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Probability of having nth-roots and n-centrality
of two classes of groups
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Abstract. In this paper, we consider the finitely 2-generated groups K(s, l) and Gm as
follows;

K(s, l) = ⟨a, b|abs = bla, bas = alb⟩,

Gm = ⟨a, b|am = bm = 1, [a, b]a = [a, b], [a, b]b = [a, b]⟩

and find the explicit formulas for the probability of having nth-roots for them. Also we
investigate integers n for which, these groups are n-central.
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1. Introduction

Let n > 1 be an integer. An element a of group G is said to have an nth-root b in G, if
a = bn. The probability that a randomly chosen element in G has an nth-root, is given
by

Pn(G) =
|Gn|
|G|
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where Gn = {a ∈ G|a = bn, for some b ∈ G} = {xn|x ∈ G}. In [5], the probability
Pn(G) for Dihedral groups D2m and Quaternion groups Q2m for every integer m ⩾ 3 have
been computed. Also, in [4] the probability that Hamiltonian groups may have nth-roots
have been calculated. For n > 1, a group G is said to be n-central if [xn, y] = 1 for all
x, y ∈ G. In [6], some aspects of n-central groups have been investigated.

First, we state the following Lemma without proof.

Lemma 1.1 If G is a group and G′ ⊆ Z(G), then the following hold for every integer k
and u, v, w ∈ G :

(i) [uv,w] = [u,w][v, w] and [u, vw] = [u, v][u,w];
(ii) [uk, v] = [u, vk] = [u, v]k;
(iii) (uv)k = ukvk[v, u]k(k−1)/2.

Now, we state some lemmas which can be found in [1, 2].

Lemma 1.2 The groups K(s, l) = ⟨a, b|abs = bla, bas = alb⟩ where (s, l) = 1, have the
following properties:

(i) |K(s, l)| = |l − s|3, if (s, l) = 1 and is infinite otherwise;
(ii) if (s, l) = 1 then |a| = |b| = (l − s)2;
(iii) if (s, l) = 1, then al−s = bs−l.

Lemma 1.3 (i) For every l ⩾ 3, K(s, l) ∼= K(1, 2− l).
(ii) For every i ⩾ 2 and (s, i) = 1, K(s, s+ i) ∼= K(1, i+ 1).

Note that if (s, l) = 1, then K(s, l) ∼= K(1, l− s+ 1) which we can write as Km where
m = l − s+ 1.

Lemma 1.4 Every element of Km can be uniquely presented by x = aβbγa(m−1)δ, where
1 ⩽ β, γ, δ ⩽ m− 1.

Lemma 1.5 In Km, [a, b] = bm−1 ∈ Z(Km).

The following lemma can be seen in [3].

Lemma 1.6 Let Gm = ⟨a, b|am = bm = 1, [a, b]a = [a, b], [a, b]b = [a, b]⟩ where m ⩾ 2,
then we have

(i) every element of Gm can be uniquely presented by aibj [a, b]t, where
1 ⩽ i, j, t ⩽ m.
(ii) |Gm| = m3.

In this paper, we consider the groups Km and Gm which are nilpotent groups of
nilpotency class two. In section 2, we compute the probability of having nth-root of Km

and Gm. Section 3 is devoted to finding integers n for which, Km and Gm are n-central.

2. The probability of having nth-roots

In this section we consider groups Km and Gm and find the probability of having nth-
roots. Here for m ∈ Z, by m∗ we mean the arithmetic inverse of m.

Proposition 2.1 For integers m,n ⩾ 2;

(1) If G = Km and x ∈ G, then we have

xn = anβbnγa(m−1)(nδ+n(n−1)

2
βγ);
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(2) If G = Gm and x ∈ G, then we have

xn = anibnj [a, b]nt−
n(n−1)

2
ij .

Proof. We use an induction method on n. By Lemma 1.4, the assertion holds for n = 1.
Now, let

xn = anβbnγa(m−1)(nδ+n(n−1)

2
βγ).

Then

xn+1 = aβbγa(m−1)δanβbnγa(m−1)(nδ+n(n−1)

2
βγ)

By Lemma 1.2, a(m−1)δ = b(1−m)δ. So

xn+1 = aβbγanβbnγa(m−1)((n+1)δ+n(n−1)

2
βγ)

= a(n+1)β[b, a]nβγb(n+1)γa(m−1)((n+1)δ+n(n−1)

2
βγ).

Since Km is a group of nilpotency class two, G′ ⊆ Z(G). Hence by Lemma 1.1 we have

xn+1 = a(n+1)βb(n+1)γa(m−1)((n+1)δ+n(n+1)

2
βγ).

The second part can be proved similarly. ■

Theorem 2.2 Let G = Km, where m ⩾ 2. Then

Pn(G) =

{
2
d3 if n be even, (n2 ,m− 1) = d

2 and m−1
d be odd;

1
d3 otherwise,

where (n,m− 1) = d.

Proof. Let aβbγa(m−1)δ be an element of Gn where 1 ⩽ β, γ, δ ⩽ m − 1. If x = (x1)
n

when aβ1bγ1a(m−1)δ1 ∈ G, 1 ⩽ β1, γ1, δ1 ⩽ m− 1, then by Proposition 2.1 we have

aβbγa(m−1)δ = (aβ1bγ1a(m−1)δ1)n

= anβ1bnγ1a(m−1)(nδ1+
n(n−1)

2
β1γ1).

By uniqueness of presentation of G, we obtain
nβ1 ≡ β (mod m− 1)
nγ1 ≡ γ (mod m− 1) (1)

nδ1 +
n(n−1)

2 β1γ1 ≡ δ (mod m− 1).

Now let (n,m− 1) = d. The first congruence of the system (1) has the solution

β1 ≡ (
n

d
)∗(

β

d
) (mod

m− 1

d
)
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if and only if d | β. Then

β ∈ {d, 2d, . . . ,
m− 1

d
× d}.

This means that β has m−1
d choices. Similarly, by second equation of System (1) we get

γ ∈ {d, 2d, . . . ,
m− 1

d
× d}.

So γ admits m−1
d values.

Now for finding the number of values of δ, we consider two cases, where n is odd or even.

First let n be an odd integers. Then

n(δ1 +
n(n− 1)

2
β1γ1) ≡ δ (mod m− 1).

Since (n,m− 1) = d, we get

δ1 ≡ (
n

d
)∗
δ

d
− n(n− 1)

2
β1γ1 (mod

m− 1

d
)

provided that d | δ. So

δ ∈ {d, 2d, . . . ,
m− 1

d
× d}.

Therefore in this case we have m−1
d choices for δ. By the above facts, we have

| Gn | = | {aβbγa(m−1)δ | β ∈ {d, . . ., m− 1

d
d}, γ ∈ {d, . . ., m− 1

d
d}, δ ∈ {d, . . ., m− 1

d
d}} |

= | {(β, γ, δ) | {β ∈ {d, . . ., m− 1

d
d}, γ ∈ {d, . . ., m− 1

d
d}, δ ∈ {d, . . ., m− 1

d
d}} |

=
m− 1

d
× m− 1

d
× m− 1

d
= (

m− 1

d
)3.

So

Pn(G) =
| Gn |
| G |

=
(m− 1/d)3

(m− 1)3
=

1

d3
.

Now suppose n be an even integer. Then (n2 ,m− 1) = d or (n2 ,m− 1) = d
2 .

Case 1. Let (n2 ,m− 1) = d. Then

n

2
(2δ1 + (n− 1)β1γ1) ≡ δ (mod m− 1).

So

2δ1 ≡ (
n

2d
)∗
δ

d
− (n− 1)β1γ1 (mod

m− 1

d
).
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Since (n2 ,m − 1) = d, (m−1
d , 2) = 1. Hence, the above congruence holds if and only if

d | δ. Therefore

δ ∈ {d, 2d, . . . ,
m− 1

d
× d}.

So

| Gn | = | {(β, γ, δ) | {β ∈ {d, . . ., m− 1

d
d}, γ ∈ {d, . . ., m− 1

d
d}, δ ∈ {d, . . ., m− 1

d
d}} |

= (
m− 1

d
)3

and consequently

Pn(G) =
1

d3
.

Case 2. Let (n2 ,m− 1) = d
2 . Then

n

d
(2δ1 + (n− 1)β1γ1) ≡

2δ

d
(mod

2(m− 1)

d
).

Hence

2δ1 ≡ (
n

d
)∗
2δ

d
− (n− 1)β1γ1 (mod

2(m− 1)

d
). (2)

So, we must have 2 | β1γ1. Suppose 2 | γ1. Now by congruence

γ1 ≡ (
n

d
)∗
γ

d
(mod

m− 1

d
) (3)

we consider two subcases:

Subcase 2.a. Let (m−1)
d be an even integer. Now since

n

d
(
n

d
)∗ ≡ 1 (mod

m− 1

d
),

both n
d and (nd )

∗ are odd. Since 2 | γ1, By congruence (3) we get 2 | γ
d . It means that

γ ∈ {2d, 4d, . . ., m− 1

2d
× 2d}.

Hence the number of values of γ is m−1
2d . On the other hand according to congruence (2),

d
2 | δ. Therefore

δ ∈ {d
2
, d, . . .,

2(m− 1)

d
× d

2
}.
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So δ admits 2(m−1)
d values. Consequently

| Gn |= m− 1

d
× m− 1

2d
× 2(m− 1)

d
= (

m− 1

d
)3

and

Pn(G) =
1

d3
.

Case 2.b. Let (m−1)
d be an odd integer and γ ∈ {d, 2d, . . ., m−1

d d}. If

γ1 ≡
n

d
(
n

d
)∗ (mod

m− 1

d
)

and γ1 be an even integer, then we get the desired result. Otherwise, instead of γ1, we
put γ1 +

m−1
d . So for each

γ ∈ {d, 2d, . . ., m− 1

d
× d},

the congruence holds. It means that the number of choices for γ is equal to m−1
d . Finally,

we get

| Gn |= m− 1

d
× m− 1

d
× 2(m− 1)

d
= 2(

m− 1

d
)3

and

Pn(G) =
2

d3
.

■

Theorem 2.3 Let G = Gm, where m ⩾ 2. Then

Pn(G) =

{
2
d3 if n be even, (n2 ,m) = d

2 and m
d be odd;

1
d3 otherwise,

where (n,m) = d.

Proof. Let aibj [a, b]t be an element of Gn where 1 ⩽ i, j, t ⩽ m. If x = (x1)
n when

ai1bj [a, b]t1 ∈ G, 1 ⩽ i1, j1, t1 ⩽ m, then by Proposition 2.1 we have

aibj [a, b]t = (ai1bj1 [a, b]t1)n

= ani1bnj1 [a, b]nt1−
n(n−1)

2
i1j1 .

By uniqueness of presentation of G, we obtain
ni1 ≡ i (mod m)
nj1 ≡ j (mod m)

nt1 − n(n−1)
2 i1j1 ≡ t (mod m).
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The obtained congruence system is exactly similar to System (1). So it can be solve,
similarly. ■

3. n-centrality

In this section, we again consider groups Km, Gm and investigate n-centrality for them.

Theorem 3.1 Let G = Km, where m ⩾ 2. Then for n > 1, the group G is n-central if
and only if m− 1 | n.

Proof. By Proposition 2.1 and Lemma 1.1, we get

xny = anβ1+β2bnγ1+γ2a(m−1)(nδ1+δ2+
n(n−1)

2
β1γ1+nβ2γ1).

Also we obtain

yxn = anβ1+β2bnγ1+γ2a(m−1)(nδ1+δ2+
n(n−1)

2
β1γ1+nβ1γ2).

We know that G is n-central if and only if xny = yxn, for all x, y ∈ G. Furthermore by
uniqueness of presentation of xny and yxn, we see that xny = yxn if and only if

nδ1 + δ2 +
n(n− 1)

2
β1γ1 + nβ2γ1 ≡ nδ1 + δ2 +

n(n− 1)

2
β1γ1 + nβ1γ2 (mod m− 1).

This is equivalent to

n(β1γ2 − β2γ1) ≡ 0 (mod m− 1).

Now since this holds for all x, y ∈ G, m− 1 | n. ■

Theorem 3.2 Let G = Gm, where m ⩾ 2. Then for n > 1, the group G is n-central if
and only if m | n.

Proof. By Proposition 2.1 and Lemma 1.1, we get

xny = ani1+i2bnj1+j2 [a, b]nt1+t2−n(n−1)

2
i1j1−ni2j1 .

Also we obtain

yxn = ani1+i2bnj1+j2 [a, b]nt1+t2−n(n−1)

2
i1j1−ni1j2 .

We know that G is n-central if and only if xny = yxn, for all x, y ∈ G. Furthermore by
uniqueness of presentation of xny and yxn, we see that xny = yxn if and only if

nt1 + t2 −
n(n− 1)

2
i1j1 − ni2j1 ≡ nt1 + t2 −

n(n− 1)

2
i1j1 − ni1j2 (mod m).

This is equivalent to

n(i1j2 − i2j1) ≡ 0 (mod m).

Now since this holds for all x, y ∈ G, m | n. ■
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