Journal of Linear and Topological Algebra Vol. 06*, No.* 01*,* 2017*,* 29*-* 43

Unique common coupled fixed point theorem for four maps in S_b -metric spaces

K. P. R. Rao^{a*}, G. N.V. Kishore^b, Sk. Sadik^c

^a*Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur-522 510, Andhra Pradesh, India.* ^b*Department of Mathematics, K L University, Vaddeswaram, Guntur-522 502, Andhra Pradesh, India.* ^c*Department of Mathematics, Sir C R R College of Engineering, Eluru, West Godavari-534 007, Andhra Pradesh, India.*

Received 2 February 2017; Revised 4 April 2017; Accepted 25 April 2017.

Abstract. In this paper we prove a unique common coupled fixed point theorem for two pairs of *w*-compatible mappings in *Sb*-metric spaces satisfying a contractive type condition. We furnish an example to support our main theorem. We also give a corollary for Jungck type maps.

*⃝*c 2017 IAUCTB. All rights reserved.

Keywords: *Sb*-Metric space, *w*-compatible pairs, *Sb*-completeness, coupled fixed point.

2010 AMS Subject Classification: 54H25, 47H10, 54E50.

1. Introduction

In 2012, Sedghi et al. [10] introduced the notion of *S*-metric space and proved several results, for example, refer [7, 11]. On the other hand, the concept of *b*-metric space was introduced by Czerwik [2].

Recently, Sedghi et al. [8] defined *Sb*-metric spaces by using the concepts of *S* and *b*-metric spaces and proved common fixed point theorem for four maps in *Sb*-metric spaces.

Print ISSN: 2252-0201 [©] 2017 IAUCTB. All rights reserved.

Online ISSN: 2345-5934 *Online* ISSN: 2345-5934

*[∗]*Corresponding author.

E-mail address: kprrao2004@yahoo.com (K. P. R. Rao).

Bhaskar and Lakshmikantham [3] introduced the notion of coupled fixed point and proved some coupled fixed point results . Several authors proved coupled fixed point theorems in various spaces,for example, see the references[5, 6] and the references therein.

The aim of this paper is to prove a unique common coupled fixed point theorem for four mappings in S_b -metric spaces. Throughout this paper \mathcal{R}^+ and $\mathcal N$ denote the set of all non-negative real numbers and positive integers respectively. First we recall some definitions, lemmas and examples.

Definition 1.1 ([10]) Let *X* be a non-empty set. A *S*-metric on *X* is a function *S* : $X^3 \to \mathcal{R}^+$ that satisfies the following conditions for each $x, y, z, a \in X$,

 $(S1): 0 < S(x, y, z)$ for all $x, y, z \in X$ with $x \neq y \neq z$,

 $(S2): S(x, y, z) = 0 \Leftrightarrow x = y = z,$

 $(S3): S(x, y, z) \leqslant S(x, x, a) + S(y, y, a) + S(z, z, a)$ for all $x, y, z, a \in X$.

Then the pair (*X, S*) is called a *S*-metric space.

Definition 1.2 ([2]) Let *X* be a non-empty set and $s \ge 1$ a given real number. A function $d: X \times X \to \mathbb{R}^+$ is called a b-metric if the following axioms are satisfied for all $x, y, z \in X$

 (b_1) $d(x, y) = 0$ if and only if $x = y$, (b_2) $d(x, y) = d(y, x),$ (b_3) $d(x, y) \leq s[d(x, z) + d(z, y)].$

The pair (X, d) is called a b-metric space.

Definition 1.3 ([8]) Let *X* be a non-empty set and $b \ge 1$ be given real number. Suppose that a mapping $S_b: X^3 \to \mathcal{R}^+$ be a function satisfying the following properties:

 $(S_b 1)$ $0 < S_b(x, y, z)$ for all $x, y, z \in X$ with $x \neq y \neq z$,

 $(S_b 2)$ $S_b(x, y, z) = 0 \Leftrightarrow x = y = z$,

 (S_b3) $S_b(x, y, z) \leq b(S_b(x, x, a) + S_b(y, y, a) + S_b(z, z, a)$ for all $x, y, z, a \in X$.

Then the function S_b is called a S_b -metric on X and the pair (X, S_b) is called a S_b -metric space.

Remark 1 ([8])It should be noted that, the class of Sb-metric spaces is effectively larger than that of S-metric spaces. Indeed each S-metric space is a S_b *-metric space with* $b = 1$ *.*

Following example shows that a S_b -metric on *X* need not be a *S*-metric on *X*.

Example 1.4 ([8]) Let (X, S_b) be a S_b -metric space and $S_b(x, y, z) = S(x, y, z)^p$, where $p > 1$ is a real number. Note that S_b is a S_b -metric with $b = 2^{2(p-1)}$. Also, (X, S_b) is not necessarily a *S*-metric space.

Definition 1.5 ([8]) Let (X, S_b) be a S_b -metric space. Then, for $x \in X$ and $r > 0$, we defined the open ball $B_{S_b}(x,r)$ and closed ball $B_{S_b}(x,r)$ with center *x* and radius *r* as follows respectively:

$$
B_{S_b}(x,r) = \{ y \in X : S_b(y,y,x) < r \},
$$
\n
$$
B_{S_b}[x,r] = \{ y \in X : S_b(y,y,x) \le r \}.
$$

Lemma 1.6 ([8])In a S_b -metric space, we have

$$
S_b(x, x, y) \le bS_b(y, y, x)
$$

and

$$
S_b(y, y, x) \le bS_b(x, x, y).
$$

Lemma 1.7 ([8])In a S_b -metric space, we have

$$
S_b(x, x, z) \le 2bS_b(x, x, y) + b^2S_b(y, y, z).
$$

Definition 1.8 ([8])If (X, S_b) be a S_b -metric space. A sequence $\{x_n\}$ in X is said to be:

- (1) S_b -Cauchy sequence if, for each $\epsilon > 0$, there exists $n_0 \in \mathcal{N}$ such that $S_b(x_n, x_n, x_m) < \epsilon$ for each $m, n \geq n_0$.
- (2) S_b -convergent to a point $x \in X$ if, for each $\epsilon > 0$, there exists a positive integer *n*₀ such that $S_b(x_n, x_n, x) < \epsilon$ or $S_b(x_1, x_2, x_n) < \epsilon$ for all $n \geq n_0$ and we denote by $\lim_{n\to\infty} x_n = x$.

Definition 1.9 ([8]) A S_b -metric space (X, S_b) is called complete if every S_b -Cauchy sequence is *Sb*-convergent in *X*.

Lemma 1.10 ([9]) If (X, S_b) be a S_b -metric space with $b \ge 1$ and suppose that $\{x_n\}$ is a S_b -convergent to x , then we have $(i) \frac{1}{2i}$ $\frac{1}{2b}S_b(y, x, x) \leq \lim_{n \to \infty} \inf S_b(y, y, x_n) \leq \lim_{n \to \infty} \sup S_b(y, y, x_n) \leq 2bS_b(y, y, x)$ and $(ii) \frac{1}{h^2}$ $\frac{1}{b^2}S_b(x, x, y) \le \lim_{n \to \infty} \inf S_b(x_n, x_n, y) \le \lim_{n \to \infty} \sup S_b(x_n, x_n, y) \le b^2 S_b(x, x, y)$ for all *y ∈ X*. In particular, if $x = y$, then we have $\lim_{n \to \infty} S_b(x_n, x_n, y) = 0$.

Definition 1.11 ([3]) Let *X* be a nonempty set. An element $(x, y) \in X \times X$ is called a coupled fixed point of a mapping $F: X \times X \to X$ if $x = F(x, y)$ and $y = F(y, x)$.

Definition 1.12 ([4]) Let *X* be a nonempty set. An element $(x, y) \in X \times X$ is called

- (*i*) a coupled coincident point of mappings $F: X \times X \to X$ and $f: X \to X$ if $fx = F(x, y)$ and $fy = F(y, x)$,
- (*ii*) a common coupled fixed point of mappings $F: X \times X \to X$ and $f: X \to X$ if $x = fx = F(x, y)$ and $y = fy = F(y, x)$.

Definition 1.13 ([1]) Let *X* be a nonempty set and $F: X \times X \rightarrow X$ and $f: X \rightarrow Y$ *X*. Then ${F, f}$ is said to be *w*-compatible pair if $f(F(x, y)) = F(fx, fy)$ and $f(F(y, x)) =$ *F*(*fy, fx*) whenever there exist $x, y \in X$ with $fx = F(x, y)$ and $fy = F(y, x)$.

2. Main Result

Now we give our main result.

Theorem 2.1 Let (X, S_b) be a S_b -metric space. Suppose that $f, g: X \times X \to X$ and $F, G: X \to X$ be satisfying

 $f(X \times X) \subseteq G(X), g(X \times X) \subseteq F(X),$ $(2.1.2) \{f, F\}$ and $\{g, G\}$ are *w*-compatible pairs, $(2.1.3)$ One of $F(X)$ or $G(X)$ is S_b -complete subspace of X, $(2.1.4)$ $S_b(f(x, y), f(x, y), g(u, v))$

$$
\leq k \max \left\{\frac{S_b(Fx, Fx, Gu), S_b(Fy, Fy, Gv), S_b(f(x, y), f(x, y), Fx),}{\frac{1}{4b^2} \left[\frac{S_b(f(x, y), f(y, x), Fy), S_b(g(u, v), g(u, v), Gu), S_b(g(v, u), g(v, u), Gv),}{\frac{1}{4b^2} \left[\frac{S_b(f(x, y), f(x, y), Gu) + S_b(g(u, v), g(u, v), Fx)}{\frac{1}{4b^2} \left[\frac{S_b(f(y, x), f(y, x), Gv) + S_b(g(v, u), g(v, u), Fy)}{\frac{1}{4b^2} \left[\frac{S_b(f(y, x), f(y, x), Gv) + S_b(g(v, u), g(v, u), Fy)}{\frac{1}{4b^2} \left[\frac{S_b(f(y, x), f(y, x), Gv) + S_b(g(v, u), g(v, u), Fy)}{\frac{1}{4b^2} \left[\frac{S_b(f(y, x), f(y, x), Gv) + S_b(g(v, u), g(v, u), Fy)}{\frac{1}{4b^2} \left[\frac{S_b(f(y, x), f(y, x), Gv) + S_b(g(v, u), g(v, u), Fy)}{\frac{1}{4b^2} \left[\frac{S_b(f(y, x), f(y, x), Gv) + S_b(g(v, u), g(v, u), Fy)}{\frac{1}{4b^2} \left[\frac{S_b(f(y, x), f(y, x), Gv) + S_b(g(v, u), g(v, u), Fy)}{\frac{1}{4b^2} \left[\frac{S_b(f(y, x), f(y, x), Gv) + S_b(g(v, u), g(v, u), Fy)}{\frac{1}{4b^2} \left[\frac{S_b(f(y, x), f(y, x), Gv) + S_b(g(v, u), g(v, u), Fy)}{\frac{1}{4b^2} \left[\frac{S_b(f(y, x), f(y, x), Gv) + S_b(g(v, u), g(v, u), Fy)}{\frac{1}{4b^2} \left[\frac{S_b(f(y, x), Gv) + S_b(g(v, u), g(v, u), Fy)}{\frac{1}{4b^2} \left[\frac{S_b(f(y, x), Gv) + S_b(g(v, u), g(v, u), Fy)}{\frac{1}{4b^2} \left[\frac{S_b(f(y, x), Gv) + S_b(g(v, u), g(v, u), Fy)}{\frac{1}{4b^2} \left[\frac{S_b(f(y, x
$$

for all $x, y, u, v \in X$, where $0 \leq k < \frac{1}{4b^5}$.

Then f, g, F and *G* have a unique common coupled fixed point in $X \times X$.

Proof. Let $x_0, y_0 \in X$. From (2.1.1), we can construct the sequences $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ and $\{w_n\}$ such that

$$
f(x_{2n}, y_{2n}) = Gx_{2n+1} = z_{2n},
$$

\n
$$
f(y_{2n}, x_{2n}) = Gy_{2n+1} = w_{2n},
$$

\n
$$
g(x_{2n+1}, y_{2n+1}) = Fx_{2n+2} = z_{2n+1},
$$

\n
$$
g(y_{2n+1}, x_{2n+1}) = Fy_{2n+2} = w_{2n+1}, \quad n = 0, 1, 2, \cdots.
$$

Case(i): Suppose $z_{2m} = z_{2m+1}$ and $w_{2m} = w_{2m+1}$ for some *m*. Put

$$
S_{2m} = \max\{S_b(z_{2m+1}, z_{2m+1}, z_{2m}), S_b(w_{2m+1}, w_{2m+1}, w_{2m})\}.
$$

From (2*.*1*.*4), we have

$$
S_{b}(z_{2m+2}, z_{2m+2}, z_{2m+1})
$$
\n
$$
= S_{b}(f(x_{2m+2}, y_{2m+2}), f(x_{2m+2}, y_{2m+2}), g(x_{2m+1}, y_{2m+1}))
$$
\n
$$
= S_{b}(f(x_{2m+2}, y_{2m+2}, F_{x_{2m+2}}, G_{x_{2m+1}}), S_{b}(F_{y_{2m+2}}, F_{y_{2m+2}}, G_{y_{2m+1}}),
$$
\n
$$
S_{b}(f(x_{2m+2}, y_{2m+2}), f(x_{2m+2}, y_{2m+2}), F_{x_{2m+2}}),
$$
\n
$$
S_{b}(f(y_{2m+2}, x_{2m+2}), f(y_{2m+2}, x_{2m+2}), F_{y_{2m+2}}),
$$
\n
$$
S_{b}(g(x_{2m+1}, y_{2m+1}), g(x_{2m+1}, y_{2m+1}), G_{x_{2m+1}}),
$$
\n
$$
S_{b}(g(y_{2m+1}, x_{2m+1}), g(y_{2m+1}, x_{2m+1}), G_{y_{2m+1}}),
$$
\n
$$
S_{b}(g(y_{2m+1}, x_{2m+2}), f(x_{2m+2}, y_{2m+2}), G_{x_{2m+1}}),
$$
\n
$$
S_{b}(g(x_{2m+1}, y_{2m+1}), g(x_{2m+1}, y_{2m+1}), F_{x_{2m+2}})]
$$
\n
$$
= k \max \begin{cases} S_{b}(f(x_{2m+2}, x_{2m+2}), f(y_{2m+2}, x_{2m+2}), G_{y_{2m+1}}) \\ + S_{b}(g(y_{2m+1}, x_{2m+1}), g(y_{2m+1}, x_{2m+1}), F_{y_{2m+2}}) \end{cases}
$$
\n
$$
= k \max \begin{cases} S_{b}(z_{2m+1}, z_{2m+1}, z_{2m}), S_{b}(w_{2m+1}, w_{2m+1}, z_{2m+2}, z_{2m+2}, z_{2m+1}), \\ S_{b}(w_{2m+2}, w_{2m+2}, w_{2m+1}), S_{b}(z_{2m+1}, z_{2m+1}, z_{2m+1}), S_{b}(z_{2m+2}, z_{2m+2}, z_{2m+1
$$

Similarly, we can prove

 $S_b(w_{2m+2}, w_{2m+2}, w_{2m+1}) \leq kS_{2m+1}$.

It follows that $z_{2m+2} = z_{2m+1}$ and $w_{2m+2} = w_{2m+1}$. Continuing this process we can conclude that $z_{2m+k} = z_{2m}$ and $w_{2m+k} = w_{2m}$ for all $k \geq 0$. It follows that $\{z_m\}$ and *{wm}* are Cauchy sequences.

Case (ii): Assume that $z_n \neq z_{n+1}$ or $w_n \neq w_{n+1}$ for all *n*. From (2.1.4), we have

$$
S_b(z_{2n+2}, z_{2n+2}, z_{2n+1})
$$

$$
\leq S_b(f(x_{2n+2}, y_{2n+2}), f(x_{2n+2}, y_{2n+2}), g(x_{2n+1}, y_{2n+1}))
$$
\n
$$
\leq S_b(f(x_{2n+2}, Fx_{2n+2}, Gx_{2n+1}), S_b(Fy_{2n+2}, Fy_{2n+2}, Gy_{2n+1}),
$$
\n
$$
S_b(f(x_{2n+2}, y_{2n+2}), f(x_{2n+2}, y_{2n+2}), Fx_{2n+2}),
$$
\n
$$
S_b(f(y_{2n+2}, x_{2n+2}), f(y_{2n+2}, x_{2n+2}), Fy_{2n+2}),
$$
\n
$$
S_b(g(x_{2n+1}, y_{2n+1}), g(x_{2n+1}, y_{2n+1}), Gx_{2n+1}),
$$
\n
$$
S_b(g(y_{2n+1}, x_{2n+1}), g(y_{2n+1}, x_{2n+1}), Gy_{2n+1}),
$$
\n
$$
S_b(g(y_{2n+1}, x_{2n+2}), f(x_{2n+2}, y_{2n+2}), Gx_{2n+1})
$$
\n
$$
+ S_b(g(x_{2n+1}, y_{2n+1}), g(x_{2n+1}, y_{2n+1}), Fx_{2n+2})
$$
\n
$$
\frac{1}{4b^2} \begin{bmatrix} S_b(f(y_{2n+2}, x_{2n+2}), f(y_{2n+2}, x_{2n+2}), Gy_{2n+1}) \\ S_b(f(y_{2n+2}, x_{2n+2}), f(y_{2n+2}, x_{2n+2}), Gy_{2n+1}) \\ + S_b(g(y_{2n+1}, x_{2n+1}), g(y_{2n+1}, x_{2n+1}), Fy_{2n+2}) \end{bmatrix}
$$

$$
= k \max \begin{cases} S_b(z_{2n+1}, z_{2n+1}, z_{2n}), S_b(w_{2n+1}, w_{2n+1}, w_{2n}), S_b(z_{2n+2}, z_{2n+2}, z_{2n+1}), \\ S_b(w_{2n+2}, w_{2n+2}, w_{2n+1}), S_b(z_{2n+1}, z_{2n+1}, z_{2n}), S_b(w_{2n+1}, w_{2n+1}, w_{2n}), \\ \frac{1}{4b^2} [S_b(z_{2n+2}, z_{2n+2}, z_{2n}) + S_b(z_{2n+1}, z_{2n+1}, z_{2n+1})], \\ \frac{1}{4b^2} [S_b(w_{2n+2}, w_{2n+2}, w_{2n}) + S_b(w_{2n+1}, w_{2n+1}, w_{2n+1})] \end{cases}.
$$

But

$$
\frac{1}{4b^2} \left[S_b(z_{2n+2}, z_{2n+2}, z_{2n}) + S_b(z_{2n+1}, z_{2n+1}, z_{2n+1}) \right]
$$
\n
$$
\leq \frac{1}{4b^2} \left[2bS_b(z_{2n+2}, z_{2n+2}, z_{2n+1}) + bS_b(z_{2n}, z_{2n}, z_{2n+1}) \right]
$$
\n
$$
\leq \frac{1}{4b^2} \left[2bS_b(z_{2n+2}, z_{2n+2}, z_{2n+1}) + b^2 S_b(z_{2n+1}, z_{2n+1}, z_{2n}) \right]
$$
\n
$$
\leq \max \{ S_b(z_{2n+2}, z_{2n+2}, z_{2n+1}), S_b(z_{2n+1}, z_{2n+1}, z_{2n}) \}
$$
\n
$$
\leq \max \{ S_{2n+1}, S_{2n} \}
$$

Similarly,

$$
\frac{1}{4b^2}[S_b(w_{2n+2}, w_{2n+2}, w_{2n}) + S_b(w_{2n+1}, w_{2n+1}, w_{2n+1})] \le \max\{S_{2n+1}, S_{2n}\}.
$$

Hence,

$$
S_b(z_{2n+2}, z_{2n+2}, z_{2n+1}) \le k \max\{S_{2n+1}, S_{2n}\}.
$$

Similarly,

$$
S_b(w_{2n+2}, w_{2n+2}, w_{2n+1}) \le k \max\{S_{2n+1}, S_{2n}\}.
$$

Hence, it is clear that

$$
S_{2n+1} \le k \max\{S_{2n+1}, S_{2n}\}.
$$

If S_{2n+1} is maximum, then we get contradiction. Hence S_{2n} is maximum. Therefore

$$
S_{2n+1} \leqslant kS_{2n} < S_{2n}.\tag{1}
$$

Similarly, we can conclude that $S_{2n} < S_{2n-1}$. Thus, $\{S_n\}$ is non-increasing sequence of non-negative real numbers and hence converges to $r \ge 0$. Suppose $r > 0$. Letting $n \to \infty$ in (1) , we have

$$
r \le kr < r.
$$

It is a contradiction. Hence $r = 0$. Thus,

$$
\lim_{n \to \infty} S_b(z_{n+1}, z_{n+1}, z_n) = 0
$$
\n(2)

and

$$
\lim_{n \to \infty} S_b(w_{n+1}, w_{n+1}, w_n) = 0.
$$
\n(3)

Now, we prove that $\{z_{2n}\}\$ and $\{w_{2n}\}\$ are Cauchy sequences in (X, S_b) . On contrary suppose that $\{z_{2n}\}$ or $\{w_{2n}\}$ is not Cauchy then there exist $\epsilon > 0$ and monotonically increasing sequence of natural numbers $\{2m_k\}$ and $\{2n_k\}$ such that $n_k > m_k$.

$$
\max\{S_b(z_{2m_k}, z_{2m_k}, z_{2n_k}), S_b(w_{2m_k}, w_{2m_k}, w_{2n_k})\} \ge \epsilon
$$
\n(4)

and

$$
\max\{S_b(z_{2m_k}, z_{2m_k}, z_{2n_k-2}), S_b(w_{2m_k}, w_{2m_k}, w_{2n_k-2})\} < \epsilon.
$$
 (5)

From (4) and (5) , we have that

$$
\epsilon \leq \max\{S_b(z_{2m_k}, z_{2m_k}, z_{2n_k}), S_b(w_{2m_k}, w_{2m_k}, w_{2n_k})\}
$$

\n
$$
\leq 2b \max\{S_b(z_{2m_k}, z_{2m_k}, z_{2m_k+2}), S_b(w_{2m_k}, w_{2m_k}, w_{2m_k+2})\}
$$

\n
$$
+b \max\{S_b(z_{2n_k}, z_{2n_k}, z_{2m_k+2}), S_b(w_{2n_k}, w_{2n_k}, w_{2m_k+2})\}
$$

\n
$$
\leq 4b^2 \max\{S_b(z_{2m_k}, z_{2m_k}, z_{2m_k+1}), S_b(w_{2m_k}, w_{2m_k}, w_{2m_k+1})\}
$$

\n
$$
+2b^2 \max\{S_b(z_{2m_k+2}, z_{2m_k+2}, z_{2m_k+1}), S_b(w_{2m_k+2}, w_{2m_k+2}, w_{2m_k+1})\}
$$

\n
$$
+2b^2 \max\{S_b(z_{2m_k}, z_{2n_k}, z_{2n_k+1}), S_b(w_{2m_k}, w_{2n_k}, w_{2n_k+1})\}
$$

\n
$$
+b^2 \max\{S_b(z_{2m_k+2}, z_{2m_k+2}, z_{2n_k+1}), S_b(w_{2m_k+2}, w_{2m_k+2}, w_{2n_k+1})\}.
$$

\n(6)

From (2*.*1*.*4), we have

 $S_b(z_{2m_k+2}, z_{2m_k+2}, z_{2n_k+1})$

$$
\leq S_{b}(f(x_{2m_{k}+2}, y_{2m_{k}+2}), f(x_{2m_{k}+2}, y_{2m_{k}+2}), g(x_{2n_{k}+1}, y_{2n_{k}+1}))
$$
\n
$$
\leq S_{b}(Fx_{2m_{k}+2}, Fx_{2m_{k}+2}, Gx_{2n_{k}+1}), S_{b}(Fy_{2m_{k}+2}, Fy_{2m_{k}+2}, Gy_{2n_{k}+1}),
$$
\n
$$
S_{b}(f(x_{2m_{k}+2}, y_{2m_{k}+2}), f(x_{2m_{k}+2}, y_{2m_{k}+2}), Fx_{2m_{k}+2}),
$$
\n
$$
S_{b}(f(y_{2m_{k}+2}, x_{2m_{k}+2}), f(y_{2m_{k}+2}, x_{2m_{k}+2}), Fy_{2m_{k}+2}),
$$
\n
$$
S_{b}(g(x_{2n_{k}+1}, y_{2n_{k}+1}), g(x_{2n_{k}+1}, y_{2n_{k}+1}), Gx_{2n_{k}+1}),
$$
\n
$$
S_{b}(g(y_{2n_{k}+1}, x_{2n_{k}+1}), g(y_{2n_{k}+1}, x_{2n_{k}+1}), Gy_{2n_{k}+1}),
$$
\n
$$
\frac{1}{4b^{2}} \begin{bmatrix} S_{b}(f(x_{2m_{k}+2}, y_{2m_{k}+2}), f(x_{2m_{k}+2}, y_{2m_{k}+2}), Gx_{2n_{k}+1}) \\ + S_{b}(g(x_{2n_{k}+1}, y_{2n_{k}+1}), g(x_{2n_{k}+1}, y_{2n_{k}+1}), Fx_{2m_{k}+2}) \\ + S_{b}(f(y_{2m_{k}+2}, x_{2m_{k}+2}), f(y_{2m_{k}+2}, x_{2m_{k}+2}), Gy_{2n_{k}+1}) \end{bmatrix},
$$

$$
= k \max \begin{cases} S_b(z_{2m_k+1}, z_{2m_k+1}, z_{2n_k}), S_b(w_{2m_k+1}, w_{2m_k+1}, w_{2n_k}), \\ S_b(z_{2m_k+2}, z_{2m_k+2}, z_{2m_k+1}), S_b(w_{2m_k+2}, w_{2m_k+2}, w_{2m_k+1}), \\ S_b(z_{2n_k+1}, z_{2n_k+1}, z_{2n_k}), S_b(w_{2n_k+1}, w_{2n_k+1}, w_{2n_k}), \\ \frac{1}{4b^2} \left[S_b(z_{2m_k+2}, z_{2m_k+2}, z_{2n_k}) + S_b(z_{2n_k+1}, z_{2n_k+1}, z_{2m_k+1}) \right], \\ \frac{1}{4b^2} \left[S_b(w_{2m_k+2}, w_{2m_k+2}, w_{2n_k}) + S_b(w_{2n_k+1}, w_{2n_k+1}, w_{2m_k+1}) \right] \end{cases}.
$$

Similarly,

$$
S_b(w_{2m_k+2}, w_{2m_k+1}, w_{2n_k+1})\n\leq k \max \left\{\n\begin{array}{l}\nS_b(z_{2m_k+1}, z_{2m_k+1}, z_{2n_k}), S_b(w_{2m_k+1}, w_{2m_k+1}, w_{2n_k}), \\
S_b(z_{2m_k+2}, z_{2m_k+2}, z_{2m_k+1}), S_b(w_{2m_k+2}, w_{2m_k+2}, w_{2m_k+1}), \\
S_b(z_{2n_k+1}, z_{2n_k+1}, z_{2n_k}), S_b(w_{2n_k+1}, w_{2n_k+1}, w_{2n_k}), \\
\frac{1}{4b^2} \left[S_b(z_{2m_k+2}, z_{2m_k+2}, z_{2n_k}) + S_b(z_{2n_k+1}, z_{2n_k+1}, z_{2m_k+1}) \right], \\
\frac{1}{4b^2} \left[S_b(w_{2m_k+2}, w_{2m_k+2}, w_{2n_k}) + S_b(w_{2n_k+1}, w_{2n_k+1}, w_{2m_k+1}) \right]\n\end{array}\n\right\}
$$

Thus

 $\max\left\{S_b(z_{2m_k+2}, z_{2m_k+2}, z_{2n_k+1}), S_b(w_{2m_k+2}, w_{2m_k+2}, w_{2n_k+1})\right\}$

$$
\left\{\n\begin{array}{l}\nS_b(z_{2m_k+1}, z_{2m_k+1}, z_{2n_k+1}), S_b(w_{2m_k+1}, w_{2m_k+1}, w_{2m_k}), \\
S_b(z_{2m_k+1}, z_{2m_k+1}, z_{2n_k}), S_b(w_{2m_k+1}, w_{2m_k+1}, w_{2n_k}), \\
S_b(z_{2m_k+2}, z_{2m_k+2}, z_{2m_k+1}), S_b(w_{2m_k+2}, w_{2m_k+2}, w_{2m_k+1}), \\
S_b(z_{2m_k+1}, z_{2n_k+1}, z_{2n_k}), S_b(w_{2m_k+1}, w_{2n_k+1}, w_{2n_k}), \\
\frac{1}{4b^2} \left[S_b(z_{2m_k+2}, z_{2m_k+2}, z_{2n_k}) + S_b(z_{2m_k+1}, z_{2m_k+1}, z_{2m_k+1})\right], \\
\frac{1}{4b^2} \left[S_b(w_{2m_k+2}, w_{2m_k+2}, w_{2n_k}) + S_b(w_{2m_k+1}, w_{2m_k+1}, w_{2m_k+1})\right]\n\end{array}\n\right\}.
$$
\n
$$
(7)
$$

.

But

$$
\max\{S_b(z_{2m_k+1}, z_{2m_k+1}, z_{2n_k}), S_b(w_{2m_k+1}, w_{2m_k+1}, w_{2n_k})\}
$$

\n
$$
\leq 2b \max\{S_b(z_{2m_k+1}, z_{2m_k+1}, z_{2m_k}), S_b(w_{2m_k+1}, w_{2m_k+1}, w_{2m_k})\}
$$

\n
$$
+ b \max\{S_b(z_{2m_k}, z_{2m_k}, z_{2m_k}), S_b(w_{2m_k}, w_{2m_k}, w_{2m_k})\}
$$

\n
$$
\leq 2b \max\{S_b(z_{2m_k+1}, z_{2m_k+1}, z_{2m_k}), S_b(w_{2m_k+1}, w_{2m_k+1}, w_{2m_k})\}
$$

\n
$$
+ b^2 \max\{S_b(z_{2m_k}, z_{2m_k}, z_{2m_k}), S_b(w_{2m_k}, w_{2m_k}, w_{2n_k})\}
$$

\n
$$
\leq 2b \max\{S_b(z_{2m_k+1}, z_{2m_k+1}, z_{2m_k}), S_b(w_{2m_k+1}, w_{2m_k+1}, w_{2m_k})\}
$$

\n
$$
+ b^2 (2b \max\{S_b(z_{2m_k}, z_{2m_k}, z_{2n_{k-2}}), S_b(w_{2m_k}, w_{2n_k}, w_{2n_{k-2}})\})
$$

\n
$$
+ b^2 (b \max\{S_b(z_{2m_k}, z_{2n_k}, z_{2n_{k-2}}), S_b(w_{2m_k}, w_{2n_k}, w_{2n_{k-2}})\})
$$

\n
$$
< 2b \max\{S_b(z_{2m_k+1}, z_{2m_k+1}, z_{2m_k}), S_b(w_{2m_k+1}, w_{2m_k+1}, w_{2m_k})\}
$$

\n
$$
+ 2b^3 \epsilon + b^3 (2b \max\{S_b(z_{2n_k}, z_{2n_k}, z_{2n_k-1}), S_b(w_{2n_k}, w_{2n_k}, w_{2n_k-1})\})
$$

\n
$$
+ b^3 (b \max\{S_b(z_{2m_k-2}, z_{2n_k-2}, z_{2n_k-1}), S_b(w_{2m_k-2}, w_{2n_k-2}, w_{2n_k-1})\})
$$

\n
$$
\le
$$

Letting $k \to \infty$, we have

$$
\lim_{k \to \infty} \max \{ S_b(z_{2m_k+1}, z_{2m_k+1}, z_{2n_k}), S_b(w_{2m_k+1}, w_{2m_k+1}, w_{2n_k}) \} \le 2b^3 \epsilon.
$$

Also

$$
\frac{1}{4b^2} \left(S_b(z_{2m_k+2}, z_{2m_k+2}, z_{2n_k}) + S_b(z_{2n_k+1}, z_{2n_k+1}, z_{2m_k+1}) \right)
$$
\n
$$
\leq \frac{1}{4b^2} \left(\frac{2b S_b(z_{2m_k+2}, z_{2m_k+2}, z_{2m_k+1}) + b^2 S_b(z_{2m_k+1}, z_{2m_k+1}, z_{2n_k})}{+2b S_b(z_{2n_k+1}, z_{2n_k+1}, z_{2n_k}) + b S_b(z_{2m_k+1}, z_{2m_k+1}, z_{2n_k}) \right)
$$
\n
$$
\leq \frac{1}{b^2} \max \left\{ \frac{2b S_b(z_{2m_k+2}, z_{2m_k+2}, z_{2m_k+1}), b^2 S_b(z_{2m_k+1}, z_{2m_k+1}, z_{2n_k}), \atop 2b S_b(z_{2n_k+1}, z_{2n_k+1}, z_{2n_k}), b S_b(z_{2m_k+1}, z_{2m_k+1}, z_{2n_k}) \right\}
$$
\n
$$
\leq \max \left\{ \frac{2 S_b(z_{2m_k+2}, z_{2m_k+2}, z_{2m_k+1}), S_b(z_{2m_k+1}, z_{2m_k+1}, z_{2n_k}), \atop 2S_b(z_{2n_k+1}, z_{2n_k+1}, z_{2n_k}), S_b(z_{2m_k+1}, z_{2m_k+1}, z_{2n_k}), \atop S_b(w_{2m_k+1}, w_{2m_k+1}, z_{2n_k}) \right\}.
$$

Letting $k \to \infty$, we have

$$
\lim_{k \to \infty} \frac{1}{4b^2} (S_b(z_{2m_k+2}, z_{2m_k+2}, z_{2n_k}) + S_b(z_{2n_k+1}, z_{2n_k+1}, z_{2m_k+1})) \le 2b\epsilon.
$$

Similarly,

$$
\lim_{k \to \infty} \frac{1}{4b^2} (S_b(w_{2m_k+2}, w_{2m_k+2}, w_{2n_k}) + S_b(w_{2n_k+1}, w_{2n_k+1}, w_{2m_k+1})) \le 2b\epsilon.
$$

Now, letting $k \to \infty$ in (7), we have

$$
\lim_{k \to \infty} \max \left\{ \frac{S_b(z_{2m_k+2}, z_{2m_k+2}, z_{2n_k+1})}{S_b(w_{2m_k+2}, w_{2m_k+2}, w_{2n_k+1})} \right\} \le k \max \left\{ 2b^3 \epsilon, 0, 0, 2b\epsilon, 2b\epsilon \right\}
$$

= $k 2b^3 \epsilon$.

Hence, letting $k \to \infty$ in (6), we have

$$
\epsilon \leq 0 + 0 + 0 + b^2 k 2b^3 \epsilon < \epsilon,
$$

it is a contradiction. Hence, $\{z_{2n}\}\$ and $\{w_{2n}\}\$ are S_b -Cauchy sequences. In addition

$$
\max\{S_b(z_{2n+1}, z_{2n+1}, z_{2m+1}), S_b(w_{2n+1}, w_{2n+1}, w_{2m+1})\}
$$

\n
$$
\leq 2b \max\{S_b(z_{2n+1}, z_{2n+1}, z_{2n}), S_b(w_{2n+1}, w_{2n+1}, w_{2n})\}
$$

\n
$$
+ b \max\{S_b(z_{2m+1}, z_{2m+1}, z_{2n}), S_b(w_{2m+1}, w_{2m+1}, w_{2n})\}
$$

\n
$$
\leq 2b \max\{S_b(z_{2n+1}, z_{2n+1}, z_{2n}), S_b(w_{2n+1}, w_{2n+1}, w_{2n})\}
$$

\n
$$
+ 2b^2 \max\{S_b(z_{2m+1}, z_{2m+1}, z_{2m}), S_b(w_{2m+1}, w_{2m+1}, w_{2m})\}
$$

\n
$$
+ b^2 \max\{S_b(z_{2n}, z_{2n}, z_{2m}), S_b(w_{2n}, w_{2n}, w_{2m})\}.
$$

From(2), (3) and since $\{z_{2n}\}$ and $\{w_{2n}\}$ are S_b -Cauchy sequences, it follows that $\{z_{2n+1}\}$ and $\{w_{2n+1}\}$ are also S_b -Cauchy sequences in (X, S_b) . Thus, $\{z_n\}$ and $\{w_n\}$ are S_b -Cauchy sequences in (X, S_b) . Suppose $F(X)$ is complete subspace of X. Then it follows that $\{z_n\}$ and $\{w_n\}$ converges to α and β respectively in $F(X)$. Thus, there exist *u* and *v* in $F(X)$ such that

$$
\lim_{n \to \infty} z_n = \alpha = Fu \text{ and } \lim_{n \to \infty} w_n = \beta = Fv. \tag{8}
$$

Now, we have to prove that $\alpha = f(u, v)$ and $\beta = f(v, u)$. Using (2.1.4) and Lemma

(1*.*10), we obtain that

$$
\frac{1}{2b}S_{b}(f(u, v), f(u, v), \alpha)
$$
\n
$$
\leq \lim_{n \to \infty} \sup S_{b}(f(u, v), f(u, v), g(x_{2n+1}, y_{2n+1}))
$$
\n
$$
\leq \lim_{n \to \infty} \sup k \max \left\{ \frac{S_{b}(Fu, Fu, Gx_{2n+1}), S_{b}(Fv, Fv, Gy_{2n+1}), S_{b}(f(v, u), f(v, u), Fv), S_{b}(f(v, u), f(v, u), Fv), S_{b}(g(x_{2n+1}, y_{2n+1}), g(x_{2n+1}, y_{2n+1}), Gx_{2n+1}), S_{b}(g(y_{2n+1}, x_{2n+1}), g(x_{2n+1}, y_{2n+1}), Gy_{2n+1}), S_{b}(g(y_{2n+1}, x_{2n+1}), g(y_{2n+1}, x_{2n+1}), Gy_{2n+1}), S_{b}(g(y_{2n+1}, y_{2n+1}), g(x_{2n+1}, y_{2n+1}), Fu) \right\},
$$
\n
$$
\leq \lim_{n \to \infty} \sup k \max \left\{ \frac{S_{b}(f(v, u), f(v, u), Gy_{2n+1})}{\frac{1}{4b^2} \left[S_{b}(f(v, u), f(v, u), Gy_{2n+1}), S_{b}(f(u, v), f(u, v), \alpha), S_{b}(f(u, v), f(u, v), \alpha), S_{b}(f(v, u), f(v, u), \beta), S_{b}(z_{2n+1}, z_{2n+1}, z_{2n}), S_{b}(w_{2n+1}, w_{2n+1}, w_{2n}), S_{b}(f(v, u), f(v, u), f(v, u), y_{2n}) + S_{b}(z_{2n+1}, z_{2n+1}, \alpha) \right],
$$
\n
$$
\leq k \max \left\{ \frac{0}{1b^2} \left[S_{b}(f(v, u), f(u, v), f(v, u), y_{2n}) + S_{b}(z_{2n+1}, z_{2n+1}, \alpha) \right],
$$
\n
$$
\leq k \max \left\{ \frac{0}{4b^2} \left[2b S_{b}(f(u, v), f(u, v), \alpha), S_{b}(f(v, u), f(v, u), \beta), 0, 0, 0, 0, 0, 0, 0, 0, 0)
$$

Similarly,

$$
\frac{1}{2b}S_b(f(v, u), f(v, u), \beta) \le k \max \{ S_b(f(u, v), f(u, v), \alpha), S_b(f(v, u), f(v, u), \beta) \}.
$$

Thus, we have

$$
\frac{1}{2b} \max \left\{ \frac{S_b(f(u,v), f(u,v), \alpha)}{S_b(f(v,u), f(v,u), \beta)} \right\} \leq k \max \left\{ \frac{S_b(f(u,v), f(u,v), \alpha)}{S_b(f(v,u), f(v,u), \beta)} \right\}.
$$

It follows that $f(u, v) = \alpha$ and $f(v, u) = \beta$. Thus, (α, β) is a coupled coincidence point of *f* and *F*. Since $\{f, F\}$ is a *w*-compatible pair, we have $F\alpha = f(\alpha, \beta)$ and $F\beta = f(\beta, \alpha)$. From (2*.*1*.*4) and Lemma (1*.*10), we obtain that

$$
\frac{1}{2b}S_{b}(f(\alpha,\beta),f(\alpha,\beta),\alpha)
$$
\n
$$
\leq \lim_{n\to\infty} \sup S_{b}(f(\alpha,\beta),f(\alpha,\beta),g(x_{2n+1},y_{2n+1}))
$$
\n
$$
\leq \lim_{n\to\infty} \sup k \max \left\{ S_{b}(f(\alpha,\beta),f(\alpha,\beta),f(\alpha,\beta),f\alpha),g_{b}(f(\beta,\alpha),f(\beta,\alpha),F\beta), S_{b}(f(\beta,\alpha),f(\beta,\alpha),F\beta), S_{b}(f(\beta,\alpha),f(\beta,\alpha),F\beta)) \right\}
$$
\n
$$
\leq \lim_{n\to\infty} \sup k \max \left\{ S_{b}(g(x_{2n+1},y_{2n+1}),g(x_{2n+1},y_{2n+1}),Gx_{2n+1}),
$$
\n
$$
S_{b}(g(y_{2n+1},x_{2n+1}),g(y_{2n+1},x_{2n+1}),Gy_{2n+1}),
$$
\n
$$
S_{b}(g(y_{2n+1},y_{2n+1}),g(y_{2n+1},y_{2n+1}),Gy_{2n+1}) \right\}
$$
\n
$$
+ S_{b}(g(x_{2n+1},y_{2n+1}),g(x_{2n+1},y_{2n+1}),F\alpha) \right],
$$
\n
$$
= \frac{1}{4b^2} \left[S_{b}(f(\alpha,\beta),f(\alpha,\beta),Gy_{2n+1}) \right],
$$
\n
$$
S_{b}(F\alpha,F\alpha,z_{2n}),S_{b}(F\beta,F\beta,w_{2n}),
$$
\n
$$
S_{b}(F\alpha,F\alpha,z_{2n}),S_{b}(F\beta,F\beta,w_{2n}),
$$
\n
$$
S_{b}(f(\alpha,\beta),f(\alpha,\beta),F\alpha),S_{b}(f(\beta,\alpha),f(\beta,\alpha),F\beta),
$$
\n
$$
S_{b}(z_{2n+1},z_{2n+1},z_{2n}),S_{b}(w_{2n+1},w_{2n+1},w_{2n}),
$$
\n
$$
S_{b}(f(\alpha,\beta),f(\alpha,\beta),f(\alpha,\beta),f(\alpha,\beta),z_{2n}) \right],
$$
\n
$$
= \lim_{n\to\infty} \sup k \max \left\{ S_{b}(f(\alpha,\beta),f(\alpha,\
$$

Similarly,

$$
\frac{1}{2b}S_b(f(\beta,\alpha),f(\beta,\alpha),\beta) \le 2b k \max \left\{ \frac{S_b(f(\alpha,\beta),f(\alpha,\beta),\alpha)}{S_b(f(\beta,\alpha),f(\beta,\alpha),\beta)} \right\}.
$$

Hence,

$$
\frac{1}{2b} \max \left\{ S_b(f(\alpha, \beta), f(\alpha, \beta), \alpha), \atop S_b(f(\beta, \alpha), f(\beta, \alpha), \beta) \right\} \leq 2b k \max \left\{ S_b(f(\alpha, \beta), f(\alpha, \beta), \alpha), \atop S_b(f(\beta, \alpha), f(\beta, \alpha), \beta) \right\}.
$$

It follows that $\alpha = F\alpha = f(\alpha, \beta)$, and $\beta = F\beta = f(\beta, \alpha)$. Therefore (α, β) is common coupled fixed point of (f, F) . Since $f(X \times X) \subseteq G(X)$, there exist $a, b \in X$ such that $f(\alpha, \beta) = \alpha = Ga$ and $f(\beta, \alpha) = \beta = Gb$. From (2.1.4), by Lemma 1.7 and $b \geq 1$ we have

$$
S_b(\alpha, \alpha, g(a, b)) = S_b(f(\alpha, \beta), f(\alpha, \beta), g(a, b))
$$

\n
$$
\leq k \max \left\{ \frac{S_b(F\alpha, F\alpha, Ga), S_b(F\beta, F\beta, Gb), S_b(f(\alpha, \beta), f(\alpha, \beta), F\alpha)}{S_b(f(\beta, \alpha), f(\beta, \alpha), F\beta), S_b(g(a, b), g(a, b), Ga), S_b(g(b, a), g(b, a), Gb), \frac{1}{4b^2}[S_b(f(\alpha, \beta), f(\alpha, \beta), Ga) + S_b(g(a, b), g(a, b), F\alpha)], \frac{1}{4b^2}[S_b(f(\beta, \alpha), f(\beta, \alpha), Gb) + S_b(g(b, a), g(b, a), F\beta)] \right\}
$$

\n
$$
= k \max \left\{ \frac{0, 0, 0, 0, S_b(g(a, b), g(a, b), \alpha), S_b(g(b, a), g(b, a), \beta)}{\frac{1}{4b^2}[0 + S_b(g(a, b), g(a, b), F\alpha)], \frac{1}{4b^2}[0 + S_b(g(b, a), g(b, a), F\beta)]} \right\}
$$

\n
$$
\leq b k \max \left\{ S_b(\alpha, \alpha, g(a, b)), S_b(\beta, \beta, g(b, a)) \right\}.
$$

Similarly,

$$
S_b(\beta,\beta,g(b,a)) \leq b k \max \left\{ S_b(\alpha,\alpha,g(a,b)), S_b(\beta,\beta,g(b,a)) \right\}.
$$

Thus,

 $\max \left\{ S_b(\alpha, \alpha, g(a, b)), S_b(\beta, \beta, g(b, a)) \right\} \leq bk \max \left\{ S_b(\alpha, \alpha, g(a, b)), S_b(\beta, \beta, g(b, a)) \right\}.$

It follows that $g(a, b) = \alpha = Ga$ and $g(b, a) = \beta = Gb$. Since the pair $\{g, G\}$ is wcompatible, we have $G\alpha = g(\alpha, \beta)$ and $G\beta = g(\beta, \alpha)$. Using (2.1.4), we obtain

$$
S_b(\alpha, \alpha, g(\alpha, \beta)) = S_b(f(\alpha, \beta), f(\alpha, \beta), g(\alpha, \beta))
$$

\n
$$
\leq k \max \left\{ \begin{array}{l} S_b(F\alpha, F\alpha, G\alpha), S_b(F\beta, F\beta, G\beta), \\ S_b(f(\alpha, \beta), f(\alpha, \beta), F\alpha), S_b(f(\beta, \alpha), f(\beta, \alpha), F\beta), \\ S_b(g(\alpha, \beta), g(\alpha, \beta), G\alpha), S_b(g(\beta, \alpha), g(\beta, \alpha), G\beta), \\ \frac{1}{4b^2}[S_b(f(\alpha, \beta), f(\alpha, \beta), G\alpha) + S_b(g(\alpha, \beta), g(\alpha, \beta), F\alpha)], \\ \frac{1}{4b^2}[S_b(f(\beta, \alpha), f(\beta, \alpha), G\beta) + S_b(g(\beta, \alpha), g(\beta, \alpha), F\beta)] \end{array} \right\}
$$

\n
$$
\leq k \max \left\{ \frac{S_b(\alpha, \alpha, g(\alpha, \beta)), S_b(\beta, \beta, g(\beta, \alpha)), 0, 0, 0, 0, 0, 0, \frac{1}{4b^2}[S_b(\alpha, \alpha, g(\alpha, \beta)) + S_b(g(\alpha, \beta), g(\alpha, \beta), \alpha)], \frac{1}{4b^2}[S_b(\beta, \beta, g(\beta, \alpha)) + S_b(g(\beta, \alpha), g(\beta, \alpha), \beta)] \right\}
$$

\n
$$
= k \max \left\{ S_b(\alpha, \alpha, g(\alpha, \beta)), S_b(\beta, \beta, g(\beta, \alpha)) \right\}.
$$

Similarly,

$$
S_b(\beta,\beta,g(\beta,\alpha)) \leq k \max \left\{ S_b(\alpha,\alpha,g(\alpha,\beta)), S_b(\beta,\beta,g(\beta,\alpha)) \right\}.
$$

Thus,

$$
\max \left\{ S_b(\alpha, \alpha, g(\alpha, \beta)), S_b(\beta, \beta, g(\beta, \alpha)) \right\} \leq k \max \left\{ S_b(\alpha, \alpha, g(\alpha, \beta)), S_b(\beta, \beta, g(\beta, \alpha)) \right\}.
$$

It follows that $\alpha = g(\alpha, \beta)$ and $\beta = g(\beta, \alpha)$. Thus, $\alpha = G\alpha = g(\alpha, \beta)$ and $\beta = G\beta =$ $g(\beta, \alpha)$. Hence, (α, β) is a common coupled fixed point of *f, g, F* and *G*. To prove uniqueness let us suppose $(\alpha^1, \beta^1) \in X \times X$ is another common coupled fixed point of *f, g, F*

and *G* such that $\alpha \neq \alpha^1$ and $\beta \neq \beta^1$. From (2.1.4), we have that

Sb(*α,α, α*¹) = *Sb*(*f*(*α, β*)*, f*(*α, β*)*, g*(*α* 1 *, β*¹)) ⩽ *k* max *Sb*(*F α, F α, Gα*¹)*, Sb*(*F β, F β, Gβ*¹)*, Sb*(*f*(*α, β*)*, f*(*α, β*)*, F α*)*, Sb*(*f*(*β, α*)*, f*(*β, α*)*, F β*)*, Sb*(*g*(*α* 1 *, β*¹)*, g*(*α* 1 *, β*¹)*, Gα*¹)*, Sb*(*g*(*β* 1 *, α*¹)*, g*(*β* 1 *, α*¹)*, Gβ*¹)*,* 1 4*b* 2 [*Sb*(*f*(*α, β*)*, f*(*α, β*)*, Gα*¹) + *Sb*(*g*(*α* 1 *, β*¹)*, g*(*α* 1 *, β*¹)*, F α*)] *,* 1 4*b* 2 [*Sb*(*f*(*β, α*)*, f*(*β, α*)*, Gβ*¹) + *Sb*(*g*(*β* 1 *, α*¹)*, g*(*β* 1 *, α*¹)*, F β*)] ⁼ *^k* max { *Sb*(*α, α, α*¹)*, Sb*(*β, β, β*¹)*,* 0*,* 0*,* 0*,* 0*,* 1 4*b* 2 [*Sb*(*α, α, α*¹) + *Sb*(*α* 1 *, α*¹ *, α*)] *,* 1 4*b* 2 [*Sb*(*β, β, β*¹) + *Sb*(*β* 1 *, β*¹ *, β*)] } = *k* max { *Sb*(*α, α, α*¹)*, Sb*(*β, β, β*¹) } *.*

Similarly,

$$
S_b(\beta, \beta, \beta^1) \leq k \max \left\{ S_b(\alpha, \alpha, \alpha^1), S_b(\beta, \beta, \beta^1) \right\}.
$$

Thus,

$$
\max \left\{ S_b(\alpha, \alpha, \alpha^1), S_b(\beta, \beta, \beta^1) \right\} \leq k \max \left\{ S_b(\alpha, \alpha, \alpha^1), S_b(\beta, \beta, \beta^1) \right\}.
$$

It is a contradiction. Hence, (*α, β*) is the unique common coupled fixed point of *f, g, F* and G .

Example **2.2** Let *X* = [0*,* 1] and

$$
S_b: X \times X \times X \to \mathbb{R}^+
$$
 by $S_b(x, y, z) = (|y + z - 2x| + |y - z|)^2$,

then S_b is S_b -metric space with $b = 4$. Define $f, g: X \times X \to X$ and $F, G: X \to X$ by

$$
f(x,y) = \frac{x^2 + y^2}{4^6}
$$
, $g(x,y) = \frac{x^2 + y^2}{4^7}$, $F(x) = \frac{x^2}{4}$ and $G(x) = \frac{x^2}{16}$

also put $k=\frac{1}{4i}$ $\frac{1}{4^7}$. Then

$$
S_b(f(x, y), f(x, y), g(u, v))
$$

= $(|f(x, y) + g(u, v) - 2f(x, y)| + |f(x, y) - g(u, v)|)^2$
= $4 |(f(x, y) - g(u, v))|^2$
= $4 \left| \frac{x^2 + y^2}{4^6} - \frac{u^2 + v^2}{4^7} \right|^2$
= $4 \left| \frac{4x^2 - u^2}{4^7} + \frac{4y^2 - v^2}{4^7} \right|^2$
= $4 \frac{1}{(4^4)^2} \left(\frac{1}{4} \left\{ \left| \frac{4x^2 - u^2}{16} \right| + \left| \frac{4y^2 - v^2}{16} \right| \right\} \right)^2$
 $\leq 4 \frac{1}{(4^4)^2 4} \left(\frac{1}{2} \left\{ \left| \frac{4x^2 - u^2}{16} \right| + \left| \frac{4y^2 - v^2}{16} \right| \right\} \right)^2$
 $\leq 4 \frac{1}{4^9} \left(\max \left\{ \left| \frac{4x^2 - u^2}{16} \right|, \left| \frac{4y^2 - v^2}{16} \right| \right\} \right)^2$
= $\frac{1}{4^9} \max \{ S_b(Fx, Fx, Gu), S_b(Fy, Fy, Gv) \}$
= $\frac{1}{4^9} \max \{ S_b(Fx, Fx, Gu), S_b(Fy, Fy, Gv), S_b(f(x, y), f(x, y), Fx), \newline S_b(g(x, v), g(x, v), g(x, v), g(x, v), g(x, v), Gv), \newline \frac{1}{4^2} \left[S_b(f(x, y), f(x, y), Gu) + S_b(g(u, v), g(u, v), Gv), Fx) \right], \newline \frac{1}{4^2} \left[S_b(f(y, x), f(y, x), Gv) + S_b(g(u, v), g(x, v), Fx) \right],$

.

It is clear that all conditions of Theorem 2.1 satisfied and (0*,* 0) is unique common coupled fixed point of f, g, F and G .

From Theorem 2*.*1, we have the following corollary.

Corollary 2.3 Let (X, S_b) be a S_b -metric space. Suppose that $f: X \times X \to X$ and $F: X \to X$ be satisfying

 $f(X \times X) \subseteq F(X)$, $(2.3.2)$ (f, F) are weakly compatible pairs, (2.3.3) $F(X)$ is S_b -complete subspace of X, $(2.3.4)$ $S_b(f(x,y),f(x,y),f(u,v))$

$$
\leq k \max \left\{\frac{S_b(Fx, Fx, Fu), S_b(Fy, Fy, Fv), S_b(f(x, y), f(x, y), Fx)}{\frac{1}{4b^2} \left[S_b(f(x, y), f(x, y), Fu), S_b(f(u, v), Fu), S_b(f(v, u), f(v, u), Fv), \frac{1}{4b^2} \left[S_b(f(x, y), f(x, y), Fu) + S_b(f(u, v), f(u, v), Fx)\right], \frac{1}{4b^2} \left[S_b(f(y, x), f(y, x), Fv) + S_b(f(v, u), f(v, u), Fy)\right]\right\}
$$

for all $x, y, u, v \in X$, where $0 \leq k < \frac{1}{4b^2}$.

Then *f* and *F* have a unique common coupled fixed point in $X \times X$.

References

- [1] M. Abbas, M. Ali khan, S. Randenovic, Common coupled fixed point theorems in cone metric spaces for w-compatible mappings, Appl. Math. Comput. 217 (2010), 195-202.
- [2] S. Czerwik, Contraction mapping in *b*-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis. 1 (1993), 5-11.
- [3] T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis. (Theory, Methods and Applications), 65 (7) (2006), 1379-1393.
- [4] V. Lakshmikantham, L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis. (Theory, Methods and Applications), 70 (12) (2009), 4341-4349.
- [5] H. Rahimi, P. Vetro, G. Soleimani Rad, Coupled fixed point results for *T*-contractions on cone metric spaces with applications, Math. Notes. $98(1)(2015)$, 158-167.
- [6] H. Rahimi, S. Radenovic, G. Soleimani Rad, Cone metric type space and new coupled fixed point theorems, J. Nonlinear. Anal. Optimization. (JNAO), 6 (1) (2015), 1-9.
- [7] S. Sedghi, I. Altun, N. Shobe, M. Salahshour, Some properties of *S*-metric space and fixed point results, Kyung pook Math. J. 54 (2014), 113-122.
- [8] S. Sedghi, A. Gholidahneh, T. Dosenovic, J. Esfahani, S. Radenovic, Common fixed point of four maps in S_b -metric spaces, J. Linear. Topol. Algebra. 5 (2) (2016), 93-104.
- [9] S. Sedghi, A. Gholidahneh, K. P. R. Rao, Common fixed point of two *R* weakly commuting mappings in *Sb*-metric spaces, Mathematical Science letters (to appear).
- [10] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorem in *S*-metric spaces, Mat. Vesnik. 64 (2012), 258-266.
- [11] S. Sedghi, N. Shobe, T. Dosenovic, Fixed point results in *S*-metric spaces, Nonlinear Funct. Anal. Appl. 20 (1) (2015) , 55-67.