z) ≤ 2bSb(x, x, y) + b2Sb(y, y, z).

Definition 1.8 ([8])If (X,Sb) be a Sb-metric space. A sequence {xn} in X is said to be:

(1) Sb-Cauchy sequence if, for each ϵ > 0, there exists n0 ∈ N such that
Sb(xn, xn, xm) < ϵ for each m,n ⩾ n0.

(2) Sb-convergent to a point x ∈ X if, for each ϵ > 0, there exists a positive integer
n0 such that Sb(xn, xn, x) < ϵ or Sb(x, , x, xn) < ϵ for all n ⩾ n0 and we denote
by lim

n→∞
xn = x.

Definition 1.9 ([8]) A Sb-metric space (X,Sb) is called complete if every Sb-Cauchy
sequence is Sb-convergent in X.

Lemma 1.10 ([9]) If (X,Sb) be a Sb-metric space with b ⩾ 1 and suppose that {xn} is
a Sb-convergent to x, then we have
(i) 1

2bSb(y, x, x) ≤ lim
n→∞

inf Sb(y, y, xn) ≤ lim
n→∞

sup Sb(y, y, xn) ≤ 2bSb(y, y, x)

and
(ii) 1

b2Sb(x, x, y) ≤ lim
n→∞

inf Sb(xn, xn, y) ≤ lim
n→∞

sup Sb(xn, xn, y) ≤ b2Sb(x, x, y) for all

y ∈ X.
In particular, if x = y, then we have lim

n→∞
Sb(xn, xn, y) = 0.

Definition 1.11 ([3]) Let X be a nonempty set. An element (x, y) ∈ X ×X is called a
coupled fixed point of a mapping F : X ×X → X if x = F (x, y) and y = F (y, x).

Definition 1.12 ([4]) Let X be a nonempty set. An element (x, y) ∈ X ×X is called

(i) a coupled coincident point of mappings F : X × X → X and f : X → X if
fx = F (x, y) and fy = F (y, x),

(ii) a common coupled fixed point of mappings F : X ×X → X and f : X → X if
x = fx = F (x, y) and y = fy = F (y, x).

Definition 1.13 ([1]) Let X be a nonempty set and F : X × X → X and f : X →
X.Then {F, f} is said to be w-compatible pair if f(F (x, y)) = F (fx, fy) and f(F (y, x)) =
F (fy, fx) whenever there exist x, y ∈ X with fx = F (x, y) and fy = F (y, x).

2. Main Result

Now we give our main result.

Theorem 2.1 Let (X,Sb) be a Sb-metric space. Suppose that f, g : X × X → X and
F,G : X → X be satisfying

(2.1.1) f(X ×X) ⊆ G(X), g(X ×X) ⊆ F (X),
(2.1.2) {f, F} and {g,G} are w-compatible pairs,
(2.1.3) One of F (X) or G(X) is Sb-complete subspace of X,
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(2.1.4) Sb

(
f(x, y), f(x, y), g(u, v)

)

⩽ kmax


Sb(Fx, Fx,Gu), Sb(Fy, Fy,Gv), Sb(f(x, y), f(x, y), Fx),

Sb(f(y, x), f(y, x), Fy), Sb(g(u, v), g(u, v), Gu), Sb(g(v, u), g(v, u), Gv),
1
4b2

[
Sb(f(x, y), f(x, y), Gu) + Sb(g(u, v), g(u, v), Fx)

]
,

1
4b2

[
Sb(f(y, x), f(y, x), Gv) + Sb(g(v, u), g(v, u), Fy)

]
 ,

for all x, y, u, v ∈ X, where 0 ≤ k < 1
4b5 .

Then f, g, F and G have a unique common coupled fixed point in X ×X.

Proof. Let x0, y0 ∈ X. From (2.1.1), we can construct the sequences {xn}, {yn}, {zn}
and {wn} such that

f(x2n, y2n) = Gx2n+1 = z2n,
f(y2n, x2n) = Gy2n+1 = w2n,

g(x2n+1, y2n+1) = Fx2n+2 = z2n+1,
g(y2n+1, x2n+1) = Fy2n+2 = w2n+1, n = 0, 1, 2, · · · .

Case(i): Suppose z2m = z2m+1 and w2m = w2m+1 for some m. Put

S2m = max{Sb(z2m+1, z2m+1, z2m), Sb(w2m+1, w2m+1, w2m)}.

From (2.1.4), we have

Sb(z2m+2,z2m+2, z2m+1)

= Sb(f(x2m+2, y2m+2), f(x2m+2, y2m+2), g(x2m+1, y2m+1))

⩽ kmax



Sb(Fx2m+2, Fx2m+2, Gx2m+1), Sb(Fy2m+2, Fy2m+2, Gy2m+1),
Sb(f(x2m+2, y2m+2), f(x2m+2, y2m+2), Fx2m+2),
Sb(f(y2m+2, x2m+2), f(y2m+2, x2m+2), Fy2m+2),
Sb(g(x2m+1, y2m+1), g(x2m+1, y2m+1), Gx2m+1),
Sb(g(y2m+1, x2m+1), g(y2m+1, x2m+1), Gy2m+1),

1
4b2

[
Sb(f(x2m+2, y2m+2), f(x2m+2, y2m+2), Gx2m+1)
+Sb(g(x2m+1, y2m+1), g(x2m+1, y2m+1), Fx2m+2)

]
,

1
4b2

[
Sb(f(y2m+2, x2m+2), f(y2m+2, x2m+2), Gy2m+1)
+Sb(g(y2m+1, x2m+1), g(y2m+1, x2m+1), Fy2m+2)

]


= kmax


Sb(z2m+1, z2m+1, z2m), Sb(w2m+1, w2m+1, w2m), Sb(z2m+2, z2m+2, z2m+1),
Sb(w2m+2, w2m+2, w2m+1), Sb(z2m+1, z2m+1, z2m), Sb(w2m+1, w2m+1, w2m),
1
4b2 [Sb(z2m+2, z2m+2, z2m) + Sb(z2m+1, z2m+1, z2m+1)],
1
4b2 [Sb(w2m+2, w2m+2, w2m) + Sb(w2m+1, w2m+1, w2m+1)]


⩽ kS2m+1.

Similarly, we can prove

Sb(w2m+2, w2m+2, w2m+1) ≤ kS2m+1.

It follows that z2m+2 = z2m+1 and w2m+2 = w2m+1. Continuing this process we can
conclude that z2m+k = z2m and w2m+k = w2m for all k ⩾ 0. It follows that {zm} and
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{wm} are Cauchy sequences.
Case (ii): Assume that zn ̸= zn+1 or wn ̸= wn+1 for all n. From (2.1.4), we have

Sb(z2n+2,z2n+2, z2n+1)

= Sb

(
f(x2n+2, y2n+2), f(x2n+2, y2n+2), g(x2n+1, y2n+1)

)

⩽ kmax



Sb(Fx2n+2, Fx2n+2, Gx2n+1), Sb(Fy2n+2, Fy2n+2, Gy2n+1),
Sb(f(x2n+2, y2n+2), f(x2n+2, y2n+2), Fx2n+2),
Sb(f(y2n+2, x2n+2), f(y2n+2, x2n+2), Fy2n+2),
Sb(g(x2n+1, y2n+1), g(x2n+1, y2n+1), Gx2n+1),
Sb(g(y2n+1, x2n+1), g(y2n+1, x2n+1), Gy2n+1),

1
4b2

[
Sb(f(x2n+2, y2n+2), f(x2n+2, y2n+2), Gx2n+1)
+Sb(g(x2n+1, y2n+1), g(x2n+1, y2n+1), Fx2n+2)

]
,

1
4b2

[
Sb(f(y2n+2, x2n+2), f(y2n+2, x2n+2), Gy2n+1)
+Sb(g(y2n+1, x2n+1), g(y2n+1, x2n+1), Fy2n+2)

]



= kmax


Sb(z2n+1, z2n+1, z2n), Sb(w2n+1, w2n+1, w2n), Sb(z2n+2, z2n+2, z2n+1),
Sb(w2n+2, w2n+2, w2n+1), Sb(z2n+1, z2n+1, z2n), Sb(w2n+1, w2n+1, w2n),
1
4b2 [Sb(z2n+2, z2n+2, z2n) + Sb(z2n+1, z2n+1, z2n+1)],
1
4b2 [Sb(w2n+2, w2n+2, w2n) + Sb(w2n+1, w2n+1, w2n+1)]

 .

But

1
4b2 [Sb(z2n+2, z2n+2, z2n) + Sb(z2n+1, z2n+1, z2n+1)]

≤ 1

4b2
[2bSb(z2n+2, z2n+2, z2n+1) + bSb(z2n, z2n, z2n+1)]

≤ 1

4b2
[2bSb(z2n+2, z2n+2, z2n+1) + b2Sb(z2n+1, z2n+1, z2n)]

≤ max{Sb(z2n+2, z2n+2, z2n+1), Sb(z2n+1, z2n+1, z2n)}

≤ max{S2n+1, S2n}

Similarly,

1
4b2 [Sb(w2n+2, w2n+2, w2n) + Sb(w2n+1, w2n+1, w2n+1)] ≤ max{S2n+1, S2n}.

Hence,

Sb(z2n+2, z2n+2, z2n+1) ≤ kmax{S2n+1, S2n}.

Similarly,

Sb(w2n+2, w2n+2, w2n+1) ≤ kmax{S2n+1, S2n}.
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Hence, it is clear that

S2n+1 ≤ kmax{S2n+1, S2n}.

If S2n+1 is maximum, then we get contradiction. Hence S2n is maximum. Therefore

S2n+1 ⩽ kS2n < S2n. (1)

Similarly, we can conclude that S2n < S2n−1. Thus, {Sn} is non-increasing sequence of
non-negative real numbers and hence converges to r ⩾ 0. Suppose r > 0. Letting n → ∞
in (1), we have

r ≤ kr < r.

It is a contradiction. Hence r = 0. Thus,

lim
n→∞

Sb(zn+1, zn+1, zn) = 0 (2)

and

lim
n→∞

Sb(wn+1, wn+1, wn) = 0. (3)

Now, we prove that {z2n} and {w2n} are Cauchy sequences in (X,Sb). On contrary
suppose that {z2n} or {w2n} is not Cauchy then there exist ϵ > 0 and monotonically
increasing sequence of natural numbers {2mk} and {2nk} such that nk > mk.

max{Sb(z2mk
, z2mk

, z2nk
), Sb(w2mk

, w2mk
, w2nk

)} ⩾ ϵ (4)

and

max{Sb(z2mk
, z2mk

, z2nk−2), Sb(w2mk
, w2mk

, w2nk−2)} < ϵ. (5)

From (4) and (5), we have that

ϵ ≤ max{Sb(z2mk
, z2mk

, z2nk
), Sb(w2mk

, w2mk
, w2nk

)}

≤ 2bmax{Sb(z2mk
, z2mk

, z2mk+2), Sb(w2mk
, w2mk

, w2mk+2)}

+bmax{Sb(z2nk
, z2nk

, z2mk+2), Sb(w2nk
, w2nk

, w2mk+2)}

≤ 4b2max{Sb(z2mk
, z2mk

, z2mk+1), Sb(w2mk
, w2mk

, w2mk+1)}

+2b2max{Sb(z2mk+2, z2mk+2, z2mk+1), Sb(w2mk+2, w2mk+2, w2mk+1)}

+2b2max{Sb(z2nk
, z2nk

, z2nk+1), Sb(w2nk
, w2nk

, w2nk+1)}

+b2max{Sb(z2mk+2, z2mk+2, z2nk+1), Sb(w2mk+2, w2mk+2, w2nk+1)}. (6)
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From (2.1.4), we have

Sb(z2mk+2,z2mk+2, z2nk+1)

= Sb(f(x2mk+2, y2mk+2), f(x2mk+2, y2mk+2), g(x2nk+1, y2nk+1))

⩽ kmax



Sb(Fx2mk+2, Fx2mk+2, Gx2nk+1), Sb(Fy2mk+2, Fy2mk+2, Gy2nk+1),
Sb(f(x2mk+2, y2mk+2), f(x2mk+2, y2mk+2), Fx2mk+2),
Sb(f(y2mk+2, x2mk+2), f(y2mk+2, x2mk+2), Fy2mk+2),
Sb(g(x2nk+1, y2nk+1), g(x2nk+1, y2nk+1), Gx2nk+1),
Sb(g(y2nk+1, x2nk+1), g(y2nk+1, x2nk+1), Gy2nk+1),

1
4b2

[
Sb(f(x2mk+2, y2mk+2), f(x2mk+2, y2mk+2), Gx2nk+1)
+Sb(g(x2nk+1, y2nk+1), g(x2nk+1, y2nk+1), Fx2mk+2)

]
,

1
4b2

[
Sb(f(y2mk+2, x2mk+2), f(y2mk+2, x2mk+2), Gy2nk+1)
+Sb(g(y2nk+1, x2nk+1), g(y2nk+1, x2nk+1), Fy2mk+2)

]



= kmax


Sb(z2mk+1, z2mk+1, z2nk

), Sb(w2mk+1, w2mk+1, w2nk
),

Sb(z2mk+2, z2mk+2, z2mk+1), Sb(w2mk+2, w2mk+2, w2mk+1),
Sb(z2nk+1, z2nk+1, z2nk), Sb(w2nk+1, w2nk+1, w2nk

),
1
4b2

[
Sb(z2mk+2, z2mk+2, z2nk

) + Sb(z2nk+1, z2nk+1, z2mk+1)
]
,

1
4b2

[
Sb(w2mk+2, w2mk+2, w2nk

) + Sb(w2nk+1, w2nk+1, w2mk+1)
]

 .

Similarly,

Sb(w2mk+2,w2mk+2, w2nk+1)

⩽ kmax


Sb(z2mk+1, z2mk+1, z2nk

), Sb(w2mk+1, w2mk+1, w2nk
),

Sb(z2mk+2, z2mk+2, z2mk+1), Sb(w2mk+2, w2mk+2, w2mk+1),
Sb(z2nk+1, z2nk+1, z2nk), Sb(w2nk+1, w2nk+1, w2nk

),
1
4b2

[
Sb(z2mk+2, z2mk+2, z2nk

) + Sb(z2nk+1, z2nk+1, z2mk+1)
]
,

1
4b2

[
Sb(w2mk+2, w2mk+2, w2nk

) + Sb(w2nk+1, w2nk+1, w2mk+1)
]

 .

Thus

max
{
Sb(z2mk+2, z2mk+2, z2nk+1), Sb(w2mk+2, w2mk+2, w2nk+1)

}

⩽ kmax


Sb(z2mk+1, z2mk+1, z2nk

), Sb(w2mk+1, w2mk+1, w2nk
),

Sb(z2mk+2, z2mk+2, z2mk+1), Sb(w2mk+2, w2mk+2, w2mk+1),
Sb(z2nk+1, z2nk+1, z2nk), Sb(w2nk+1, w2nk+1, w2nk

),
1
4b2

[
Sb(z2mk+2, z2mk+2, z2nk

) + Sb(z2nk+1, z2nk+1, z2mk+1)
]
,

1
4b2

[
Sb(w2mk+2, w2mk+2, w2nk

) + Sb(w2nk+1, w2nk+1, w2mk+1)
]

 .(7)
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But

max{Sb(z2mk+1, z2mk+1, z2nk
), Sb(w2mk+1, w2mk+1, w2nk

)}

≤ 2bmax{Sb(z2mk+1, z2mk+1, z2mk
), Sb(w2mk+1, w2mk+1, w2mk

)}

+ bmax{Sb(z2nk
, z2nk

, z2mk
), Sb(w2nk

, w2nk
, w2mk

)}

≤ 2bmax{Sb(z2mk+1, z2mk+1, z2mk
), Sb(w2mk+1, w2mk+1, w2mk

)}

+ b2max{Sb(z2mk
, z2mk

, z2nk
), Sb(w2mk

, w2mk
, w2nk

)}

≤ 2bmax{Sb(z2mk+1, z2mk+1, z2mk
), Sb(w2mk+1, w2mk+1, w2mk

)}

+ b2
(
2bmax{Sb(z2mk

, z2mk
, z2nk−2

), Sb(w2mk
, w2mk

, w2nk−2
)}
)

+ b2
(
bmax{Sb(z2nk

, z2nk
, z2nk−2

), Sb(w2nk
, w2nk

, w2nk−2
)}
)

< 2bmax{Sb(z2mk+1, z2mk+1, z2mk
), Sb(w2mk+1, w2mk+1, w2mk

)}

+ 2b3ϵ+ b3 (2bmax{Sb(z2nk
, z2nk

, z2nk−1), Sb(w2nk
, w2nk

, w2nk−1)})

+ b3
(
bmax{Sb(z2nk−2

, z2nk−2, z2nk−1), Sb(w2nk−2, w2nk−2, w2nk−1)}
)

≤ 2bmax{Sb(z2mk+1, z2mk+1, z2mk
), Sb(w2mk+1, w2mk+1, w2mk

)}

+ 2b3ϵ+ 2b4max{Sb(z2nk
, z2nk

, z2nk−1), Sb(w2nk
, w2nk

, w2nk−1)}

+ b5max{Sb(z2nk−1, z2nk−1, z2nk−2), Sb(w2nk−1, w2nk−1, w2nk−2)}.

Letting k → ∞, we have

lim
k→∞

max{Sb(z2mk+1, z2mk+1, z2nk
), Sb(w2mk+1, w2mk+1, w2nk

)} ≤ 2b3ϵ.

Also

1
4b2

(
Sb(z2mk+2, z2mk+2, z2nk

) + Sb(z2nk+1, z2nk+1, z2mk+1)
)

≤ 1

4b2

(
2b Sb(z2mk+2, z2mk+2, z2mk+1) + b2 Sb(z2mk+1, z2mk+1, z2nk

)
+2b Sb(z2nk+1, z2nk+1, z2nk

) + b Sb(z2mk+1, z2mk+1, z2nk
)

)
≤ 1

b2
max

{
2bSb(z2mk+2, z2mk+2, z2mk+1), b

2Sb(z2mk+1, z2mk+1, z2nk
),

2b Sb(z2nk+1, z2nk+1, z2nk
), b Sb(z2mk+1, z2mk+1, z2nk

)

}

≤ max

2 Sb(z2mk+2, z2mk+2, z2mk+1), Sb(z2mk+1, z2mk+1, z2nk
),

2 Sb(z2nk+1, z2nk+1, z2nk
), Sb(z2mk+1, z2mk+1, z2nk

),
Sb(w2mk+1, w2mk+1, z2nk

)

 .

Letting k → ∞, we have

lim
k→∞

1

4b2
(Sb(z2mk+2, z2mk+2, z2nk

) + Sb(z2nk+1, z2nk+1, z2mk+1)) ≤ 2bϵ.

Similarly,

lim
k→∞

1

4b2
(Sb(w2mk+2, w2mk+2, w2nk

) + Sb(w2nk+1, w2nk+1, w2mk+1)) ≤ 2bϵ.
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Now, letting k → ∞ in (7), we have

lim
k→∞

max

{
Sb(z2mk+2, z2mk+2, z2nk+1),
Sb(w2mk+2, w2mk+2, w2nk+1)

}
≤ kmax

{
2b3ϵ, 0, 0, 2bϵ, 2bϵ

}
= k 2b3ϵ.

Hence, letting k → ∞ in (6), we have

ϵ ≤ 0 + 0 + 0 + b2 k 2b3ϵ < ϵ,

it is a contradiction. Hence, {z2n} and {w2n} are Sb-Cauchy sequences. In addition

max{Sb(z2n+1, z2n+1, z2m+1), Sb(w2n+1, w2n+1, w2m+1)}

⩽ 2bmax{Sb(z2n+1, z2n+1, z2n), Sb(w2n+1, w2n+1, w2n)}

+ bmax{Sb(z2m+1, z2m+1, z2n), Sb(w2m+1, w2m+1, w2n)}

⩽ 2bmax{Sb(z2n+1, z2n+1, z2n), Sb(w2n+1, w2n+1, w2n)}

+ 2b2max{Sb(z2m+1, z2m+1, z2m), Sb(w2m+1, w2m+1, w2m)}

+ b2max{Sb(z2n, z2n, z2m), Sb(w2n, w2n, w2m)}.

From(2), (3) and since {z2n} and {w2n} are Sb -Cauchy sequences, it follows that {z2n+1}
and {w2n+1} are also Sb-Cauchy sequences in (X,Sb). Thus, {zn} and {wn} are Sb-Cauchy
sequences in (X,Sb). Suppose F (X) is complete subspace of X. Then it follows that {zn}
and {wn} converges to α and β respectively in F (X). Thus, there exist u and v in F (X)
such that

lim
n→∞

zn = α = Fu and lim
n→∞

wn = β = Fv. (8)

Now, we have to prove that α = f(u, v) and β = f(v, u). Using (2.1.4) and Lemma
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(1.10), we obtain that

1

2b
Sb(f(u, v), f(u, v), α)

⩽ lim
n→∞

sup Sb(f(u, v), f(u, v), g(x2n+1, y2n+1))

⩽ lim
n→∞

sup kmax



Sb(Fu, Fu,Gx2n+1), Sb(Fv, Fv,Gy2n+1),
Sb(f(u, v), f(u, v), Fu), Sb(f(v, u), f(v, u), Fv),
Sb(g(x2n+1, y2n+1), g(x2n+1, y2n+1), Gx2n+1),
Sb(g(y2n+1, x2n+1), g(y2n+1, x2n+1), Gy2n+1),

1
4b2

[
Sb(f(u, v), f(u, v), Gx2n+1)
+Sb(g(x2n+1, y2n+1), g(x2n+1, y2n+1), Fu)

]
,

1
4b2

[
Sb(f(v, u), f(v, u), Gy2n+1)
+Sb(g(y2n+1, x2n+1), g(y2n+1, x2n+1), Fv)

]


= lim

n→∞
sup kmax


Sb(α, α, z2n), Sb(β, β, w2n), Sb(f(u, v), f(u, v), α),
Sb(f(v, u), f(v, u), β), Sb(z2n+1, z2n+1, z2n), Sb(w2n+1, w2n+1, w2n),
1
4b2

[
Sb(f(u, v), f(u, v), z2n) + Sb(z2n+1, z2n+1, α)

]
,

1
4b2

[
Sb(f(v, u), f(v, u), w2n) + Sb(w2n+1, w2n+1, β)

]


≤ kmax

{
0, 0, Sb(f(u, v), f(u, v), α), Sb(f(v, u), f(v, u), β), 0, 0,
1
4b2 [2b Sb(f(u, v), f(u, v), α) + 0], 1

4b2 [2b Sb(f(v, u), f(v, u), β) + 0]

}
= kmax

{
Sb(f(u, v), f(u, v), α), Sb(f(v, u), f(v, u), β)

}
.

Similarly,

1

2b
Sb(f(v, u), f(v, u), β) ≤ kmax

{
Sb(f(u, v), f(u, v), α), Sb(f(v, u), f(v, u), β)

}
.

Thus, we have

1

2b
max

{
Sb(f(u, v), f(u, v), α),
Sb(f(v, u), f(v, u), β)

}
≤ kmax

{
Sb(f(u, v), f(u, v), α),
Sb(f(v, u), f(v, u), β)

}
.

It follows that f(u, v) = α and f(v, u) = β. Thus, (α, β) is a coupled coincidence point of
f and F . Since {f, F} is a w-compatible pair, we have Fα = f(α, β) and Fβ = f(β, α).
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From (2.1.4) and Lemma (1.10), we obtain that

1

2b
Sb(f(α, β), f(α, β), α)

⩽ lim
n→∞

sup Sb(f(α, β), f(α, β), g(x2n+1, y2n+1))

≤ lim
n→∞

sup k max



Sb(Fα, Fα,Gx2n+1), Sb(Fβ, Fβ,Gy2n+1),
Sb(f(α, β), f(α, β), Fα), Sb(f(β, α), f(β, α), Fβ),
Sb(g(x2n+1, y2n+1), g(x2n+1, y2n+1), Gx2n+1),
Sb(g(y2n+1, x2n+1), g(y2n+1, x2n+1), Gy2n+1),

1
4b2

[
Sb(f(α, β), f(α, β), Gx2n+1)
+Sb(g(x2n+1, y2n+1), g(x2n+1, y2n+1), Fα)

]
,

1
4b2

[
Sb(f(β, α), f(β, α), Gy2n+1)
+Sb(g(y2n+1, x2n+1), g(y2n+1, x2n+1), Fβ)

]



= lim
n→∞

sup k max



Sb(Fα, Fα, z2n), Sb(Fβ, Fβ,w2n),
Sb(f(α, β), f(α, β), Fα), Sb(f(β, α), f(β, α), Fβ),

Sb(z2n+1, z2n+1, z2n), Sb(w2n+1, w2n+1, w2n),

1
4b2

[
Sb(f(α, β), f(α, β), z2n)
+Sb(z2n+1, z2n+1, f(α, β))

]
,

1
4b2

[
Sb(f(β, α), f(β, α), w2n)
+Sb(w2n+1, w2n+1, f(β, α))

]


≤ k max


2bSb(f(α, β), f(α, β), α), 2bSb(f(β, α), f(β, α), β), 0, 0, 0, 0,

1
4b2 [2bSb(f(α, β), f(α, β), α) + b2Sb(α, α, f(α, β))],
1
4b2 [2bSb(f(β, α), f(β, α), β) + b2Sb(β, β, f(β, α))]


= 2b k max

{
Sb(f(α, β), f(α, β), α), Sb(f(β, α), f(β, α), β)

}
.

Similarly,

1

2b
Sb(f(β, α), f(β, α), β) ≤ 2b k max

{
Sb(f(α, β), f(α, β), α),
Sb(f(β, α), f(β, α), β)

}
.

Hence,

1

2b
max

{
Sb(f(α, β), f(α, β), α),
Sb(f(β, α), f(β, α), β)

}
≤ 2b k max

{
Sb(f(α, β), f(α, β), α),
Sb(f(β, α), f(β, α), β)

}
.

It follows that α = Fα = f(α, β), and β = Fβ = f(β, α). Therefore (α, β) is common
coupled fixed point of (f, F ). Since f(X × X) ⊆ G(X), there exist a, b ∈ X such that
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f(α, β) = α = Ga and f(β, α) = β = Gb. From (2.1.4), by Lemma 1.7 and b ⩾ 1 we have

Sb(α,α, g(a, b)) = Sb(f(α, β), f(α, β), g(a, b))

⩽ k max


Sb(Fα, Fα,Ga), Sb(Fβ, Fβ,Gb), Sb(f(α, β), f(α, β), Fα),
Sb(f(β, α), f(β, α), Fβ), Sb(g(a, b), g(a, b), Ga), Sb(g(b, a), g(b, a), Gb),
1
4b2 [Sb(f(α, β), f(α, β), Ga) + Sb(g(a, b), g(a, b), Fα)],
1
4b2 [Sb(f(β, α), f(β, α), Gb) + Sb(g(b, a), g(b, a), Fβ)]


= k max

{
0, 0, 0, 0, Sb(g(a, b), g(a, b), α), Sb(g(b, a), g(b, a), β),
1
4b2 [0 + Sb(g(a, b), g(a, b), Fα)], 1

4b2 [0 + Sb(g(b, a), g(b, a), Fβ)]

}
≤ b k max

{
Sb(α, α, g(a, b)), Sb(β, β, g(b, a))

}
.

Similarly,

Sb(β, β, g(b, a)) ≤ b k max
{
Sb(α, α, g(a, b)), Sb(β, β, g(b, a))

}
.

Thus,

max
{
Sb(α, α, g(a, b)), Sb(β, β, g(b, a))

}
≤ bkmax

{
Sb(α, α, g(a, b)), Sb(β, β, g(b, a))

}
.

It follows that g(a, b) = α = Ga and g(b, a) = β = Gb. Since the pair {g,G} is w-
compatible, we have Gα = g(α, β) and Gβ = g(β, α). Using (2.1.4), we obtain

Sb(α,α, g(α, β)) = Sb(f(α, β), f(α, β), g(α, β))

⩽ kmax


Sb(Fα, Fα,Gα), Sb(Fβ, Fβ,Gβ),

Sb(f(α, β), f(α, β), Fα), Sb(f(β, α), f(β, α), Fβ),
Sb(g(α, β), g(α, β), Gα), Sb(g(β, α), g(β, α), Gβ),

1
4b2 [Sb(f(α, β), f(α, β), Gα) + Sb(g(α, β), g(α, β), Fα)],
1
4b2 [Sb(f(β, α), f(β, α), Gβ) + Sb(g(β, α), g(β, α), Fβ)]


≤ kmax


Sb(α, α, g(α, β)), Sb(β, β, g(β, α)), 0, 0, 0, 0,
1
4b2 [Sb(α, α, g(α, β)) + Sb(g(α, β), g(α, β), α)],
1
4b2 [Sb(β, β, g(β, α)) + Sb(g(β, α), g(β, α), β)]


= kmax

{
Sb(α, α, g(α, β)), Sb(β, β, g(β, α))

}
.

Similarly,

Sb(β, β, g(β, α)) ⩽ kmax
{
Sb(α, α, g(α, β)), Sb(β, β, g(β, α))

}
.

Thus,

max
{
Sb(α, α, g(α, β)), Sb(β, β, g(β, α))

}
⩽ kmax

{
Sb(α, α, g(α, β)), Sb(β, β, g(β, α))

}
.

It follows that α = g(α, β) and β = g(β, α). Thus, α = Gα = g(α, β) and β = Gβ =
g(β, α). Hence, (α, β) is a common coupled fixed point of f, g, F and G. To prove unique-
ness let us suppose (α1, β1) ∈ X ×X is another common coupled fixed point of f, g, F
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and G such that α ̸= α1 and β ̸= β1. From (2.1.4), we have that

Sb(α,α, α
1) = Sb(f(α, β), f(α, β), g(α

1, β1))

⩽ kmax


Sb(Fα, Fα,Gα1), Sb(Fβ, Fβ,Gβ1),

Sb(f(α, β), f(α, β), Fα), Sb(f(β, α), f(β, α), Fβ),
Sb(g(α

1, β1), g(α1, β1), Gα1), Sb(g(β
1, α1), g(β1, α1), Gβ1),

1
4b2

[
Sb(f(α, β), f(α, β), Gα1) + Sb(g(α

1, β1), g(α1, β1), Fα)
]
,

1
4b2

[
Sb(f(β, α), f(β, α), Gβ1) + Sb(g(β

1, α1), g(β1, α1), Fβ)
]


= kmax

{
Sb(α, α, α

1), Sb(β, β, β
1), 0, 0, 0, 0,

1
4b2

[
Sb(α, α, α

1) + Sb(α
1, α1, α)

]
, 1
4b2

[
Sb(β, β, β

1) + Sb(β
1, β1, β)

]}
= k max

{
Sb(α, α, α

1), Sb(β, β, β
1)
}
.

Similarly,

Sb(β, β, β
1) ⩽ kmax

{
Sb(α, α, α

1), Sb(β, β, β
1)
}
.

Thus,

max
{
Sb(α, α, α

1), Sb(β, β, β
1)
}
⩽ kmax

{
Sb(α, α, α

1), Sb(β, β, β
1)
}
.

It is a contradiction. Hence, (α, β) is the unique common coupled fixed point of f, g, F
and G. ■

Example 2.2 Let X = [0, 1] and

Sb : X ×X ×X → R+ by Sb(x, y, z) = (|y + z − 2x|+ |y − z|)2,

then Sb is Sb-metric space with b = 4. Define f, g : X ×X → X and F,G : X → X by

f(x, y) =
x2 + y2

46
, g(x, y) =

x2 + y2

47
, F (x) =

x2

4
and G(x) =

x2

16
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also put k = 1
47 . Then

Sb(f(x, y),f(x, y), g(u, v))

= (|f(x, y) + g(u, v)− 2f(x, y)|+ |f(x, y)− g(u, v)|)2

= 4 (|f(x, y)− g(u, v)|)2

= 4

∣∣∣∣x2 + y2

46
− u2 + v2

47

∣∣∣∣2
= 4

∣∣∣∣4x2 − u2

47
+

4y2 − v2

47

∣∣∣∣2
= 4

1

(44)2

(
1

4

{∣∣∣∣4x2 − u2

16

∣∣∣∣+ ∣∣∣∣4y2 − v2

16

∣∣∣∣})2

⩽ 4
1

(44)2 4

(
1

2

{∣∣∣∣4x2 − u2

16

∣∣∣∣+ ∣∣∣∣4y2 − v2

16

∣∣∣∣})2

⩽ 4
1

49

(
max

{∣∣∣∣4x2 − u2

16

∣∣∣∣ , ∣∣∣∣4y2 − v2

16

∣∣∣∣})2

=
1

49
max{Sb(Fx, Fx,Gu), Sb(Fy, Fy,Gv)}

⩽ kmax


Sb(Fx, Fx,Gu), Sb(Fy, Fy,Gv), Sb(f(x, y), f(x, y), Fx),

Sb(f(y, x), f(y, x), Fy), Sb(g(u, v), g(u, v), Gu), Sb(g(v, u), g(v, u), Gv),
1
4b2

[
Sb(f(x, y), f(x, y), Gu) + Sb(g(u, v), g(u, v), Fx)

]
,

1
4b2

[
Sb(f(y, x), f(y, x), Gv) + Sb(g(v, u), g(v, u), Fy)

]
 .

It is clear that all conditions of Theorem 2.1 satisfied and (0, 0) is unique common coupled
fixed point of f, g, F and G.

From Theorem 2.1, we have the following corollary.

Corollary 2.3 Let (X,Sb) be a Sb-metric space. Suppose that f : X × X → X and
F : X → X be satisfying

(2.3.1) f(X ×X) ⊆ F (X),
(2.3.2) (f, F ) are weakly compatible pairs,
(2.3.3) F (X) is Sb-complete subspace of X,
(2.3.4) Sb(f(x, y), f(x, y), f(u, v))

≤ k max


Sb(Fx, Fx, Fu), Sb(Fy, Fy, Fv), Sb(f(x, y), f(x, y), Fx),

Sb(f(y, x), f(y, x), Fy), Sb(f(u, v), f(u, v), Fu), Sb(f(v, u), f(v, u), Fv),
1
4b2

[
Sb(f(x, y), f(x, y), Fu) + Sb(f(u, v), f(u, v), Fx)

]
,

1
4b2

[
Sb(f(y, x), f(y, x), Fv) + Sb(f(v, u), f(v, u), Fy)

]


for all x, y, u, v ∈ X, where 0 ≤ k < 1
4b2 .

Then f and F have a unique common coupled fixed point in X ×X.
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