On characterizations of weakly e-irresolute functions

M. Özkoç ${ }^{\text {a,* }}$, T. Yılmaz ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Science, Muğla Sıtkı Koçman University, 48000 Menteşe-Muğla, Turkey.

Received 19 February 2017; Revised 28 December 2017; Accepted 28 December 2017.
Communicated by Mohammad Sadegh Asgari

Abstract

The aim of this paper is to introduce and obtain some characterizations of weakly e-irresolute functions by means of e-open sets defined by Ekici [6]. Also, we look into further properties relationships between weak e-irresoluteness and separation axioms and completely e-closed graphs.

© 2018 IAUCTB. All rights reserved.

Keywords: e-irresolute, weakly e-irresolute, strongly e-regular space, completely e-closed graph.
2010 AMS Subject Classification: 54C08, 54C10, 54C05.

1. Introduction

In 1972, Crossley et al. [4] introduced the concept of irresolute functions in topological spaces. The class of α-irresolute functions were introduced by Maheshwari and Thakur [9]. Recently, the class of semi α-irresolute functions and almost α-irresolute functions and weakly B-irresolute functions were introduced in [3], [2] and [14], respectively. In this paper, we introduce and investigate the concept of weakly e-irresolute functions and study several characterizations and some fundamental properties of these classes of functions. Relations between this class and some other existing classes of functions ($[5,6,10,12,13])$ are also obtained.

Throughout this paper (X, τ) and (Y, σ) (or simply X and Y) represent nonempty topological spaces on which no separation axioms are assumed unless otherwise stated.

[^0]Let X be a topological space and A be a subset of X. The closure of A and the interior of A are denoted by $\operatorname{cl}(A)$ and $\operatorname{int}(A)$, respectively. $\mathcal{U}(x)$ denotes all open neighborhoods of the point $x \in X$. A subset A of a space X is called regular open [15] (resp. regular closed [15]) if $A=\operatorname{int}(\operatorname{cl}(A))($ resp. $A=\operatorname{cl}(\operatorname{int}(A)))$. The δ-interior [16] of a subset A of X is the union of all regular open sets of X contained in A and is denoted by $\operatorname{int}_{\delta}(A)$. The subset A is called δ-open [16] if $A=\operatorname{int}_{\delta}(A)$, i.e., a set is δ-open if it is the union of regular open sets. The complement of a δ-open set is called δ-closed [16].

The family of all δ-open (resp. δ-closed) sets in X is denoted by $\delta O(X)$ (resp. $\delta C(X)$). A subset A of a space X is called e-open [6] (resp. β-open [1]) if $A \subseteq \operatorname{int}\left(c_{\delta}(A)\right) \cup$ $c l\left(\operatorname{int}_{\delta}(A)\right)(\operatorname{resp} . A \subseteq \operatorname{cl}(\operatorname{int}(c l(A))))$. The complement of an e-open (resp. β-open) set is said to be e-closed [6] (resp. β-closed [1]). The e-interior [6] of a subset A of X is the union of all e-open sets of X contained in A and is denoted by e-int (A). The e-closure [6] of a subset A of X is the intersection of all e-closed sets of X containing A and is denoted by $e-c l(A)$. The family of all e-open (resp. e-closed, both e-open and e-closed) sets of X is denoted by $e O(X)$ (resp. $e C(X), e R(X)$). The family of all e-open (resp. e-closed, both e-open and e-closed) sets of X containing a point $x \in X$ is denoted by $e O(X, x)$ (resp. $e C(X, x), e R(X, x))$.

We shall use the well-known accepted language almost in the whole of the proofs of theorems in article.

2. Preliminaries

Definition 2.1 [11] A point x of X is called an $e-\theta$-cluster points of $A \subseteq X$ if e $\operatorname{cl}(U) \cap A \neq \emptyset$ for every $U \in e O(X, x)$. The set of all $e-\theta$-cluster points of A is called the e - θ-closure of A and is denoted by $e-\operatorname{cl}_{\theta}(A)$. A subset A is said to be $e-\theta$-closed if and only if $A=e-c l_{\theta}(A)$. The complement of an $e-\theta$-closed set is said to be $e-\theta$-open. The family of all $e-\theta$-open (resp. $e-\theta$-closed) sets in X is denoted by $e \theta O(X)$ (resp. $e \theta C(X)$).

Theorem 2.2 [6] Let X be a topological space and $A \subseteq X$. Then the followings hold:
(a) If $A \in e C(X)$, then $A=e-c l(A)$,
(b) If $A \subseteq B$, then $e-c l(A) \subseteq e-c l(B)$,
(c) $e-c l(A) \in e C(X)$,
(d) $x \in e-c l(A)$ if and only if $U \cap A \neq \emptyset$ for each $U \in e O(X, x)$,
(e) $e-c l(X \backslash A)=X \backslash e-i n t(A)$.

Theorem 2.3 [11] Let X be a topological space and $A \subseteq X$. Then the followings hold:
(a) $A \in e O(X)$ if and only if $e-c l(A) \in e R(X)$,
(b) $A \in e C(X)$ if and only if $e-i n t(A) \in e R(X)$,
(c) If $A \in e O(X)$, then $e-c l(A)=e-c l_{\theta}(A)$,
(d) $A \in e R(X)$ if and only if $e \theta O(X) \cap e \theta C(X)$,
(e) $x \in e-c l_{\theta}(A)$ if and only if $e-c l(U) \cap A \neq \emptyset$ for each $U \in e O(X, x)$,
(f) $e-\operatorname{int}_{\theta}(X \backslash A)=X \backslash e-c l_{\theta}(A)$.

Definition 2.4 A function $f: X \rightarrow Y$ is called:
(a) weakly continuous [8] (briefly w.c.) if for each $x \in X$ and for each open set V of Y containing $f(x)$, there exists an open set U of X containing x such that $f[U] \subseteq c l(V)$,
(b) weakly e-continuous [12] if for each $x \in X$ and for each open set V of Y containing $f(x)$, there exists an e-open set U of X containing x such that $f[U] \subseteq \operatorname{cl}(V)$,
(c) weakly β-continuous [13] if for each $x \in X$ and for each open set V of Y containing
$f(x)$, there exists a β-open set U of X containing x such that $f[U] \subseteq c l(V)$,
(d) e-continuous [6] if $f^{-1}[V] \in e O(X)$ for every open set V of Y,
(e) e-irresolute [7] if $f^{-1}[V] \in e O(X)$ for every e-open set V of Y,
(f) β-irresolute $[10]$ if $f^{-1}[V] \in \beta O(X)$ for every β-open set V of Y,
(g) weakly B-irresolute [14] if for each $x \in X$ and for each b-open V of Y containing $f(x)$, there exists a b-open set U of X containing x such that $f[U] \subseteq b c l(V)$.

3. Weakly e-irresolute Functions

In this section we define the notion of weakly e-irresolute functions. Then we obtain several characterizations of them.
Definition 3.1 Let X and Y be topological spaces. A function $f: X \rightarrow Y$ is said to be weakly e-irresolute if for each x in X and for each e-open set V of Y containing $f(x)$, there exists $U \in e O(X, x)$ such that $f[U] \subseteq e-c l(V)$.
Remark 1 We have the following diagram from Definition 2.4 and Definition 3.1. The converses of these implications are not true in general as shown by the following examples.

```
    continuity \(\quad \rightarrow \quad\) weak continuity
    e-continuity \(\rightarrow\) weak e-continuity
    \(\uparrow \quad \uparrow\)
\(e\)-irresoluteness \(\rightarrow\) weak e-irresoluteness
```

Example 3.2 Let $X:=\{a, b, c\}, \tau:=\{\emptyset, X,\{a\},\{c\},\{a, c\}\}$ and $\sigma:=\{\emptyset, X,\{c\}\}$. Define a function $f:(X, \tau) \rightarrow(X, \sigma)$ such that $f(x)=x$. Then f is weakly e-continuous but not weakly e-irresolute.

Example 3.3 Let $X:=\{a, b, c, d, e\}, \tau:=\{\emptyset, X,\{a\},\{c\},\{a, c\},\{c, d\},\{a, c, d\}\}$. Define a function $f:(X, \tau) \rightarrow(X, \tau)$ such that $f=\{(a, a),(b, d),(c, d),(d, d),(e, e)\}$. Then f is weakly e-irresolute but not e-irresolute.

Remark 2 A weakly e-irresolute function need not be a weakly B-irresolute function as shown by the following example.

Example 3.4 Let $X:=\{a, b, c\}, \tau:=\{\emptyset, X,\{a, b\}\}$. Then $e R(X)=\mathcal{P}(X)$ and $B R(X)=\{\emptyset,\{a\},\{b\},\{a, c\},\{b, c\}, X\}$. Define a function $f:(X, \tau) \rightarrow(X, \tau)$ such that $f=\{(a, b),(b, c),(c, a)\}$. Then f is weakly e-irresolute but not weakly B-irresolute.

QUESTION. Is there any weakly B-irresolute function which is not weakly e irresolute?
Theorem 3.5 Let $f: X \rightarrow Y$ be a function. Then the following properties are equivalent:
(a) f is weakly e-irresolute;
(b) $f^{-1}[V] \subseteq e-i n t\left(f^{-1}[e-c l(V)]\right)$ for every $V \in e O(Y)$;
(c) e-cl $\left(f^{-1}[V]\right) \subseteq f^{-1}[e-c l(V)]$ for every $V \in e O(Y)$.

Proof. $(a) \Longrightarrow(b)$: Let $V \in e O(Y)$ and $x \in f^{-1}[V]$.

$$
\begin{aligned}
& (V \in e O(Y))\left(x \in f^{-1}[V]\right) \Rightarrow V \in e O(Y, f(x)) \\
& \Rightarrow(\exists U \in e O(X, x))(f[U] \subseteq e-c l(V))
\end{aligned}
$$

$\Rightarrow(\exists U \in e O(X, x))\left(U \subseteq f^{-1}[e-c l(V)]\right)$
$\Rightarrow(\exists U \in e O(X, x))\left(x \in U=e-\operatorname{int}(U) \subseteq e-\operatorname{int}\left(f^{-1}[e-c l(V)]\right)\right)$
$\Rightarrow x \in e-i n t\left(f^{-1}[e-c l(V)]\right)$.
$(b) \Longrightarrow(c):$ Let $V \in e O(Y)$ and $x \notin f^{-1}[e-c l(V)]$.
$x \notin f^{-1}[e-c l(V)] \Rightarrow f(x) \notin e-c l(V)$

$$
\Rightarrow(\exists F \in e O(Y, f(x)))(F \cap V=\emptyset)
$$

$$
\Rightarrow(\exists F \in e O(Y, f(x)))(F \subseteq Y \backslash V)
$$

$$
\Rightarrow(\exists F \in e O(Y, f(x)))(e-c l(F) \subseteq e-c l(Y \backslash V)=Y \backslash V)
$$

$$
\Rightarrow(\exists F \in e O(Y, f(x)))(e-c l(F) \cap V=\emptyset)
$$

$$
\Rightarrow(\exists F \in e O(Y, f(x)))\left(f^{-1}[e-c l(F) \cap V]=\emptyset\right)
$$

$$
\Rightarrow(\exists F \in e O(Y, f(x)))\left(f^{-1}[e-c l(F)] \cap f^{-1}[V]=\emptyset\right)
$$

$$
\Rightarrow(\exists F \in e O(Y, f(x)))\left(e-\operatorname{int}\left(f^{-1}[e-\operatorname{cl}(F)]\right) \cap f^{-1}[V]=\emptyset\right)
$$

$$
\stackrel{(\mathrm{b})}{\Rightarrow}\left(e-\operatorname{int}\left(f^{-1}[e-c l(F)]\right) \in e O(X, x)\right)\left(e-\operatorname{int}\left(f^{-1}[e-c l(F)]\right) \cap f^{-1}[V]=\emptyset\right)
$$

$$
\Rightarrow x \notin e-c l\left(f^{-1}[V]\right) .
$$

$(c) \Longrightarrow(a):$ Let $x \in X$ and $V \in e O(Y, f(x))$.
$\left.V \in e O(Y, f(x)) \Rightarrow e-c l(V) \in e R(Y, f(x)) \Rightarrow x \notin f^{-1}[e-c l(Y \backslash e-c l(V))]\right\} \Rightarrow$
$\Rightarrow x \notin e-c l\left(f^{-1}[Y \backslash e-c l(V)]\right)$
$\Rightarrow(\exists U \in e O(X, x))\left(U \cap f^{-1}[Y \backslash e-c l(V)]=\emptyset\right)$
$\Rightarrow(\exists U \in e O(X, x))(f[U] \cap(Y \backslash e-c l(V))=\emptyset)$
$\Rightarrow(\exists U \in e O(X, x))(f[U] \subseteq e-c l(V))$.
Theorem 3.6 Let $f: X \rightarrow Y$ be a function. Then the following properties are equivalent:
(a) f is weakly e-irresolute;
(b) $e-c l\left(f^{-1}[B]\right) \subseteq f^{-1}\left[e-c l_{\theta}(B)\right]$ for every subset B of Y;
(c) $f[e-c l(A)] \subseteq e-c l_{\theta}(f[A])$ for every subset A of X;
(d) $f^{-1}[F] \in e C(X)$ for every $e-\theta$-closed set F of Y;
(e) $f^{-1}[V] \in e O(X)$ for every $e-\theta$-open set V of Y.

Proof. $(a) \Longrightarrow(b)$: Let $B \subseteq Y$ and $x \notin f^{-1}\left[e-c l_{\theta}(B)\right]$.
$x \notin f^{-1}\left[e-c l_{\theta}(B)\right] \Rightarrow f(x) \notin e-c l_{\theta}(B) \Rightarrow(\exists V \in e O(Y, f(x)))(e-c l(V) \cap B=\emptyset) \ldots(1)$
$V \in e O(Y, f(x))$ (a) $\} \Rightarrow(\exists U \in e O(X, x))(f[U] \subseteq e-c l(V)) \ldots(2)$
(1) , (2) $\Rightarrow(\exists U \in e O(X, x))(f[U] \cap B=\emptyset)$
$\Rightarrow(\exists U \in e O(X, x))\left(U \cap f^{-1}[B]=\emptyset\right)$
$\Rightarrow x \notin e-c l\left(f^{-1}[B]\right)$.
$(b) \Longrightarrow(c):$ Let $A \subseteq X$.

$$
A \subseteq X \Rightarrow f[A] \subseteq Y \text { (b) }\}\} \Rightarrow e-c l(A) \subseteq e-c l\left(f^{-1}[f[A]]\right) \subseteq f^{-1}\left[e-c l_{\theta}(f[A])\right]
$$

$\Rightarrow f[e-c l(A)] \subseteq e-c l_{\theta}(f[A])$.
$(c) \Longrightarrow(d):$ Let $F \in e \theta C(Y)$.
$\left.F \in e \theta C(Y) \Rightarrow f^{-1}[F] \subseteq \begin{array}{c}X \\ (c)\end{array}\right\} \Rightarrow f\left[e-c l\left(f^{-1}[F]\right)\right] \subseteq e-c l_{\theta}\left(f\left[f^{-1}[F]\right]\right) \subseteq e-c l_{\theta}(F)=$
F
$\Rightarrow e-c l\left(f^{-1}[F]\right) \subseteq f^{-1}[F]$
$\Rightarrow f^{-1}[F] \in e C(X)$.
$(d) \Longrightarrow(e)$: Clear.
$(e) \Longrightarrow(a):$ Let $x \in X$ and $V \in e O(Y, f(x))$.

```
\(V \in e O(Y, f(x)) \Rightarrow e-c l(V) \in e \theta O(Y)\} \Rightarrow\)
\(\Rightarrow\left(U:=f^{-1}[e-c l(V)] \in e O(X, x)\right)\left(f[U]=f\left[f^{-1}[e-c l(V)]\right] \subseteq e-c l(V)\right)\).
```

Theorem 3.7 Let $f: X \rightarrow Y$ be a function. Then the following properties are equivalent:
(a) f is weakly e-irresolute;
(b) For each $x \in X$ and each $V \in e O(Y, f(x))$, there exists $U \in e O(X, x)$ such that $f[e-c l(U)] \subseteq e-c l(V)$;
(c) $f^{-1}[F] \in e R(X)$ for every $F \in e R(Y)$.

Proof. $(a) \Longrightarrow(b)$: Let $x \in X$ and $V \in e O(Y, f(x))$.
$\left.\begin{array}{rl}V \in e O(Y, f(x)) \\ & \text { Theorem 2.3 }\end{array}\right\} \Rightarrow \begin{array}{r}e-c l(V) \in e \theta O(Y) \cap e \theta C(Y) \\ \\ \\ \Rightarrow\left(U:=f^{-1}[e-c l(V)] \in e O(X) \cap e C(X)\right)(f[e-c l(U)] \subseteq e-c l(V)) .\end{array}$
$(b) \Longrightarrow(c):$ Let $F \in e R(Y)$ and $x \in f^{-1}[F]$.
$\left.\left(x \in f^{-1}[F]\right)(F \in e R(Y)) \Rightarrow F \in e R(Y, f(x))\right\} \Rightarrow$
$\Rightarrow(\exists U \in e O(X, x))(f[e-c l(U)] \subseteq e-c l[F]=F)$
$\Rightarrow(\exists U \in e O(X, x))\left(U \subseteq e-c l(U) \subseteq f^{-1}[F]\right)$
$\Rightarrow x \in e-i n t\left(f^{-1}[F]\right)$
Then $f^{-1}[F] \in e O(X) \ldots(1)$

$$
\left.\left(x \in f^{-1}[Y \backslash F]\right)(F \in e R(Y)) \Rightarrow Y \backslash F \in e R(Y, f(x))\right\} \Rightarrow
$$

$\Rightarrow(\exists U \in e O(X, x))(f[e-c l(U)] \subseteq e-c l[Y \backslash F]=Y \backslash F)$
$\Rightarrow(\exists U \in e O(X, x))\left(U \subseteq e-c l(U) \subseteq f^{-1}[Y \backslash F]\right)$
$\Rightarrow x \in e-i n t\left(f^{-1}[Y \backslash F]\right) \in e O(X)$
Then $f^{-1}[Y \backslash F] \in e O(X)$ and so $f^{-1}[F] \in e C(X) \ldots(2)$
(1), (2) $\Rightarrow f^{-1}[F] \in e R(X)$.
$(c) \Longrightarrow(a):$ Let $x \in X$ and $V \in e O(Y, f(x))$.
$V \in e O(Y, f(x)) \Rightarrow e-c l(V) \in e R(Y, f(x))\} \Rightarrow$
$\Rightarrow\left(U:=f^{-1}[e-c l(V)] \in e R(X, x)\right)(f[U] \subseteq e-c l(V))$.
Theorem 3.8 Let $f: X \rightarrow Y$ be a function. Then the following properties are equivalent:
(a) f is weakly e-irresolute;
(b) $f^{-1}[V] \subseteq e-i n t_{\theta}\left(f^{-1}\left[e-c l_{\theta}(V)\right]\right)$ for every $V \in e O(Y)$;
(c) $e-c l_{\theta}\left(f^{-1}[V]\right) \subseteq f^{-1}\left[e-c l_{\theta}(V)\right]$ for every $V \in e O(Y)$.

Proof. $(a) \Longrightarrow(b)$: Let $V \in e O(Y)$.
$\left.V \in e O(Y) \Rightarrow e-c l_{\theta}(V) \in e R(Y)(a)\right\} \Rightarrow f^{-1}\left[e-c l_{\theta}(V)\right] \in e R(X)$
$\Rightarrow f^{-1}\left[e-c l_{\theta}(V)\right] \in e \theta O(X) \Rightarrow e-\operatorname{int}_{\theta}\left(f^{-1}\left[e-c l_{\theta}(V)\right]\right)=f^{-1}\left[e-c l_{\theta}(V)\right] \supseteq f^{-1}[V]$.
$(b) \Longrightarrow(c):$ Let $V \in e O(Y)$.
$\left.V \in e O(Y) \Rightarrow Y \backslash V \in e C(Y) \Rightarrow e-\operatorname{int}_{\theta}(Y \backslash V) \in e R(Y)\right\} \Rightarrow$
$f^{-1}\left[e-\operatorname{int}_{\theta}(Y \backslash V)\right] \subseteq e-\operatorname{int}_{\theta}\left(f^{-1}\left[e-c l_{\theta}\left(e-\operatorname{int}_{\theta}(Y \backslash V)\right)\right]\right)=e-\operatorname{int}_{\theta}\left(f^{-1}\left[e-i n t_{\theta}(Y \backslash V)\right]\right)$
$\Rightarrow X \backslash e-i n t_{\theta}\left(f^{-1}\left[e-\operatorname{int}_{\theta}(Y \backslash V)\right]\right) \subseteq X \backslash f^{-1}\left[e-\operatorname{int}_{\theta}(Y \backslash V)\right]$
$\Rightarrow e-c l_{\theta}\left(X \backslash f^{-1}\left[e-\operatorname{int}_{\theta}(Y \backslash V)\right]\right) \subseteq f^{-1}\left[Y \backslash e-i n t_{\theta}(Y \backslash V)\right]$
$\Rightarrow e-c l_{\theta}\left(f^{-1}\left[Y \backslash e-\right.\right.$ int $\left.\left._{\theta}(Y \backslash V)\right]\right) \subseteq f^{-1}\left[e-c l_{\theta}(V)\right]$
$\Rightarrow e-c l_{\theta}\left(f^{-1}\left[e-c l_{\theta}(V)\right]\right) \subseteq f^{-1}\left[e-c l_{\theta}(V)\right]$
$\Rightarrow e-c l_{\theta}\left(f^{-1}[V]\right) \subseteq e-c l_{\theta}\left(f^{-1}\left[e-c l_{\theta}(V)\right]\right) \subseteq f^{-1}\left[e-c l_{\theta}(V)\right]$.
$(c) \Longrightarrow(a):$ Let $V \in e R(Y)$.
$V \in e R(Y) \Rightarrow V \in e O(Y)\}(c)\} \Rightarrow e-c l_{\theta}\left(f^{-1}[V]\right) \subseteq f^{-1}\left[e-c l_{\theta}(V)\right]=f^{-1}[V]$
$\Rightarrow f^{-1}[V]=e-c l_{\theta}\left(f^{-1}[V]\right)$
$\Rightarrow f^{-1}[V] \in e \theta C(X) \ldots(1)$
$V \in e R(Y) \Rightarrow Y \backslash V \in e R(Y) \Rightarrow Y \backslash V \in e O(Y)$ (c) $\} \Rightarrow$
$\Rightarrow e-c l_{\theta}\left(f^{-1}[Y \backslash V]\right) \subseteq f^{-1}\left[e-c l_{\theta}(Y \backslash V)\right]=f^{-1}[Y \backslash V]$
$\Rightarrow X \backslash f^{-1}[Y \backslash V] \subseteq X \backslash e-c l_{\theta}\left(f^{-1}[Y \backslash V]\right)$
$\Rightarrow f^{-1}[V] \subseteq e-$ int $_{\theta}\left(f^{-1}[V]\right)$
$\Rightarrow f^{-1}[V]=e-i n t_{\theta}\left(f^{-1}[V]\right)$
$\Rightarrow f^{-1}[V] \in e \theta O(X) \ldots(2)$
(1), (2) $\Rightarrow f^{-1}[V] \in e R(X)$.

Theorem 3.9 Let $f: X \rightarrow Y$ be a function. Then the following properties are equivalent:
(a) f is weakly e-irresolute;
(b) $e-c l_{\theta}\left(f^{-1}[B]\right) \subseteq f^{-1}\left[e-c l_{\theta}(B)\right]$ for every subset B of Y;
(c) $f\left[e-c l_{\theta}(A)\right] \subseteq e-c l_{\theta}(f[A])$ for every subset A of X;
(d) $f^{-1}[F]$ is $e-\theta$-closed in X for every $e-\theta$-closed set F of Y;
(e) $f^{-1}[V]$ is e - θ-open in X for every $e-\theta$-open set V of Y.

Proof. $(a) \Longrightarrow(b)$: Let $B \subseteq Y$ and $x \notin f^{-1}\left[e-c l_{\theta}(B)\right]$.
$\left.x \notin f^{-1}\left[e-c l_{\theta}(B)\right] \Rightarrow f(x) \notin e-c l_{\theta}(B) \Rightarrow(\exists V \in e O(Y, f(x)))(e-c l(V) \cap B=\emptyset) \quad \begin{array}{r}f \text { is w.e.i. }\end{array}\right\} \Rightarrow$
$\Rightarrow(\exists U \in e O(X, x))(f[e-c l(U)] \cap B=\emptyset)$
$\Rightarrow(\exists U \in e O(X, x))\left(e-c l(U) \cap f^{-1}[B]=\emptyset\right)$
$\Rightarrow x \notin e-c l_{\theta}\left(f^{-1}[B]\right)$.
$(b) \Longrightarrow(c):$ Let $A \subseteq X$.
$A \subseteq X \Rightarrow f[A] \subseteq\left(\begin{array}{c}(b)\end{array}\right\} \Rightarrow e-c l_{\theta}(A) \subseteq e-c l_{\theta}\left(f^{-1}[f[A]]\right) \subseteq f^{-1}\left[e-c l_{\theta}(f[A])\right]$
$\Rightarrow f\left[e-c l_{\theta}(A)\right] \subseteq e-c l_{\theta}(f[A])$.
$(c) \Longrightarrow(d)$: Let $F \in e \theta C(Y)$.
$\left.F \in e \theta C(Y) \Rightarrow\left(e-c l_{\theta}(F)=F\right)\left(f^{-1}[F] \subseteq \underset{(c)}{X}\right)\right\} \Rightarrow$
$\Rightarrow f\left[e-c l_{\theta}\left(f^{-1}[F]\right)\right] \subseteq e-c l_{\theta}\left(f\left[f^{-1}[F]\right]\right) \subseteq e-c l_{\theta}(F)=F$
$\Rightarrow e-c_{\theta}\left(f^{-1}[F]\right) \subseteq f^{-1}[F]$
$\Rightarrow f^{-1}[F] \in e \theta C(X)$.
$(d) \Longrightarrow(e):$ Let $V \in e \theta O(Y)$.
$V \in e \theta O(Y) \Rightarrow Y \backslash V \in e \theta C(Y)(d)\} \Rightarrow X \backslash f^{-1}[V]=f^{-1}[Y \backslash V] \in e \theta C(X)$
$\Rightarrow f^{-1}[V] \in e \theta O(X)$.
$(e) \Longrightarrow(a):$ Let $V \in e R(Y)$.
$V \in e R(Y) \Rightarrow V \in e \theta O(Y) \cap e \theta C(Y) \Rightarrow(V \in e \theta O(Y))(Y \backslash V \in e \theta C(Y))\} \Rightarrow$
$\Rightarrow\left(f^{-1}[V] \in e \theta O(X)\right)\left(X \backslash f^{-1}[V]=f^{-1}[Y \backslash V] \in e \theta O(X)\right)$
$\Rightarrow\left(f^{-1}[V] \in e \theta O(X)\right)\left(f^{-1}[V] \in e \theta C(X)\right) \stackrel{\text { Theorem } 2.3(d)}{\Rightarrow} f^{-1}[V] \in e R(X)$.

4. Some Fundamental Properties

Definition 4.1 A topological space X is said to be strongly e-regular if for each point $x \in X$ and each e-open set U of X containing x, there exists $V \in e O(X, x)$ such that $V \subseteq e-c l(V) \subseteq U$.

Theorem 4.2 Let X and Y be topological spaces and $f: X \rightarrow Y$ be a function. If Y is strongly e-regular and $f: X \rightarrow Y$ is weakly e-irresolute, then the function f is e-irresolute.

Proof. $V \in e O(Y)$ and $x \in f^{-1}[V]$.
$\left.\begin{array}{r}(V \in e O(Y))\left(x \in f^{-1}[V]\right) \Rightarrow V \in e O(Y, f(x)) \\ Y \text { is strongly } e \text {-regular }\end{array}\right\} \Rightarrow$
$\left.\Rightarrow \begin{array}{r}(\exists F \in e O(Y, f(x)))(F \subseteq e-c l(F) \subseteq V) \\ f \text { is w.e.i. }\end{array}\right\} \Rightarrow$
$\Rightarrow(\exists U \in e O(X, x))(f[U] \subseteq e-c l(F) \subseteq V)$
$\Rightarrow(\exists U \in e O(X, x))\left(U \subseteq \bar{f}^{-1}[f[U]] \subseteq f^{-1}[e-c l(F)] \subseteq f^{-1}[V]\right)$
$\Rightarrow x \in e-i n t\left(f^{-1}[V]\right)$
Then $f^{-1}[V] \in e O(X)$.
Definition 4.3 A space X is said to be $e-T_{2}$ [7] if for each pair of distinct points x and y in X, there exist $A \in e O(X, x)$ and $B \in e O(X, y)$ such that $A \cap B=\emptyset$.
Lemma 4.4 [11] A topological space X is $e-T_{2}$ if and only if for each pair of distinct points x and y of X, there exist $U \in e O(X, x)$ and $V \in e O(X, y)$ such that $e-c l(U) \cap$ $e-c l(V)=\emptyset$.

Theorem 4.5 Let X and Y be topological spaces and $f: X \rightarrow Y$ be a function. If Y is $e-T_{2}$ and $f: X \rightarrow Y$ is weakly e-irresolute injection, then X is $e-T_{2}$.

Proof. Let $x, y \in X$ and $x \neq y$.

$$
\begin{align*}
& \left.\left.\begin{array}{r}
(x, y \in X)(x \neq y) \\
f \text { is injective }
\end{array}\right\} \Rightarrow \begin{array}{r}
f(x) \neq f(y) \\
\text { Lemma 4.4 }
\end{array}\right\} \Rightarrow \\
& \Rightarrow(\exists V \in e O(Y, f(x)))(\exists W \in e O(Y, f(y)))(e-c l(V) \cap e-c l(W)=\emptyset) \ldots(1) \\
& (V \in e O(Y, f(x)))(W \in e O(Y, f(y)))\} \Rightarrow \\
& f \text { is w.e.i. }\} \Rightarrow \\
& \Rightarrow(\exists G \in e O(X, x))(\exists H \in e O(X, y))(f[G] \subseteq e-c l(V))(f[H] \subseteq e-c l(W)) \tag{2}\\
& \text { (1), }(2) \Rightarrow(\exists G \in e O(X, x))(\exists H \in e O(X, y))(f[G] \cap f[H]=\emptyset) \\
& \Rightarrow(\exists G \in e O(X, x))(\exists H \in e O(X, y))(f[G \cap H]=\emptyset) \\
& \Rightarrow(\exists G \in e O(X, x))(\exists H \in e O(X, y))(G \cap H=\emptyset)
\end{align*}
$$

Then X is $e-T_{2}$.
We recall that for a function $f: X \rightarrow Y$, the subset $\{(x, f(x)) \mid x \in X\}$ of the product space $X \times Y$ is called the graph of f and is denoted by $G(f)$.

Definition 4.6 The graph $G(f)$ of a function $f: X \rightarrow Y$ is said to be completely e-closed (briefly c.e.c.) if for each $(x, y) \in(X \times Y) \backslash G(f)$, there exist $U \in e O(X, x)$ and $V \in e O(Y, y)$ such that $(e-c l(U) \times e-c l(V)) \cap G(f)=\emptyset$.

Lemma 4.7 The graph of a function $f: X \rightarrow Y$ is completely e-closed if and only if
for each $(x, y) \in(X \times Y) \backslash G(f)$, there exist $U \in e O(X, x)$ and $V \in e O(Y, y)$ such that $f[e-c l(U)] \cap e-c l(V)=\emptyset$.

Proof. Necessity. Let $(x, y) \in(X \times Y) \backslash G(f)$.

$$
\left.\begin{array}{r}
(x, y) \in(X \times Y) \backslash G(f) \\
G(f) \text { is c.e.c. }
\end{array}\right\} \Rightarrow
$$

$\Rightarrow(\exists U \in e O(X, x))(\exists V \in e O(Y, y))([e-c l(U) \times e-c l(V)] \cap G(f)=\emptyset)$
$\Rightarrow(\exists U \in e O(X, x))(\exists V \in e O(Y, y))(f[e-c l(U)] \cap e-c l(V)=\emptyset)$.
Sufficiency. Let $(x, y) \in(X \times Y) \backslash G(f)$.

$$
\left.\begin{array}{l}
(x, y) \in(X \times Y) \backslash G(f) \\
\text { Hypothesis }
\end{array}\right\} \Rightarrow(\exists U \in e O(X, x))(\exists V \in e O(Y, y))(f[e-c l(U)] \cap e-c l(V)=\emptyset) .
$$

Theorem 4.8 If Y is $e-T_{2}$ and $f: X \rightarrow Y$ is weakly e-irresolute, then $G(f)$ is completely e-closed.

Proof. Let $(x, y) \in(X \times Y) \backslash G(f)$.

$$
\begin{aligned}
& \left.(x, y) \in(X \times Y) \backslash G(f) \Rightarrow(x, y) \notin G(f) \Rightarrow \begin{array}{r}
y \neq f(x) \\
Y \text { is } e-T_{2}
\end{array}\right\} \stackrel{\text { Lemma }}{\Rightarrow} 4.4 \\
& \Rightarrow(\exists V \in e O(Y, f(x)))(\exists W \in e O(Y, y))(e-c l(V) \cap e-c l(W)=\emptyset) \ldots(1) \\
& \left.\begin{array}{rl}
V \in e O(Y, f(x)) \\
f \text { is w.e.i. }
\end{array}\right\} \stackrel{\text { Theorem }}{\Rightarrow}{ }^{3.7(b)}(\exists U \in e O(X, x))(f[e-c l(U)] \subseteq e-c l(V)) \ldots(2) \\
& \text { (1), (2) } \Rightarrow(\exists U \in e O(X, x))(\exists W \in e O(Y, y))(f[e-c l(U)] \cap e-c l(W)=\emptyset) \\
& \Rightarrow(\exists U \in e O(X, x))(\exists W \in e O(Y, y))(e-c l(U) \times e-c l(W)) \cap G(f)=\emptyset)
\end{aligned}
$$

Then $G(f)$ is completely e-closed.
Theorem 4.9 If a function $f: X \rightarrow Y$ is weakly e-irresolute injection and $G(f)$ is completely e-closed, then X is $e-T_{2}$.
Proof. Let $x, y \in X$ and $x \neq y$.

$$
\begin{aligned}
& \left.\left.\begin{array}{r}
(x, y \in X)(x \neq y) \\
f \text { is injective }
\end{array}\right\} \Rightarrow f(x) \neq f(y) \Rightarrow(x, f(y)) \notin G(f) \underset{G(f) \text { is c.e.c. }}{ }\right\} \begin{array}{r}
\text { Lemma } 4.7
\end{array} \\
& \Rightarrow(\exists U \in e O(X, x))(\exists V \in e O(Y, f(y)))(f[e-c l(U)] \cap e-c l(V)=\emptyset) . \\
& \left.\begin{array}{r}
V \in e O(Y, f(y)) \\
f \text { is w.e.i. }
\end{array}\right\} \Rightarrow(\exists H \in e O(X, y))(f[H] \subseteq e-c l(V)) \ldots(2) \\
& \text { (1), (2) } \Rightarrow(\exists U \in e O(X, x))(\exists H \in e O(X, y))(f[e-c l(U)] \cap f[H]=\emptyset) \\
& \Rightarrow(\exists U \in e O(X, x))(\exists H \in e O(X, y))(f[e-c l(U) \cap H]=\emptyset) \\
& \Rightarrow(\exists U \in e O(X, x))(\exists H \in e O(X, y))(e-c l(U) \cap H=\emptyset) \\
& \Rightarrow(\exists U \in e O(X, x))(\exists H \in e O(X, y))(U \cap H=\emptyset)
\end{aligned}
$$

This means that X is $e-T_{2}$.
Definition 4.10 A topological space X is said to be e-connected [5] if it cannot be written as the union of two nonempty disjoint e-open sets.

Theorem 4.11 If a function $f: X \rightarrow Y$ is weakly e-irresolute surjection and X is e-connected, then Y is e-connected.

Proof. Suppose that Y is not e-connected. Then

$$
\begin{aligned}
& \Rightarrow(\exists U, V \in e O(Y) \backslash\{\emptyset\})(U \cap V=\emptyset)(U \cup V=Y) \Rightarrow U, V \in e R(Y) \backslash\{\emptyset\} \\
& \text { Hypothesis }\} \\
& \Rightarrow\left(f^{-1}[U], f^{-1}[V] \in e R(X) \backslash\{\emptyset\}\right)\left(f^{-1}[U \cap V]=f^{-1}[\emptyset]\right)\left(f^{-1}[U \cup V]=f^{-1}[Y]\right) \\
& \Rightarrow\left(f^{-1}[U], f^{-1}[V] \in e R(X) \backslash\{\emptyset\}\right)\left(f^{-1}[U] \cap f^{-1}[V]=\emptyset\right)\left(f^{-1}[U] \cup f^{-1}[V]=X\right) .
\end{aligned}
$$

This means that X is not e-connected.

Acknowledgements

This work is financially supported by Muğla Sıtkı Koçman University, Turkey under BAP grant no: 15/181. This work is dedicated to Professor Dr. Gülhan ASLIM on the occasion of her 70th birthday.

References

[1] M. E. Abd El-Monsef, S. N. El-Deeb, R. A. Mahmoud, β-open sets and β-continuous mappings, Bull-Fac. Sci. Assiut Univ. 12 (1983), 77-90.
[2] Y. Beceren, Almost α-irresolute functions, Bull. Cal. Math. Soc. 92 (2000), 213-218.
[3] Y. Beceren, On semi α-irresolute functions, J. Indian. Acad. Math. 22 (2000), 353-362.
[4] S. G. Crossley, S. K. Hildebrand, Semi-topological properties, Fund. Math. 74 (1972), 233-254.
[5] E. Ekici, New forms of contra continuity, Carpathian J. Math. 24 (1) (2008), 37-45.
[6] E. Ekici, On e-open sets, $\mathcal{D} \mathcal{P}^{*}$-sets and $\mathcal{D} \mathcal{P} \mathcal{E}^{*}$-sets and decompositions of continuity, Arab. J. Sci. Eng. 33 (2A) (2008), 269-282.
[7] E. Ekici, Some generalizations of almost contra-super-continuity, Filomat. 21 (2) (2007), 31-44.
[8] N. Levine, A decomposition of continuity in topological spaces, Amer. Mat. Monthly. 68 (1961), 44-46.
[9] S. N. Maheshwari, S. S. Thakur, On α-irresolute mappings, Tamkang J. Math. 11 (1980), 209-214.
[10] R. A. Mahmoud, M. E. Abd El-Monsef, β-irresolute and β-topological invariants, Proc. Pakistan Acad. Sci. 27 (1990), 285-296.
[11] M. Özkoç, G. Aslım, On strongly θ-e-continuous functions, Bull. Korean Math. Soc. 47 (5) (2010), 1025-1036.
$[12]$ M. Özkoç, G. Aslım, On weakly e-continuous functions, Hacet. J. Math. Stat. 40 (6) (2011), 781-791.
$13]$ V. Popa, T. Noiri, Weakly β-continuous functions, An. Univ. Timioara Ser. Mat.-Inform. 32 (2) (1994), 83-92.
$14]$ N. Rajesh, On weakly B-irresolute functions, Acta Univ. Apulensis. 30 (2012), 153-160.
15] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375-481.
[16] N. V. Veličko, H-closed topological spaces, Amer. Mat. Soc. Transl. Ser. 78 (2) (1968), 103-118.

[^0]: *Corresponding author.
 E-mail address: murad.ozkoc@mu.edu.tr (M. Özkoç); tugceyilmaz090@gmail.com (T. Yılmaz).

