Journal of Linear and Topological Algebra Vol. 05, No. 01, 2016, 55-62

Probability of having n^{th} -roots and n-centrality of two classes of groups

M. Hashemi^{a*}, M. Polkouei^a

^a Faculty of Mathematical Sciences, University of Guilan, P.O.Box 41335-19141, Rasht, Iran.

Received 8 December 2015; Revised 28 March 2016; Accepted 15 April 2016.

Abstract. In this paper, we consider the finitely 2-generated groups K(s, l) and G_m as follows;

$$\begin{split} K(s,l) &= \langle a, b | a b^{s} = b^{l} a, \ b a^{s} = a^{l} b \rangle, \\ G_{m} &= \langle a, b | a^{m} = b^{m} = 1, \ [a,b]^{a} = [a,b], \ [a,b]^{b} = [a,b] \rangle \end{split}$$

and find the explicit formulas for the probability of having n^{th} -roots for them. Also we investigate integers n for which, these groups are n-central.

© 2016 IAUCTB. All rights reserved.

Keywords: Nilpotent groups, *n*th-roots, *n*-central groups **2010 AMS Subject Classification**: 20D15, 20P05.

1. Introduction

Let n > 1 be an integer. An element a of group G is said to have an n^{th} -root b in G, if $a = b^n$. The probability that a randomly chosen element in G has an n^{th} -root, is given by

$$P_n(G) = \frac{|G^n|}{|G|}$$

 $^{*} {\rm Corresponding \ author}.$

Print ISSN: 2252-0201 Online ISSN: 2345-5934 © 2016 IAUCTB. All rights reserved. http://jlta.iauctb.ac.ir

E-mail address: m_hashemi@guilan.ac.ir (M. Hashemi).

where $G^n = \{a \in G | a = b^n, for some b \in G\} = \{x^n | x \in G\}$. In [5], the probability $P_n(G)$ for Dihedral groups D_{2m} and Quaternion groups Q_{2m} for every integer $m \ge 3$ have been computed. Also, in [4] the probability that Hamiltonian groups may have n^{th} -roots have been calculated. For n > 1, a group G is said to be n-central if $[x^n, y] = 1$ for all $x, y \in G$. In [6], some aspects of *n*-central groups have been investigated.

First, we state the following Lemma without proof.

Lemma 1.1 If G is a group and $G' \subseteq Z(G)$, then the following hold for every integer k and $u, v, w \in G$:

- $\begin{array}{l} ({\rm i}) \ [uv,w] = [u,w][v,w] \ {\rm and} \ [u,vw] = [u,v][u,w]; \\ ({\rm i}) \ [u^k,v] = [u,v^k] = [u,v]^k; \\ ({\rm i}{\rm i}) \ (uv)^k = u^k v^k [v,u]^{k(k-1)/2}. \end{array}$

Now, we state some lemmas which can be found in [1, 2].

Lemma 1.2 The groups $K(s,l) = \langle a, b | ab^s = b^l a, ba^s = a^l b \rangle$ where (s,l) = 1, have the following properties:

(i) $|K(s,l)| = |l-s|^3$, if (s,l) = 1 and is infinite otherwise;

- (ii) if (s, l) = 1 then $|a| = |b| = (l s)^2$; (iii) if (s, l) = 1, then $a^{l-s} = b^{s-l}$.

Lemma 1.3 (i) For every $l \ge 3$, $K(s, l) \cong K(1, 2 - l)$. (ii) For every $i \ge 2$ and (s,i) = 1, $K(s,s+i) \cong K(1,i+1)$.

Note that if (s, l) = 1, then $K(s, l) \cong K(1, l - s + 1)$ which we can write as K_m where m = l - s + 1.

Lemma 1.4 Every element of K_m can be uniquely presented by $x = a^{\beta} b^{\gamma} a^{(m-1)\delta}$, where $1 \leq \beta, \gamma, \delta \leq m - 1.$

Lemma 1.5 In K_m , $[a, b] = b^{m-1} \in Z(K_m)$.

The following lemma can be seen in [3].

Lemma 1.6 Let $G_m = \langle a, b | a^m = b^m = 1, [a, b]^a = [a, b], [a, b]^b = [a, b] \rangle$ where $m \ge 2$, then we have

(i) every element of G_m can be uniquely presented by $a^i b^j [a, b]^t$, where

- $1 \leq i, j, t \leq m.$
- (ii) $|G_m| = m^3$.

In this paper, we consider the groups K_m and G_m which are nilpotent groups of nilpotency class two. In section 2, we compute the probability of having n^{th} -root of K_m and G_m . Section 3 is devoted to finding integers n for which, K_m and G_m are n-central.

The probability of having n^{th} -roots 2.

In this section we consider groups K_m and G_m and find the probability of having n^{th} roots. Here for $m \in \mathbb{Z}$, by m^* we mean the arithmetic inverse of m.

Proposition 2.1 For integers $m, n \ge 2$;

(1) If $G = K_m$ and $x \in G$, then we have

$$x^n = a^{n\beta} b^{n\gamma} a^{(m-1)(n\delta + \frac{n(n-1)}{2}\beta\gamma)};$$

(2) If $G = G_m$ and $x \in G$, then we have

$$x^n = a^{ni} b^{nj} [a, b]^{nt - \frac{n(n-1)}{2}ij}.$$

Proof. We use an induction method on n. By Lemma 1.4, the assertion holds for n = 1. Now, let

$$x^n = a^{n\beta} b^{n\gamma} a^{(m-1)(n\delta + \frac{n(n-1)}{2}\beta\gamma)}$$

Then

$$x^{n+1} = a^{\beta} b^{\gamma} a^{(m-1)\delta} a^{n\beta} b^{n\gamma} a^{(m-1)(n\delta + \frac{n(n-1)}{2}\beta\gamma)}$$

By Lemma 1.2, $a^{(m-1)\delta} = b^{(1-m)\delta}$. So

$$\begin{aligned} x^{n+1} &= a^{\beta} b^{\gamma} a^{n\beta} b^{n\gamma} a^{(m-1)((n+1)\delta + \frac{n(n-1)}{2}\beta\gamma)} \\ &= a^{(n+1)\beta} [b,a]^{n\beta\gamma} b^{(n+1)\gamma} a^{(m-1)((n+1)\delta + \frac{n(n-1)}{2}\beta\gamma)} \end{aligned}$$

Since K_m is a group of nilpotency class two, $G' \subseteq Z(G)$. Hence by Lemma 1.1 we have

$$x^{n+1} = a^{(n+1)\beta} b^{(n+1)\gamma} a^{(m-1)((n+1)\delta + \frac{n(n+1)}{2}\beta\gamma)}.$$

The second part can be proved similarly.

Theorem 2.2 Let $G = K_m$, where $m \ge 2$. Then

$$P_n(G) = \begin{cases} \frac{2}{d^3} & \text{if } n \text{ be even, } (\frac{n}{2}, m-1) = \frac{d}{2} \text{ and } \frac{m-1}{d} \text{ be odd}; \\ \frac{1}{d^3} & \text{otherwise,} \end{cases}$$

where (n, m - 1) = d.

Proof. Let $a^{\beta}b^{\gamma}a^{(m-1)\delta}$ be an element of G^n where $1 \leq \beta, \gamma, \delta \leq m-1$. If $x = (x_1)^n$ when $a^{\beta_1}b^{\gamma_1}a^{(m-1)\delta_1} \in G$, $1 \leq \beta_1, \gamma_1, \delta_1 \leq m-1$, then by Proposition 2.1 we have

$$a^{\beta}b^{\gamma}a^{(m-1)\delta} = (a^{\beta_1}b^{\gamma_1}a^{(m-1)\delta_1})^n$$
$$= a^{n\beta_1}b^{n\gamma_1}a^{(m-1)(n\delta_1 + \frac{n(n-1)}{2}\beta_1\gamma_1)}.$$

By uniqueness of presentation of G, we obtain

$$\begin{cases} n\beta_1 \equiv \beta \pmod{m-1} \\ n\gamma_1 \equiv \gamma \pmod{m-1} \\ n\delta_1 + \frac{n(n-1)}{2}\beta_1\gamma_1 \equiv \delta \pmod{m-1}. \end{cases}$$
(1)

Now let (n, m - 1) = d. The first congruence of the system (1) has the solution

$$\beta_1 \equiv (\frac{n}{d})^* (\frac{\beta}{d}) \pmod{\frac{m-1}{d}}$$

if and only if $d \mid \beta$. Then

$$\beta \in \{d, 2d, \ldots, \frac{m-1}{d} \times d\}.$$

This means that β has $\frac{m-1}{d}$ choices. Similarly, by second equation of System (1) we get

$$\gamma \in \{d, 2d, \ldots, \frac{m-1}{d} \times d\}.$$

So γ admits $\frac{m-1}{d}$ values. Now for finding the number of values of δ , we consider two cases, where n is odd or even.

First let n be an odd integers. Then

$$n(\delta_1 + \frac{n(n-1)}{2}\beta_1\gamma_1) \equiv \delta \pmod{m-1}$$

Since (n, m-1) = d, we get

$$\delta_1 \equiv \left(\frac{n}{d}\right)^* \frac{\delta}{d} - \frac{n(n-1)}{2} \beta_1 \gamma_1 \pmod{\frac{m-1}{d}}$$

provided that $d \mid \delta$. So

$$\delta \in \{d, 2d, \ldots, \frac{m-1}{d} \times d\}.$$

Therefore in this case we have $\frac{m-1}{d}$ choices for δ . By the above facts, we have

$$| G^{n} | = | \{a^{\beta}b^{\gamma}a^{(m-1)\delta} | \beta \in \{d, \dots, \frac{m-1}{d}d\}, \gamma \in \{d, \dots, \frac{m-1}{d}d\}, \delta \in \{d, \dots, \frac{m-1}{d}d\}\} |$$

$$= | \{(\beta, \gamma, \delta) | \{\beta \in \{d, \dots, \frac{m-1}{d}d\}, \gamma \in \{d, \dots, \frac{m-1}{d}d\}, \delta \in \{d, \dots, \frac{m-1}{d}d\}\} |$$

$$= \frac{m-1}{d} \times \frac{m-1}{d} \times \frac{m-1}{d} = (\frac{m-1}{d})^{3}.$$

So

$$P_n(G) = \frac{|G^n|}{|G|} = \frac{(m-1/d)^3}{(m-1)^3} = \frac{1}{d^3}.$$

Now suppose n be an even integer. Then $(\frac{n}{2}, m-1) = d$ or $(\frac{n}{2}, m-1) = \frac{d}{2}$. Case 1. Let $(\frac{n}{2}, m-1) = d$. Then

$$\frac{n}{2}(2\delta_1 + (n-1)\beta_1\gamma_1) \equiv \delta \pmod{m-1}.$$

So

$$2\delta_1 \equiv \left(\frac{n}{2d}\right)^* \frac{\delta}{d} - (n-1)\beta_1 \gamma_1 \pmod{\frac{m-1}{d}}.$$

Since $(\frac{n}{2}, m-1) = d$, $(\frac{m-1}{d}, 2) = 1$. Hence, the above congruence holds if and only if $d \mid \delta$. Therefore

$$\delta \in \{d, 2d, \ldots, \frac{m-1}{d} \times d\}.$$

So

$$| G^{n} | = | \{ (\beta, \gamma, \delta) | \{ \beta \in \{d, \dots, \frac{m-1}{d}d\}, \gamma \in \{d, \dots, \frac{m-1}{d}d\}, \delta \in \{d, \dots, \frac{m-1}{d}d\} \} | = (\frac{m-1}{d})^{3}$$

and consequently

$$P_n(G) = \frac{1}{d^3}.$$

Case 2. Let $(\frac{n}{2}, m-1) = \frac{d}{2}$. Then

$$\frac{n}{d}(2\delta_1 + (n-1)\beta_1\gamma_1) \equiv \frac{2\delta}{d} \pmod{\frac{2(m-1)}{d}}.$$

Hence

$$2\delta_1 \equiv (\frac{n}{d})^* \frac{2\delta}{d} - (n-1)\beta_1 \gamma_1 \pmod{\frac{2(m-1)}{d}}.$$
 (2)

So, we must have $2 \mid \beta_1 \gamma_1$. Suppose $2 \mid \gamma_1$. Now by congruence

$$\gamma_1 \equiv \left(\frac{n}{d}\right)^* \frac{\gamma}{d} \pmod{\frac{m-1}{d}} \quad (3)$$

we consider two subcases:

Subcase 2.a. Let $\frac{(m-1)}{d}$ be an even integer. Now since

$$\frac{n}{d}(\frac{n}{d})^* \equiv 1 \pmod{\frac{m-1}{d}},$$

both $\frac{n}{d}$ and $(\frac{n}{d})^*$ are odd. Since $2 \mid \gamma_1$, By congruence (3) we get $2 \mid \frac{\gamma}{d}$. It means that

$$\gamma \in \{2d, 4d, \ldots, \frac{m-1}{2d} \times 2d\}.$$

Hence the number of values of γ is $\frac{m-1}{2d}$. On the other hand according to congruence (2), $\frac{d}{2} \mid \delta$. Therefore

$$\delta \in \{\frac{d}{2}, d, \dots, \frac{2(m-1)}{d} \times \frac{d}{2}\}.$$

So δ admits $\frac{2(m-1)}{d}$ values. Consequently

$$|G^{n}| = \frac{m-1}{d} \times \frac{m-1}{2d} \times \frac{2(m-1)}{d} = (\frac{m-1}{d})^{3}$$

and

$$P_n(G) = \frac{1}{d^3}$$

Case 2.b. Let $\frac{(m-1)}{d}$ be an odd integer and $\gamma \in \{d, 2d, \ldots, \frac{m-1}{d}d\}$. If

$$\gamma_1 \equiv \frac{n}{d} (\frac{n}{d})^* \; (mod \; \frac{m-1}{d})$$

and γ_1 be an even integer, then we get the desired result. Otherwise, instead of γ_1 , we put $\gamma_1 + \frac{m-1}{d}$. So for each

$$\gamma \in \{d, 2d, \ldots, \frac{m-1}{d} \times d\},\$$

the congruence holds. It means that the number of choices for γ is equal to $\frac{m-1}{d}$. Finally, we get

$$|G^{n}| = \frac{m-1}{d} \times \frac{m-1}{d} \times \frac{2(m-1)}{d} = 2(\frac{m-1}{d})^{3}$$

and

$$P_n(G) = \frac{2}{d^3}$$

Theorem 2.3 Let $G = G_m$, where $m \ge 2$. Then

$$P_n(G) = \begin{cases} \frac{2}{d^3} & \text{if } n \text{ be even, } (\frac{n}{2}, m) = \frac{d}{2} \text{ and } \frac{m}{d} \text{ be odd;} \\ \frac{1}{d^3} & \text{otherwise,} \end{cases}$$

where (n, m) = d.

Proof. Let $a^i b^j [a, b]^t$ be an element of G^n where $1 \leq i, j, t \leq m$. If $x = (x_1)^n$ when $a^{i_1} b^j [a, b]^{t_1} \in G$, $1 \leq i_1, j_1, t_1 \leq m$, then by Proposition 2.1 we have

$$\begin{aligned} a^{i}b^{j}[a,b]^{t} &= (a^{i_{1}}b^{j_{1}}[a,b]^{t_{1}})^{n} \\ &= a^{ni_{1}}b^{nj_{1}}[a,b]^{nt_{1}-\frac{n(n-1)}{2}i_{1}j_{1}}. \end{aligned}$$

By uniqueness of presentation of G, we obtain

$$\begin{cases} ni_1 \equiv i \pmod{m} \\ nj_1 \equiv j \pmod{m} \\ nt_1 - \frac{n(n-1)}{2}i_1j_1 \equiv t \pmod{m}. \end{cases}$$

The obtained congruence system is exactly similar to System (1). So it can be solve, similarly. \blacksquare

3. *n*-centrality

In this section, we again consider groups K_m , G_m and investigate *n*-centrality for them.

Theorem 3.1 Let $G = K_m$, where $m \ge 2$. Then for n > 1, the group G is n-central if and only if $m - 1 \mid n$.

Proof. By Proposition 2.1 and Lemma 1.1, we get

$$x^{n}y = a^{n\beta_{1}+\beta_{2}}b^{n\gamma_{1}+\gamma_{2}}a^{(m-1)(n\delta_{1}+\delta_{2}+\frac{n(n-1)}{2}\beta_{1}\gamma_{1}+n\beta_{2}\gamma_{1})}$$

Also we obtain

$$yx^{n} = a^{n\beta_{1}+\beta_{2}}b^{n\gamma_{1}+\gamma_{2}}a^{(m-1)(n\delta_{1}+\delta_{2}+\frac{n(n-1)}{2}\beta_{1}\gamma_{1}+n\beta_{1}\gamma_{2})}$$

We know that G is n-central if and only if $x^n y = yx^n$, for all $x, y \in G$. Furthermore by uniqueness of presentation of $x^n y$ and yx^n , we see that $x^n y = yx^n$ if and only if

$$n\delta_1 + \delta_2 + \frac{n(n-1)}{2}\beta_1\gamma_1 + n\beta_2\gamma_1 \equiv n\delta_1 + \delta_2 + \frac{n(n-1)}{2}\beta_1\gamma_1 + n\beta_1\gamma_2 \pmod{m-1}.$$

This is equivalent to

$$n(\beta_1\gamma_2 - \beta_2\gamma_1) \equiv 0 \pmod{m-1}.$$

Now since this holds for all $x, y \in G$, $m - 1 \mid n$.

Theorem 3.2 Let $G = G_m$, where $m \ge 2$. Then for n > 1, the group G is n-central if and only if $m \mid n$.

Proof. By Proposition 2.1 and Lemma 1.1, we get

$$x^{n}y = a^{ni_{1}+i_{2}}b^{nj_{1}+j_{2}}[a,b]^{nt_{1}+t_{2}-\frac{n(n-1)}{2}i_{1}j_{1}-ni_{2}j_{1}}.$$

Also we obtain

$$yx^{n} = a^{ni_{1}+i_{2}}b^{nj_{1}+j_{2}}[a,b]^{nt_{1}+t_{2}-\frac{n(n-1)}{2}i_{1}j_{1}-ni_{1}j_{2}}.$$

We know that G is n-central if and only if $x^n y = yx^n$, for all $x, y \in G$. Furthermore by uniqueness of presentation of $x^n y$ and yx^n , we see that $x^n y = yx^n$ if and only if

$$nt_1 + t_2 - \frac{n(n-1)}{2}i_1j_1 - ni_2j_1 \equiv nt_1 + t_2 - \frac{n(n-1)}{2}i_1j_1 - ni_1j_2 \pmod{m}.$$

This is equivalent to

$$n(i_1j_2 - i_2j_1) \equiv 0 \pmod{m}.$$

Now since this holds for all $x, y \in G$, $m \mid n$.

References

- C. M. Campbell, P. P. Campel, H. Doostie and E. F. Robertson, Fibonacci length for metacyclian groups. Algebra Colloq. 11 (2004), 215-222.
- [2] C. M. Campbell, E. F. Robertson, On a group presentation due to Fox. Canada. Math. Bull. 19 (1967), 247-248.
- [3] H. Doostie, M. Hashemi, Fibonacci lengths involving the Wall number K(n). J. Appl. Math. Computing. 20 (2006), 171-180.
- [4] A. Sadeghieh, H. Doostie And M. Azadi, Certain numerical results on the Fibonacci length and nth-roots of Hamiltonian groups. International Mathematical Forum. 39 (2009), 1923-1938.
- [5] A. Sadeghieh, H. Doostie, The n-th roots of elements in finite groups. Mathematical Sciences. 4 (2008), 347-356.
- [6] C. Delizia, A. Tortora and A. Abdollahi, Some special classes of n-abelian groups. International journal of Group Theory. 1 (2012), 19-24.