Probability of having $n^{\text {th }}$-roots and n-centrality of two classes of groups

M. Hashemi ${ }^{\text {a* }}$, M. Polkouei ${ }^{\text {a }}$
${ }^{a}$ Faculty of Mathematical Sciences, University of Guilan, P.O.Box 41335-19141, Rasht, Iran.

Received 8 December 2015; Revised 28 March 2016; Accepted 15 April 2016.

Abstract

In this paper, we consider the finitely 2-generated groups $K(s, l)$ and G_{m} as follows; $$
\begin{aligned} & K(s, l)=\left\langle a, b \mid a b^{s}=b^{l} a, b a^{s}=a^{l} b\right\rangle, \\ & G_{m}=\left\langle a, b \mid a^{m}=b^{m}=1,[a, b]^{a}=[a, b],[a, b]^{b}=[a, b]\right\rangle \end{aligned}
$$ and find the explicit formulas for the probability of having $n^{t h}$-roots for them. Also we investigate integers n for which, these groups are n-central. (c) 2016 IAUCTB. All rights reserved.

Keywords: Nilpotent groups, $n^{\text {th }}$-roots, n-central groups
2010 AMS Subject Classification: 20D15, 20P05.

1. Introduction

Let $n>1$ be an integer. An element a of group G is said to have an $n^{t h}$-root b in G, if $a=b^{n}$. The probability that a randomly chosen element in G has an $n^{t h}$-root, is given by

$$
P_{n}(G)=\frac{\left|G^{n}\right|}{|G|}
$$

*Corresponding author.
E-mail address: m_hashemi@guilan.ac.ir (M. Hashemi).
where $G^{n}=\left\{a \in G \mid a=b^{n}\right.$, for some $\left.b \in G\right\}=\left\{x^{n} \mid x \in G\right\}$. In [5], the probability $P_{n}(G)$ for Dihedral groups $D_{2 m}$ and Quaternion groups $Q_{2^{m}}$ for every integer $m \geqslant 3$ have been computed. Also, in [4] the probability that Hamiltonian groups may have $n^{\text {th }}$-roots have been calculated. For $n>1$, a group G is said to be n-central if $\left[x^{n}, y\right]=1$ for all $x, y \in G$. In [6], some aspects of n-central groups have been investigated.

First, we state the following Lemma without proof.
Lemma 1.1 If G is a group and $G^{\prime} \subseteq Z(G)$, then the following hold for every integer k and $u, v, w \in G$:
(i) $[u v, w]=[u, w][v, w]$ and $[u, v w]=[u, v][u, w]$;
(ii) $\left[u^{k}, v\right]=\left[u, v^{k}\right]=[u, v]^{k}$;
(iii) $(u v)^{k}=u^{k} v^{k}[v, u]^{k(k-1) / 2}$.

Now, we state some lemmas which can be found in $[1,2]$.
Lemma 1.2 The groups $K(s, l)=\left\langle a, b \mid a b^{s}=b^{l} a, b a^{s}=a^{l} b\right\rangle$ where $(s, l)=1$, have the following properties:
(i) $|K(s, l)|=|l-s|^{3}$, if $(s, l)=1$ and is infinite otherwise;
(ii) if $(s, l)=1$ then $|a|=|b|=(l-s)^{2}$;
(iii) if $(s, l)=1$, then $a^{l-s}=b^{s-l}$.

Lemma 1.3 (i) For every $l \geqslant 3, K(s, l) \cong K(1,2-l)$.
(ii) For every $i \geqslant 2$ and $(s, i)=1, K(s, s+i) \cong K(1, i+1)$.

Note that if $(s, l)=1$, then $K(s, l) \cong K(1, l-s+1)$ which we can write as K_{m} where $m=l-s+1$.
Lemma 1.4 Every element of K_{m} can be uniquely presented by $x=a^{\beta} b^{\gamma} a^{(m-1) \delta}$, where $1 \leqslant \beta, \gamma, \delta \leqslant m-1$.
Lemma 1.5 In $K_{m},[a, b]=b^{m-1} \in Z\left(K_{m}\right)$.
The following lemma can be seen in [3].
Lemma 1.6 Let $G_{m}=\left\langle a, b \mid a^{m}=b^{m}=1,[a, b]^{a}=[a, b],[a, b]^{b}=[a, b]\right\rangle$ where $m \geqslant 2$, then we have
(i) every element of G_{m} can be uniquely presented by $a^{i} b^{j}[a, b]^{t}$, where
$1 \leqslant i, j, t \leqslant m$.
(ii) $\left|G_{m}\right|=m^{3}$.

In this paper, we consider the groups K_{m} and G_{m} which are nilpotent groups of nilpotency class two. In section 2 , we compute the probability of having $n^{\text {th }}$-root of K_{m} and G_{m}. Section 3 is devoted to finding integers n for which, K_{m} and G_{m} are n-central.

2. The probability of having $\boldsymbol{n}^{\text {th }}$-roots

In this section we consider groups K_{m} and G_{m} and find the probability of having $n^{\text {th }}-$ roots. Here for $m \in \mathbb{Z}$, by m^{*} we mean the arithmetic inverse of m.

Proposition 2.1 For integers $m, n \geqslant 2$;
(1) If $G=K_{m}$ and $x \in G$, then we have

$$
x^{n}=a^{n \beta} b^{n \gamma} a^{(m-1)\left(n \delta+\frac{n(n-1)}{2} \beta \gamma\right)} ;
$$

(2) If $G=G_{m}$ and $x \in G$, then we have

$$
x^{n}=a^{n i} b^{n j}[a, b]^{n t-\frac{n(n-1)}{2} i j} .
$$

Proof. We use an induction method on n. By Lemma 1.4, the assertion holds for $n=1$. Now, let

$$
x^{n}=a^{n \beta} b^{n \gamma} a^{(m-1)\left(n \delta+\frac{n(n-1)}{2} \beta \gamma\right)} .
$$

Then

$$
x^{n+1}=a^{\beta} b^{\gamma} a^{(m-1) \delta} a^{n \beta} b^{n \gamma} a^{(m-1)\left(n \delta+\frac{n(n-1)}{2} \beta \gamma\right)}
$$

By Lemma 1.2, $a^{(m-1) \delta}=b^{(1-m) \delta}$. So

$$
\begin{aligned}
x^{n+1} & =a^{\beta} b^{\gamma} a^{n \beta} b^{n \gamma} a^{(m-1)\left((n+1) \delta+\frac{n(n-1)}{2} \beta \gamma\right)} \\
& =a^{(n+1) \beta}[b, a]^{n \beta \gamma} b^{(n+1) \gamma} a^{(m-1)\left((n+1) \delta+\frac{n(n-1)}{2} \beta \gamma\right)} .
\end{aligned}
$$

Since K_{m} is a group of nilpotency class two, $G^{\prime} \subseteq Z(G)$. Hence by Lemma 1.1 we have

$$
x^{n+1}=a^{(n+1) \beta} b^{(n+1) \gamma} a^{(m-1)\left((n+1) \delta+\frac{n(n+1)}{2} \beta \gamma\right)} .
$$

The second part can be proved similarly.
Theorem 2.2 Let $G=K_{m}$, where $m \geqslant 2$. Then

$$
P_{n}(G)=\left\{\begin{array}{l}
\frac{2}{d^{3}} \text { if } n \text { be even, }\left(\frac{n}{2}, m-1\right)=\frac{d}{2} \text { and } \frac{m-1}{d} \text { be odd; } \\
\frac{1}{d^{3}} \text { otherwise, }
\end{array}\right.
$$

where $(n, m-1)=d$.
Proof. Let $a^{\beta} b^{\gamma} a^{(m-1) \delta}$ be an element of G^{n} where $1 \leqslant \beta, \gamma, \delta \leqslant m-1$. If $x=\left(x_{1}\right)^{n}$ when $a^{\beta_{1}} b^{\gamma_{1}} a^{(m-1) \delta_{1}} \in G, 1 \leqslant \beta_{1}, \gamma_{1}, \delta_{1} \leqslant m-1$, then by Proposition 2.1 we have

$$
\begin{aligned}
a^{\beta} b^{\gamma} a^{(m-1) \delta} & =\left(a^{\beta_{1}} b^{\gamma_{1}} a^{(m-1) \delta_{1}}\right)^{n} \\
& =a^{n \beta_{1}} b^{n \gamma_{1}} a^{(m-1)\left(n \delta_{1}+\frac{n(n-1)}{2} \beta_{1} \gamma_{1}\right)} .
\end{aligned}
$$

By uniqueness of presentation of G, we obtain

$$
\left\{\begin{array}{l}
n \beta_{1} \equiv \beta \quad(\bmod m-1) \tag{1}\\
n \gamma_{1} \equiv \gamma \quad(\bmod m-1) \\
n \delta_{1}+\frac{n(n-1)}{2} \beta_{1} \gamma_{1} \equiv \delta \quad(\bmod m-1)
\end{array}\right.
$$

Now let $(n, m-1)=d$. The first congruence of the system (1) has the solution

$$
\beta_{1} \equiv\left(\frac{n}{d}\right)^{*}\left(\frac{\beta}{d}\right) \quad\left(\bmod \frac{m-1}{d}\right)
$$

if and only if $d \mid \beta$. Then

$$
\beta \in\left\{d, 2 d, \ldots, \frac{m-1}{d} \times d\right\} .
$$

This means that β has $\frac{m-1}{d}$ choices. Similarly, by second equation of System (1) we get

$$
\gamma \in\left\{d, 2 d, \ldots, \frac{m-1}{d} \times d\right\} .
$$

So γ admits $\frac{m-1}{d}$ values.
Now for finding the number of values of δ, we consider two cases, where n is odd or even.
First let n be an odd integers. Then

$$
n\left(\delta_{1}+\frac{n(n-1)}{2} \beta_{1} \gamma_{1}\right) \equiv \delta \quad(\bmod m-1)
$$

Since $(n, m-1)=d$, we get

$$
\delta_{1} \equiv\left(\frac{n}{d}\right)^{*} \frac{\delta}{d}-\frac{n(n-1)}{2} \beta_{1} \gamma_{1} \quad\left(\bmod \frac{m-1}{d}\right)
$$

provided that $d \mid \delta$. So

$$
\delta \in\left\{d, 2 d, \ldots, \frac{m-1}{d} \times d\right\} .
$$

Therefore in this case we have $\frac{m-1}{d}$ choices for δ. By the above facts, we have

$$
\begin{aligned}
\left|G^{n}\right| & =\left|\left\{a^{\beta} b^{\gamma} a^{(m-1) \delta} \left\lvert\, \beta \in\left\{d, \ldots, \frac{m-1}{d} d\right\}\right., \gamma \in\left\{d, \ldots, \frac{m-1}{d} d\right\}, \delta \in\left\{d, \ldots, \frac{m-1}{d} d\right\}\right\}\right| \\
& =\left\lvert\,\left\{(\beta, \gamma, \delta)\left|\left\{\beta \in\left\{d, \ldots, \frac{m-1}{d} d\right\}, \gamma \in\left\{d, \ldots, \frac{m-1}{d} d\right\}, \delta \in\left\{d, \ldots, \frac{m-1}{d} d\right\}\right\}\right|\right.\right. \\
& =\frac{m-1}{d} \times \frac{m-1}{d} \times \frac{m-1}{d}=\left(\frac{m-1}{d}\right)^{3} .
\end{aligned}
$$

So

$$
P_{n}(G)=\frac{\left|G^{n}\right|}{|G|}=\frac{(m-1 / d)^{3}}{(m-1)^{3}}=\frac{1}{d^{3}} .
$$

Now suppose n be an even integer. Then $\left(\frac{n}{2}, m-1\right)=d$ or $\left(\frac{n}{2}, m-1\right)=\frac{d}{2}$.
Case 1. Let $\left(\frac{n}{2}, m-1\right)=d$. Then

$$
\frac{n}{2}\left(2 \delta_{1}+(n-1) \beta_{1} \gamma_{1}\right) \equiv \delta \quad(\bmod m-1)
$$

So

$$
2 \delta_{1} \equiv\left(\frac{n}{2 d}\right) * \frac{\delta}{d}-(n-1) \beta_{1} \gamma_{1} \quad\left(\bmod \frac{m-1}{d}\right) .
$$

Since $\left(\frac{n}{2}, m-1\right)=d,\left(\frac{m-1}{d}, 2\right)=1$. Hence, the above congruence holds if and only if $d \mid \delta$. Therefore

$$
\delta \in\left\{d, 2 d, \ldots, \frac{m-1}{d} \times d\right\} .
$$

So

$$
\begin{aligned}
\left|G^{n}\right| & =\left\lvert\,\left\{(\beta, \gamma, \delta)\left|\left\{\beta \in\left\{d, \ldots, \frac{m-1}{d} d\right\}, \gamma \in\left\{d, \ldots, \frac{m-1}{d} d\right\}, \delta \in\left\{d, \ldots, \frac{m-1}{d} d\right\}\right\}\right|\right.\right. \\
& =\left(\frac{m-1}{d}\right)^{3}
\end{aligned}
$$

and consequently

$$
P_{n}(G)=\frac{1}{d^{3}} .
$$

Case 2. Let $\left(\frac{n}{2}, m-1\right)=\frac{d}{2}$. Then

$$
\frac{n}{d}\left(2 \delta_{1}+(n-1) \beta_{1} \gamma_{1}\right) \equiv \frac{2 \delta}{d} \quad\left(\bmod \frac{2(m-1)}{d}\right) .
$$

Hence

$$
\begin{equation*}
2 \delta_{1} \equiv\left(\frac{n}{d}\right)^{*} \frac{2 \delta}{d}-(n-1) \beta_{1} \gamma_{1} \quad\left(\bmod \frac{2(m-1)}{d}\right) . \tag{2}
\end{equation*}
$$

So, we must have $2 \mid \beta_{1} \gamma_{1}$. Suppose $2 \mid \gamma_{1}$. Now by congruence

$$
\begin{equation*}
\gamma_{1} \equiv\left(\frac{n}{d}\right) * \frac{\gamma}{d} \quad\left(\bmod \frac{m-1}{d}\right) \tag{3}
\end{equation*}
$$

we consider two subcases:
Subcase 2.a. Let $\frac{(m-1)}{d}$ be an even integer. Now since

$$
\frac{n}{d}\left(\frac{n}{d}\right)^{*} \equiv 1 \quad\left(\bmod \frac{m-1}{d}\right),
$$

both $\frac{n}{d}$ and $\left(\frac{n}{d}\right)^{*}$ are odd. Since $2 \mid \gamma_{1}$, By congruence (3) we get $2 \left\lvert\, \frac{\gamma}{d}\right.$. It means that

$$
\gamma \in\left\{2 d, 4 d, \ldots, \frac{m-1}{2 d} \times 2 d\right\} .
$$

Hence the number of values of γ is $\frac{m-1}{2 d}$. On the other hand according to congruence (2), $\left.\frac{d}{2} \right\rvert\, \delta$. Therefore

$$
\delta \in\left\{\frac{d}{2}, d, \ldots, \frac{2(m-1)}{d} \times \frac{d}{2}\right\} .
$$

So δ admits $\frac{2(m-1)}{d}$ values. Consequently

$$
\left|G^{n}\right|=\frac{m-1}{d} \times \frac{m-1}{2 d} \times \frac{2(m-1)}{d}=\left(\frac{m-1}{d}\right)^{3}
$$

and

$$
P_{n}(G)=\frac{1}{d^{3}}
$$

Case 2.b. Let $\frac{(m-1)}{d}$ be an odd integer and $\gamma \in\left\{d, 2 d, \ldots, \frac{m-1}{d} d\right\}$. If

$$
\gamma_{1} \equiv \frac{n}{d}\left(\frac{n}{d}\right)^{*}\left(\bmod \frac{m-1}{d}\right)
$$

and γ_{1} be an even integer, then we get the desired result. Otherwise, instead of γ_{1}, we put $\gamma_{1}+\frac{m-1}{d}$. So for each

$$
\gamma \in\left\{d, 2 d, \ldots, \frac{m-1}{d} \times d\right\}
$$

the congruence holds. It means that the number of choices for γ is equal to $\frac{m-1}{d}$. Finally, we get

$$
\left|G^{n}\right|=\frac{m-1}{d} \times \frac{m-1}{d} \times \frac{2(m-1)}{d}=2\left(\frac{m-1}{d}\right)^{3}
$$

and

$$
P_{n}(G)=\frac{2}{d^{3}}
$$

Theorem 2.3 Let $G=G_{m}$, where $m \geqslant 2$. Then

$$
P_{n}(G)=\left\{\begin{array}{l}
\frac{2}{d^{3}} \text { if } n \text { be even, }\left(\frac{n}{2}, m\right)=\frac{d}{2} \text { and } \frac{m}{d} \text { be odd } ; \\
\frac{1}{d^{3}} \text { otherwise }
\end{array}\right.
$$

where $(n, m)=d$.
Proof. Let $a^{i} b^{j}[a, b]^{t}$ be an element of G^{n} where $1 \leqslant i, j, t \leqslant m$. If $x=\left(x_{1}\right)^{n}$ when $a^{i_{1}} b^{j}[a, b]^{t_{1}} \in G, 1 \leqslant i_{1}, j_{1}, t_{1} \leqslant m$, then by Proposition 2.1 we have

$$
\begin{aligned}
a^{i} b^{j}[a, b]^{t} & =\left(a^{i_{1}} b^{j_{1}}[a, b]^{t_{1}}\right)^{n} \\
& =a^{n i_{1}} b^{n j_{1}}[a, b]^{n t_{1}-\frac{n(n-1)}{2} i_{1} j_{1}} .
\end{aligned}
$$

By uniqueness of presentation of G, we obtain

$$
\left\{\begin{array}{l}
n i_{1} \equiv i \quad(\bmod m) \\
n j_{1} \equiv j \quad(\bmod m) \\
n t_{1}-\frac{n(n-1)}{2} i_{1} j_{1} \equiv t \quad(\bmod m)
\end{array}\right.
$$

The obtained congruence system is exactly similar to System (1). So it can be solve, similarly.

3. n-centrality

In this section, we again consider groups K_{m}, G_{m} and investigate n-centrality for them.
Theorem 3.1 Let $G=K_{m}$, where $m \geqslant 2$. Then for $n>1$, the group G is n-central if and only if $m-1 \mid n$.

Proof. By Proposition 2.1 and Lemma 1.1, we get

$$
x^{n} y=a^{n \beta_{1}+\beta_{2}} b^{n \gamma_{1}+\gamma_{2}} a^{(m-1)\left(n \delta_{1}+\delta_{2}+\frac{n(n-1)}{2} \beta_{1} \gamma_{1}+n \beta_{2} \gamma_{1}\right)} .
$$

Also we obtain

$$
y x^{n}=a^{n \beta_{1}+\beta_{2}} b^{n \gamma_{1}+\gamma_{2}} a^{(m-1)\left(n \delta_{1}+\delta_{2}+\frac{n(n-1)}{2} \beta_{1} \gamma_{1}+n \beta_{1} \gamma_{2}\right)} .
$$

We know that G is n-central if and only if $x^{n} y=y x^{n}$, for all $x, y \in G$. Furthermore by uniqueness of presentation of $x^{n} y$ and $y x^{n}$, we see that $x^{n} y=y x^{n}$ if and only if

$$
n \delta_{1}+\delta_{2}+\frac{n(n-1)}{2} \beta_{1} \gamma_{1}+n \beta_{2} \gamma_{1} \equiv n \delta_{1}+\delta_{2}+\frac{n(n-1)}{2} \beta_{1} \gamma_{1}+n \beta_{1} \gamma_{2} \quad(\bmod m-1)
$$

This is equivalent to

$$
n\left(\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}\right) \equiv 0 \quad(\bmod m-1)
$$

Now since this holds for all $x, y \in G, m-1 \mid n$.
Theorem 3.2 Let $G=G_{m}$, where $m \geqslant 2$. Then for $n>1$, the group G is n-central if and only if $m \mid n$.

Proof. By Proposition 2.1 and Lemma 1.1, we get

$$
x^{n} y=a^{n i_{1}+i_{2}} b^{n j_{1}+j_{2}}[a, b]^{n t_{1}+t_{2}-\frac{n(n-1)}{2} i_{1} j_{1}-n i_{2} j_{1}} .
$$

Also we obtain

$$
y x^{n}=a^{n i_{1}+i_{2}} b^{n j_{1}+j_{2}}[a, b]^{n t_{1}+t_{2}-\frac{n(n-1)}{2} i_{1} j_{1}-n i_{1} j_{2}} .
$$

We know that G is n-central if and only if $x^{n} y=y x^{n}$, for all $x, y \in G$. Furthermore by uniqueness of presentation of $x^{n} y$ and $y x^{n}$, we see that $x^{n} y=y x^{n}$ if and only if

$$
n t_{1}+t_{2}-\frac{n(n-1)}{2} i_{1} j_{1}-n i_{2} j_{1} \equiv n t_{1}+t_{2}-\frac{n(n-1)}{2} i_{1} j_{1}-n i_{1} j_{2} \quad(\bmod m)
$$

This is equivalent to

$$
n\left(i_{1} j_{2}-i_{2} j_{1}\right) \equiv 0 \quad(\bmod m)
$$

Now since this holds for all $x, y \in G, m \mid n$.

References

[1] C. M. Campbell, P. P. Campel, H. Doostie and E. F. Robertson, Fibonacci length for metacyclian groups. Algebra Colloq. 11 (2004), 215-222.
[2] C. M. Campbell, E. F. Robertson, On a group presentation due to Fox. Canada. Math. Bull. 19 (1967), 247-248.
[3] H. Doostie, M. Hashemi, Fibonacci lengths involving the Wall number $K(n)$. J. Appl. Math. Computing. 20 (2006), 171-180.
[4] A. Sadeghieh, H. Doostie And M. Azadi, Certain numerical results on the Fibonacci length and $n^{t h}$-roots of Hamiltonian groups. International Mathematical Forum. 39 (2009), 1923-1938.
[5] A. Sadeghieh, H. Doostie, The n-th roots of elements in finite groups. Mathematical Sciences. 4 (2008), 347-356.
[6] C. Delizia, A. Tortora and A. Abdollahi, Some special classes of n-abelian groups. International journal of Group Theory. 1 (2012), 19-24

