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Abstract. The efficiency measurement is a subject of great interest. The majority of studies
on DEA models have been carried out using radial or non-radial approaches regarding the
application of DEA for the efficiency measurement. This paper, based on the directional
distance function, proposes a new generalized hybrid measure of efficiency under generalized
returns to scale with the existence of both radial and non-radial inputs and outputs. It extends
the hybrid measure of efficiency from Tone (2004) to a more general case. The proposed
model is not only flexible enough for the decision-maker to adjust the radial and non-radial
inputs and outputs to attain the efficiency score but also avoids the computational and
interpretive difficulties, thereby giving rise to an important clarification and understanding
of the generalized DEA model. Furthermore, several frequently-used DEA models (such as
the CCR, BCC, ERM and SBM models) which depend on the radial or non-radial approaches
are derived while their results were compared to the ones obtained from this hybrid model.
The empirical examples emphasize the consequence of the proposed measure.
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1. Introduction

Data Envelopment Analysis (DEA) is a non-parametric approach for evaluating the per-
formance of a set of peer entities called Decision Making Units (DMUs), which provides
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a single efficiency score while simultaneously considering multiple inputs and multiple
outputs. The first DEA model, as originally proposed in Charnes et.al (1978) which was
characterized by the CCR model, construct on the earlier work of Farrell (1957) for as-
sessing an educational center in USA. Following Charnes et.al (1978), it was Banker et al.
(1984) who exerted an effort in extending the DEA. According to the related extensive
literature, numerous studies have endeavored to describe the novel development, as well
as substituting and supporting the DEA’s notion and method (see Emrouznejad (2008),
and Liu et.al (2013)).
It is well known that the DMUs’ performances are appraised by the DEA in which the
production relationship will be examined devoid of any functional requirement amid
them. If a production technology is assumed wherein m inputs will be required for cre-
ating s outputs, the inputs and outputs will be depicted by x and y, respectively. More-
over, production possibility set (PPS) T will be identified by the subsequent equation:
T = {(x, y) : y is produced by x}. T involves the entire imaginable input/output combi-
nations. Furthermore, the T ’s boundary points are referred to as the efficient frontier, or
the production frontier (Charnes et al., 1978). It needs to be highlighted that the DMUs
which be affiliated with this frontier can be counted as efficient while the remainders
would be then inefficient.
Literature shows the availability of numerous DEA models to estimate efficiency scores.
In terms of evaluating efficiency score, DEA models take either a radial approach or
a non-radial approach which have unalike properties. In the radial approach, inputs
and outputs are assumed to change proportionally. This approach is therefore prone to
neglect non-radial input and output slacks. Because it does not detect input excesses
and output shortfalls, radial models can only classify each DMU as weakly-efficient or
inefficient. The radial approach is characterized by the CCR (Charnes et.al, 1978) and
stocktickerBCC (Banker et al., 1984) models. In the history of DEA, there have been
several investigations into the radial approaches for measuring the efficiency score. In
line with this, the readers are referred to the works by Cook and Seiford (2009), and
Cooper et al. (2011) for further meticulous evidences.
In contrast, the non-radial DEA models, referring to Koopmans (1951) and Russell
(1985), directly deal with input excesses and output shortfalls, and thus, are capable
of distinguishing efficient DMUs from inefficient ones. Although in the non-radial mea-
sures the optimal efficiency value accounts for the non-radial slacks, the projected DMU
can lose the proportionality in the original. In history, several studies have attempted
to explain the non-radial measures for the technical efficiency based on the performance
evaluation (Charnes et al., 1985; Cooper et al., 1999; Pastor et al., 1999; Pastor et al.,
1999; Cooper et al., 2000; Tone, 2001; Cooper et al., 2011).
In an effort to overcome the shortcomings of the radial and non-radial models, a hybrid
measure technology was also proposed by Podinovski (2004) which lent its basis to the
hypothesis that only certain inputs would proportionally alter with the outputs while the
remainder inputs failed to do so. This model was indeed introduced in order to alleviate
the aforementioned inadequacies associated with the radial and non-radial models in both
approaches. Moreover, Podinovski (2004) was successful in overcoming the constraints
associated with the full proportionality and non-proportionality between the input and
output. This was fulfilled by integrating the settings for both the constant and variable
return-to-scale in the DEA mathematical program.
Another hybrid measure technology termed as the hybrid DEA model was suggested
by Tone (2004). In practice, both radial and non-radial measure approaches have been
concurrently presented in the DEA mathematical program. It is necessary to underscore
that in the hybrid DEA model, the constraint associated with full proportionality and
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non-proportionality between the different inputs (outputs) has been successfully eradi-
cated.
Based on the directional distance function, the objective of this research is to demonstrate
a new generalized form of the hybrid measure initially introduced by Tone (2004) to assess
the efficiency score of DMUs. Evidently, both radial and non-radial approaches can be
linked based on a combination of the current theory and both radial and non-radial
inputs and outputs. It is significant to note that several renowned DEA models (such as
the CCR: Charnes et al. (1985); BCC: Banker et al. (1984); ERM: Pastor (1999) and
SBM: Tone (2001)) which depend on the radial or non-radial approach are delivered and
their results are compared to the results acquired from the proposed model. Motivated
by this objective, we exhibit how separating inputs and outputs as radial and non-radial
can be measured to suit the user’s needs, and how it can be addressed to open the way
for a more comprehensive and accurate measure of estimation to be used with the aim
of attaining more pragmatic results for the decision-making units (DMUs).
The remainder of this paper is arranged as follows. In section 2, the preliminary DEA
models representative of the radial and non-radial measures of efficiency are briefly de-
scribed along with the objective. Section 3 lays out the theoretical research dimensions,
followed by an alternative formulation with tools appropriate for linking the radial and
non-radial measures. Section 4 describes the positive properties of the proposed model.
Section 5 compares the proposed methodologies with alternative DEA models. The em-
pirical evaluations and results are considered according to real data to provide further
clarification on the proposed approach in section 6. The last section concludes the paper
with a discussion.

2. Preliminaries

This section provides a brief overview of the preliminary DEA models as the radial and
non-radial measures representative of efficiency. The objective is also presented.
Consider a set of J DMUs, where each DMUj (j = 1, ..., J) consumes K inputs to
produce S outputs. Suppose the existing input and output vectors of DMUj are
xj = (x1j , x2j , ..., xKj)

t and yj = (y1j , y2j , ..., ySj)
t, where xj ∈ RKand yj ∈ RS .

It is supposed that all inputs and outputs are non-negative, such that at least one
input and one output of each DMU is strictly positive. The input and output ma-
trices X (K × J) and Y (S × J) can be represented as X = [x1, x2, ..., xj , ..., xJ ] and
Y = [y1, y2, ..., yj , ..., yJ ]. In addition, consistent with the standard suppositions and
general returns to scale (GRS) supposition of technology, the PPS presented by the

existing DMUs and λ = (λ1, λ2, ..., λJ)
t ∈ RJ , is designated the following:

TG =

(x, y) : x ≥
J∑

j=1

λjxkj , y ≤
J∑

j=1

λjysj , λ ∈ Ω, k = 1, ...,K, s = 1, ..., S, j = 1, ..., J

 .

Set Ω is denoted as Ω =
{
λ : L ≤

∑J
j=1 λj ≤ U, λ ≥ 0

}
, where two non-negative scalar

parameters exist, namely L (0 ≤ L ≤ 1) and U (≥ 1) for
∑n

j=1 λj . It should be
noted that by allowing L = 0, U = ∞ and L = 1, U = 1 , then TG would change
to TC and TV , which are referred to as the PPS pertinent to the constant returns to
scale (CRS) (Charnes et al., 1985) and the variable returns to scale (VRS) (Banker et
al., 1984) assumptions of technology, respectively. Besides, if it is assumed that L = 1,
U = ∞ and L = 0, U = 1, then TG can be altered to TID and TND, which are
known as the PPS relating to the increasing returns to scale (IRS) (Fre and Grosskopf,
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1985) and decreasing returns to scale (DRS) (Seiford and Thrall, 1990) assumptions of
technology, respectively.
By considering subscript ‘o’ as the DMU under evaluation, an input-oriented DEA for-
mulation representative of the radial models in relation to TG can be expressed as:

Model(1) θ∗ =Min θ
s.t. (θxo, yo) ∈ TG .

Correspondingly, an output-oriented model can be:

Model(2) φ∗ =Max φ
s.t. (xo, φyo) ∈ TG .

Definition 2.1 The optimal value θ∗(φ∗) of model (1) (model (2)) is the efficiency index
of DMUo. When θ∗ = 1(φ∗ = 1), it can be stated that DMUo is (at least) weakly efficient.

Considering model (1), the optimal value of θ is limited to 0 < θ∗ ≤ 1; the constraints
would necessitate activity (θ xo, yo) to be the property of TG and the objective searches
for the minimum θ that is able to decrease input vector xo radially to θxo while staying
in TG. At this instant, the input excesses s

− ∈ RK besides the output shortfalls s+ ∈ RS

are defined. Moreover, they are recognized as the ‘slack’ vectors by s− = θxo − Xλ,
s+ = Y λ− yo, where s

− ≥ 0 and s+ ≥ 0 for any feasible solution (θ, λ) of model (1). It
then becomes indispensable to solve the second-phase LP problem, because it is aimed
at determining the potential input excesses and output shortfalls.

Definition 2.2 Radial Efficiency DMUo can be called “Radial Efficient” on the condition
that it is possible for an optimal solution (θ∗, λ∗, s−

∗
, s+

∗
) of the two phases to satisfy

θ∗ = 1 as well as be zero-slack (s−
∗
= 0, s+

∗
= 0).

Yet, it is observed that in terms of efficiency improvement, model (1) suffers from some
structural inadequacies, among which model (1) neglects the non-radial slacks in report-
ing the efficiency score θ∗. Furthermore, numerous remaining non-radial slacks could be
discovered in many cases. Consequently, the decision-making might be misled by the ra-
dial approach if it is utilized as the only criterion in appraising DMU performance. The
condition is that the mentioned slacks need to be a central part in assessing managerial
efficiency. Likewise, output-oriented model (2) could be analysed too.
With the purpose of estimating the efficiency of a DMU(xo, yo) and by taking into con-
sideration the DMU’s corresponding input and output vectors, a non-oriented DEA for-
mulation representative of non-radial models with regards to TG is given as:

Model(3) ρ∗ =Min
1

K

∑K
k=1 θk

1

S

∑S
s=1 φs

s.t. (θk xo, φsyo) ∈ TG.
θk ≥ 0, k = 1, ...,K, φs ≥ 0, s = 1, ..., S.

θk demonstrates the contraction rate related to input k while φs exhibits the extension
rate of output s for the oth DMU. Also, ρ∗ determines the optimal solution as the
efficiency score. This model is the same as the ERM model (Russell, 1985) and set TG is
considered as PPS.

Definition 2.3 Non-Radial Efficiency DMUo can be named “Non-Radial Efficient” on
the condition that it is possible for an optimal solution (θ∗, φ∗, λ∗) of model (3) to satisfy
ρ∗ = 1.
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Either ratio optimization or fractional programming is employed to appraise model (3)
via reducing the ratio of input efficiency to output efficiency. Similar to non-radial models,
the supposition of proportionate contraction in the inputs is ignored by model (3), which
is also meant to attain all-out decline rates in the inputs, while such inputs may disregard
the fluctuating quantities of the original input resources.
In the past, the assumption was that non-radial models are advantageous in gauging
performance measurement; nevertheless, the moment the radial inputs and outputs are
submitted, validation is complete. Consequently, combining both radial and non-radial
measures can facilitate accurate measurement, whereas radial and non-radial measures
are mixed in the problem.

3. The Directional Hybrid Measure (DHM)

A hybrid measure technology was proposed by Tone (2004), known as a hybrid DEA
model. The inputs and outputs were categorized into radial and non-radial groupings,
each of which was grounded on its own properties to advance to the most efficient limit.
To be precise, the hybrid model comprises radial (CCR) and non-radial (SBM) models,
thus benefiting from their associated advantages and overcoming the inadequacies.
The hybrid DEA model of efficiency in relation to TG, which is based on the directional
distance function, is introduced in this section. This model is called the directional hybrid
measure (DHM) and it bears several favorable characteristics. DHM is a compound
of radial and non-radial models, which compensates for weaknesses and exploits their
strengths.
The directional distance function first presented by Chambers et al. (Chambers et al.,
1996; Chambers et al., 1998), may be regarded as a version of Luenberger’s shortage
function (Luenberger, 1992, 1995). The traditional Shephard distance function can be
generalized by the mentioned function (Shepherd, 2015). Moreover, the directional dis-
tance function is appropriate for yielding a technical efficiency measure within the full
input-output space. In practice, the abovementioned function centrifugally reflects a cer-
tain input-output vector (x, y) from itself toward the PPS boundary in a pre-apportioned
direction vector (−g−, g+) ∈

(
−(RK

+ ), RS
+

)
, which can also be defined as:

D⃗T =
(
x, y;−g−, g+

)
=Max

{
θ :

(
x− θg−, y + θg+

)
∈ T

}
.

By taking into account the DMUs with their conforming input and output vectors,
let us assume that the K current inputs are disintegrated into n of N radial items
(XR ∈ RN×J)and m of M non-radial items (XNR ∈ RM×J), with N +M = K. Let us
also assume that the S current outputs are decomposed into p of P radial items (Y NR ∈
RP×J) and q of Q non-radial items (Y NR ∈ RQ×J) with P +Q = S. Subsequently, the

input and output matrices Xand Y are X =

(
XR

XNR

)
and Y =

(
Y R

Y NR

)
, where R and

NR signify the radial and non-radial input or output variables, in that order. In fact,
the inputs and outputs are categorized into two classes, namely radial and non-radial,
and each one based on its own specifications enhances up to the efficiency limit.
At this instance, the DHM model proportional to TG would assess the DMUo’s efficiency
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score by resolving the following mathematical program:

Model(4) ψ∗ =Min
1−N

K
(α)− 1

K

∑M
m=1 θ

−
m

1+P

S
(β)+ 1

S

∑Q
q=1 φ

+
q

s.t. (xRo − αg−n , x
NR
o − θ−mg

′−
m , y

R
o + βg+p , y

NR
o + φ+

q g
′+
q ) ∈ TG.

α ≥ 0, β ≥ 0, θ−m ≥ 0, m = 1, ...,M, φ+
q ≥ 0, q = 1, ..., Q.

The radial contraction rate and extension rate of input n and output p for the o−th
DMU, reflected onto the efficient frontier of TG in direction g are specified by α and
β, respectively. Also, the non-radial contraction rate as well as the extension rate
of input m and output q for the o-th DMU reflected onto the efficient frontier of
TG in direction g can be respectively identified by θ−m and φ+

q . The direction vector

g = (−g−, g+) = (−g−n , −g
′−
m , g

+
p , g

′+
q ) was chosen so that for instance, it is possible to

adopt the subsequent direction vectors:

Max{xnj/ g−n , n = 1, ..., N} ≤ 1,

Max{xmj/ g
′−
m , m = 1, ...,M} ≤ 1, (j = 1, ..., J) . (1)

It is also possible to adopt the subsequent direction vectors:

g−n = xno (n = 1, ..., N), g
′−
m = xmo(m = 1, ...,M),

g+p = yPo (p = 1, ..., P ), g
′+
q = yqo( q = 1, ..., Q). (2)

or

g−n =Max{xno ;n = 1, ..., N}, g′−
m =Max{xmo : m = 1, ...,M},

g+p =Max{yPo : p = 1, ..., P}, g′+
q =Max{yqo : q = 1, ..., Q}. (3)

Additionally, the values of α, θ−m (m = 1, ...,M) , β, φ+
q (q = 1, ..., Q) will be increased

together by the objective functions of model (4). In this approach, λo = 1, λj =
0 (j ̸= o, j = 1, ..., J)α = θ−m = β = φ+

q = 0,m = 1, ...,M, q = 1, ..., Q can be considered
a feasible expression.
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At this point, model (4) can be transformed into the following model by defining TG:

Model(5) ψ∗ =Min
1− N

K (α)− 1
K

∑M
m=1 θ

−
m

1 + P
S (β) +

1
S

∑Q
q=1 φ

+
q

s.t.

J∑
j=1

λjxnj ≤ xno − αg−n n = 1, ..., N. (4)

J∑
j=1

λjxmj ≤ xmo − θ−mg
′−
m m = 1, ...,M. (5)

J∑
j=1

λjypj ≥ ypo + βg+p p = 1, ..., P. (6)

J∑
j=1

λjyqj ≥ yqo + φ+
q g

′+
q q = 1, ..., Q. (7)

λ ∈ Ω, α ≥ 0, β ≥ 0 (8)

θ−m ≥ 0, φ+
q ≥ 0, m = 1, ...,M, q = 1, ..., Q. (9)

Proposition 3.1 The optimal value of the objective function from the DHM model is
0 ≤ ψ∗ ≤ 1.

Proof. Primarily, α∗ = θ−∗
m = β∗ = φ+∗

q = 0 (m = 1, ...,M, q = 1, ..., Q) and λ∗o =
1,λ∗j = 0 (j ̸= o, j = 1, ..., J) , are assigned in order to prove ψ∗ ≤ 1. Subsequently,

(α∗, θ−∗
m , β∗, φ+∗

q , λ∗) is considered a feasible solution for model (5). If the objective
function value for the abovementioned solution is 1, then ψ∗ ≤ 1 would be ob-
tained in terms of minimization. In addition, 0 ≤ ψ∗ ≤ 1 would be obtained because
xRo − αg−n ≥ 0, xNRo − θ−mg

′−
m ≥ 0 according to (1). ■

It is then proposed that ψ∗ be counted as an efficiency measure. In other words, on the
condition that an optimal solution for model (5) is allowed to be (α∗, θ−∗

m , β∗, φ+∗
q , λ∗),

the optimal value of the objective functions from model (5), ψ∗, would therefore be
the efficiency score of DMUo (xRo , x

NR
o , yRo , y

NR
o ) ∈ TG. Accordingly, a DMU is deemed

DHM-efficient as presented below:

Definition 3.2 DHM- Efficiency A DMU is DHM-efficient if and only if ψ∗ = 1.

This condition is equivalent to α∗ = θ−∗
m = β∗ = φ+∗

q = 0 (m = 1, ...,M, q = 1, ..., Q),
for each optimal solution of model (5), i.e., there is no input inefficiency (waste) and no
output inefficiency (shortfall) for all inputs and outputs in any optimal solution.
Having resolved model (5), for a DHM-inefficient DMU (xRo , x

NR
o , yRo , y

NR
o ), i.e., ψ∗ <

1 and by considering an optimal solution (α∗, θ−∗
m , β∗, φ+∗

q , λ∗) the improved activity
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(x∗Ro , x∗NRo , y∗Ro , y∗NRo ) as DHM projection can be calculated as:

x∗Ro ⇐ (x1o − α∗g−1 , x2o − α∗g−2 , ..., xNo − α∗g−N ),

x∗NRo ⇐ (x1o − θ−∗
1 g

′−
1 , x2o − θ−∗

2 g
′−
2 , ..., xMo − θ−∗

M g
′−
M ),

y∗Ro ⇐ (y1o + β∗g+1 , y2o + β∗g+2 , ..., yPo + β∗g+P ),

y∗NRo ⇐ (y1o + φ+∗
1 g

′+
1 , y2o + φ+∗

2 g
′+
2 , ..., yQo + φ+∗

Q g
′+
Q ).) (10)

Proposition 3.3 In each optimal solution of the DHM model, the entire non-radial
input and output constraints will be binding.

Proof. If an optimal solution of the DHM model is assumed to be (α∗, θ−∗
m , β∗, φ+∗

q , λ∗),
it is presumed that the theorem cannot be true as it yields an incongruity. Without the
generality loss, it is possible to assume the following for non-radial output constraints:

∃ t ∈ {1, 2, ..., Q} ,
∑J

j=1 λ
∗
jytj > yto + g

′+
t φ

+∗
t and subsequently ∃ φ̂+

t ,
∑J

j=1 λ
∗
jytj =

yto + g
′+
t φ̂+

t and φ̂+
t > φ+∗

t . Bearing in mind φ+∗
q = φ̂+

q (q = 1, 2, ..., Q, q ̸= t),∑J
j=1 λ

∗
jyto−yto
g
′+
t

= φ̂+
t in the company of λ∗j = λ̂j , (j = 1, 2, ..., J),θ−∗

m = θ̂−m (m =

1, 2, ...,M), α∗ = α̂ andβ∗ = β̂, a feasible solution to model as (λ̂, α̂, β̂, θ̂−, φ̂+ )

is certainly obtainable. Hereafter, the following is obtained:
1−N

K
(α̂)− 1

K

∑M
m=1 θ̂

−
m

1+P

S
(β̂)+ 1

S

∑Q
q=1 φ̂

+
q

<

1−N

K
(α∗)− 1

K

∑M
m=1 θ

−∗
m

1+P

S
(β∗)+ 1

S

∑Q
q=1 φ

+∗
q

, which is lower than the optimum solution of the model, thus leading

to a contradiction. ■

Proposition 3.4 In each optimal solution of the DHM model, at least one of the radial
input and output constraints will be binding.

Proof. If an optimal solution of the DHM model is assumed to be (α∗, θ−∗
m , β∗, φ+∗

q , λ∗),
it is presumed that the theorem cannot be true, as it leads to an incongruity. With-
out the generality loss, it is possible to assume the following for all radial output
constraints:∀n ∈ {1, 2, ..., N} , and

∑J
j=1 λ

∗
jxnj < xno − α∗g−n , subsequentlyα∗ <

xno−
∑J

j=1 λ
∗
jxnj

g−n
. By situating ∀ n ∈ {1, 2, ..., N} ,xno−

∑J
j=1 λ

∗
jxnj

g−n
= α̂ in the radial in-

put constraint,
∑J

j=1 λ
∗
jxnj ≤ xno − α̂g−n is obtained, that is, α̂ is certainly a feasible

solution that is higher than α∗. Then, α∗ < α̂ is obtained, which leads to a contradiction.
■

Proposition 3.5 The improved activity(x∗Ro , x∗NRo , y∗Ro , y∗NRo )as a DHM-projection is
Pareto efficient.

Proof. If an optimal solution of the DHM model is assumed to be (α∗, θ−∗
m , β∗, φ+∗

q , λ∗),
it is supposed the theorem cannot be true because this leads to an incongruity. Thus,
because all non-radial constraints in the model are binding at optimality, there is a vector
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λ̂ satisfying λ̂ ∈ Ω that defines an improved activity for non-radial input and output as:

x̂mo =

J∑
j=1

λ̂jxmj ≤ x∗mo m = 1, ...,M.

ŷqo =

J∑
j=1

λ̂jyqj ≥ y∗qo q = 1, ..., Q.

Such that the aforementioned inequity will be strict for at least one input or one output.
Without the generality loss, it is possible to assume x̂mo =

∑J
j=1 λ̂jxmj ≤ x∗mo , (m =

1, ...,M), so we can define ∃ t ∈ {1, 2, ..., Q} , θ̂−t = xto−(x∗
to−x̂to)

g
′−
t

< xto−x∗
to

g
′−
t

= θ−∗
t , and

for the rest θ̂−m = xmo−(x∗
mo−x̂mo)

g
′−
m

≤ xmo−x∗
mo

g
′−
m

= θ−∗
m (m = 1, ...,M,m ̸= t). By considering

λ∗j = λ̂j(j = 1, 2, ..., J),φ−∗
q = φ̂−

q (q = 1, 2, ..., Q), α∗ = α̂ andβ∗ = β̂, a feasible solution

to the model is certainly obtainable as (λ̂, α̂, β̂, θ̂−, φ̂+ ).

Hereafter,
1−N

K
(α̂)− 1

K

∑M
m=1 θ̂

−
m

1+P

S
(β̂)+ 1

S

∑Q
q=1 φ̂

+
q

<
1−N

K
(α∗)− 1

K

∑M
m=1 θ

−∗
m

1+P

S
(β∗)+ 1

S

∑Q
q=1 φ

+∗
q

, which is lower than the optimum

model solution, thus leading to a contradiction. Nonetheless, since at least one of the
radial input and output constraints will be binding, the proof for this problem resembles
the last case. The improved activity (x∗Ro , x∗NRo , y∗Ro , y∗NRo ) as a DHM projection is thus
Pareto efficient. ■

4. DHM Properties

The DHM model exhibits numerous favorable properties when selecting an appropriate
direction vector.

4.1 Monotonicity

The proposed measure apparently diminishes monotonically for any upsurge in input
usage or any decrease in output production. In reality, it intensely monotonously declines
for eachα, θ−m (m = 1, ...,M) , β,φ+

q (q = 1, ..., Q).

4.2 Decomposition of Inefficiency

Considering an optimal solution (α∗, θ−∗
m , β∗, φ+∗

q , λ∗), ψ∗can be shown asψ∗ = 1−a∗

1+b∗ ,
where a∗ delineates the input inefficiencies as a∗ = a∗1 + a∗2, where a

∗
1 and a∗2 specify

the radial and non-radial input inefficiencies as a∗1 = N
K (α∗) and a∗2 = 1

K

∑M
m=1 θ

−∗
m

respectively. Furthermore, the output inefficiencies are defined by b∗ as b∗ = b∗1 + b∗2,
wherein b∗1 and b∗2 determine the radial and non-radial output inefficiencies as follows:

b∗1 = P
S (β

∗) and b∗2 = 1
S

∑Q
q=1 φ

+∗
q , respectively. This expression is advantageous for

detecting the sources of inefficiency in addition to determining the magnitude of their
effects on the efficiency score ψ∗.
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4.3 Computational Aspect

It is possible to convert model (5) to a distinctive case of the hybrid model (Tone, 2004)

through a change in variables: θ−m = s−m
xmo

(m = 1, ...,M), φ+
q =

s+q
yqo

(q = 1, ..., Q). Indeed,

stating model (5) with respect to the total slacks is simple. In connection with (2), the
consequence is a novel problem that produces an alternative expression of DHM efficiency
as:

Model(6) ψ∗ =Min
1− N

K (α)− 1
K

∑M
m=1

s−m
xmo

1 + P
S (β) +

1
S

∑Q
q=1

s+q
yqo

s.t.

J∑
j=1

λjxnj ≤ xno(1− α) n = 1, ..., N. (11)

J∑
j=1

λjxmj + s−m = xmo m = 1, ...,M. (12)

J∑
j=1

λjypj ≥ ypo(1 + β) p = 1, ..., P. (13)

J∑
j=1

λjyqj − s+q = yqo q = 1, ..., Q. (14)

λ ∈ Ω, α ≥ 0, β ≥ 0, (15)

s−m ≥ 0, s+q ≥ 0, m = 1, ...,M, q = 1, ..., Q. (16)

By employing the Charnes-Cooper transformation (Charnes and Cooper, 1962), the fol-
lowing can be assumed:

δ−1 =

1− N
K (α)− 1

K

∑M
m=1

s−m
xmo

1 + P
S (β) +

1
S

∑Q
q=1

s+q
yqo

 ,

σ = δα, τ = δβ,

t−m = δs−m , m = 1, ...,M,

t+q = δs+q , q = 1, ..., Q,

µj = δλj , j = 1, ..., J. (17)
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Here, model (6) is converted to a linear program like so:

Model(7) γ∗ =Min δ − N

K
(σ)− 1

K

M∑
m=1

t−m
xmo

s.t. δ +
P

S
(τ) +

1

S

Q∑
q=1

t+q
yqo

= 1 (18)

J∑
j=1

µjxnj ≤ xno(δ − σ) n = 1, ..., N. (19)

J∑
j=1

µjxmj + t−m = δxmo m = 1, ...,M. (20)

J∑
j=1

µjypj ≥ ypo(δ + τ) p = 1, ..., P. (21)

J∑
j=1

µjyqj − t+q = δyqo q = 1, ..., Q. (22)

µ ∈ Ω, δ ≥ 0, σ ≥ 0, (23)

t−m ≥ 0, t+q ≥ 0, m = 1, ...,M, q = 1, ..., Q. (24)

At this time, it is feasible to resolve linear model (7) with the aim of solving the DHM
model. Having detected the optimal solution of model (7), the optimal DHM model
solution can be obtained through changing the given variable.

4.3.1 Completeness

Such a model can be considered complete, because it is non-oriented and differs from ori-
ented ones. Moreover, this kind of model takes into account all inefficiencies concomitant
with the non-zero slacks that might be recognized through the model.

4.3.2 Unit invariance

If a direction vector is chosen so that the n-th component of g−n (n = 1, ..., N) the m-th
component of g

′−
m (m = 1, ...,M),the p-th component of g+p (p = 1, ..., P ) and the q-th

component of g
′+
q (q = 1, ..., Q), contain similar measurement units as the n-th radial

input, m-th non-radial input, p-th radial output and q-th radial output, respectively, the
DHM model will be accordingly unit invariant; for example, the considered condition is
met by vectors (2) and (3).

4.3.3 Extension (Oriented DHM models)

By disregarding the denominator (numerator) of the objective function of DHM, the
input (output)-oriented DHM model can be defined. Consequently, the efficiency values
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ψ∗
I and ψ∗

o are obtained as follows:

Model(8) ψ∗
I =Min 1− N

K
(α)− 1

K

M∑
m=1

θ−m (DHM − I)

s.t.

J∑
j=1

λjxnj ≤ xno − αg−n n = 1, ..., N. (25)

J∑
j=1

λjxmj ≤ xmo − θ−mg
′−
m m = 1, ...,M. (26)

J∑
j=1

λjypj ≥ ypo p = 1, ..., P. (27)

J∑
j=1

λjyqj ≥ yqo q = 1, ..., Q. (28)

λ ∈ Ω, α ≥ 0, θ−m ≥ 0 m = 1, ...,M. (29)

Model(9) ψ∗
O =Min

1

1 + P
S (β) +

1
S

∑Q
q=1 φ

+
q

(DHM −O)

s.t.

J∑
j=1

λjxnj ≤ xno n = 1, ..., N. (30)

J∑
j=1

λjxmj ≤ xmo m = 1, ...,M. (31)

J∑
j=1

λjypj ≥ ypo + βg+p p = 1, ..., P. (32)

J∑
j=1

λjyqj ≥ yqo + φ+
q g

′+
q q = 1, ..., Q. (33)

λ ∈ Ω, β ≥ 0, φ+
q ≥ 0 q = 1, ..., Q. (34)

It is noted that these lead to ψ∗
O ≥ ψ∗ and ψ∗

I ≥ ψ∗.

4.3.4 Integrating the DM’s preference Knowledge

It is compulsory to consider a DM’s judgments or priori knowledge in some practical
cases on the condition that the DM does not similarly choose the efficient units for
obtaining appropriate benchmarks. In practice, the vector g can be adapted compliantly
in keeping with the input/output preference orders provided by the DM. Actually, the
amounts of adapted direction vector f components designate the relative significance of
the inputs/outputs generated by the DM. If it is supposed the non-zero weights wk(k =
1, ...,K) and ws(s = 1, ..., S) are concomitant with the priorities yielded by the DM to
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the inputs and outputs respectively, then if wk(ws) is higher, the k-th input (s-th output)
will be accordingly more significant. Subsequently, an extension to the DHM model can
be proposed. In fact, by decomposing these weights into w−

n (n = 1, ..., N) and w+
p (p =

1, ..., P ) for radial and non-radial inputs respectively, as well as w
′−
m (m = 1, ...,M) and

w
′+
q (q = 1, ..., Q) for radial and non-radial outputs, respectively, these weights will be the

coefficients of variables α∗, β∗, θ∗− and φ∗+ in the objective function. The components
of the adapted direction vector, f , appear as follows:

f−n =
1

w−
n
g−n (n = 1, ..., N), f−m =

1

w
′−
m
g

′−
m (m = 1, ...,M),

f+p =
1

w+
p
g+p (p = 1, ..., P ), f+q =

1

w
′+
q
g

′+
q ( q = 1, ..., Q).

The above indicate that if an input (output) bears greater significance, such input (out-
put) needs to be linked to a greater weight or equivalently the component of the small
direction. Taking into account (4.1), w−

n ≤ 1 (n = 1, ..., N) , w
′−
m ≤ 1 (m = 1, ...,M)

becomes possible. In case the provided weights fail to meet the specified conditions, their
normalized forms would do so.

4.4 Comparisons of the Models with DHM

Several renowned DEA models, such as CCR, BCC, ERM and SBM, which depend on
the radial or non-radial approaches, are derived from the DHM model.
Initially, by setting all inputs and outputs as radial, the DHM model reduces to a re-
vised fractional form of the radial models in direction g under the GRS assumption of
technology as follows:

Model(10) ψ∗
R =Min

1− α

1 + β

s.t.

J∑
j=1

λjxkj ≤ xko − αg−k k = 1, ...,K. (35)

J∑
j=1

λjysj ≥ yso + βg+s s = 1, ..., S. (36)

λ ∈ Ω, α ≥ 0, β ≥ 0. (37)

Considering L = 0, U = ∞ and L = 1, U = 1 , model (10) can be transformed
into the directional CCR and BCC models, respectively (i.e., DCCR and DBCC). Also,
the CCR and BCC models are special cases of model (10) under the CRS and VRS
assumptions of technology which can be easily produced by allocating direction vector
(2).
Secondly, by setting all inputs and outputs as non-radial, the directional slack-based
measure (DSBM) model under the GRS assumption of technology as a special case of
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the DHM model can be expressed as follows:

Model(11) ψ∗
NR =Min

1− 1
K

∑K
k=1 θ

−
k

1 + 1
S

∑S
s=1 φ

+
s

s.t.

J∑
j=1

λjxkj ≤ xko − θ−k g
−
k k = 1, ...,K (38)

J∑
j=1

λjysj ≥ yso + φ+
s g

+
s s = 1, ..., S. (39)

λ ∈ Ω, θ−k ≥ 0, φ+
s ≥ 0, k = 1, ...,K, s = 1, ..., S. (40)

SBM and ERM models are distinctive cases of model (11) under the GRS assumption of
technology, which can be easily produced by allocating direction vector (2), too.
Correspondingly, it is possible to define the oriented DCCR, DBCC or DSBM models,
i.e., DCCR-I, DCCR-0 as designated in section 4.6 by disregarding the output or input
efficiencies. Among the optimal solution obtained from these models, the following re-
lationships are satisfied: ψ∗

DCCR−I = ψ∗
DCCR = ψ∗

DCCR−O; ψ
∗
DBCC−I ≥ ψ∗

DBCC and
ψ∗
DBCC−O ≥ ψ∗

DBCC ; ψ
∗
DSBM−I ≥ ψ∗

DSBM and ψ∗
DSBM−O ≥ ψ∗

DSBM .
Considering L = 1 and U = 1 for the DBCC, DSBM and DHM models, the following
relationships are fulfilled:

ψ∗
DSBM ≤ ψ∗ ≤ ψ∗

DBCC . (41)

ψ∗
DSBM−I ≤ ψ∗

I ≤ ψ∗
DBCC−I . (42)

ψ∗
DSBM−O ≤ ψ∗

O ≤ ψ∗
DBCC−O. (43)

Also, considering L = 0 and U = ∞ for the DCCR, DSBM and DHM models, the
relationships are similar to the terms of (41), (42) and (43).
Lastly, it is perceived from the DHMmodel that a single radial input (output) case dimin-
ishes to a non-radial input (output) model as model (11) . Nevertheless, it is impossible
to decline the single non-radial input (output) to a radial model as model (10).

5. Empirical Evaluation

The aim of this section is to elaborate on the DHM model using an applied example
wherein the efficiency score is measured in terms of radial and non-radial data. The
efficiency scores obtained from the DBCC and DSBM models are compared with the
DHM model though this example as well. The results demonstrate important differences
between the scores of the three methods used.

5.1 Data Recourse

If the aim is to examine the methods to more specifically expose their competencies, it
is helpful to presume an empirical example of die press machines in the press division of
a motorcycle parts manufacturing company (Lertworasirikul et al., 2011).
The motorcycle parts are produced by the die press division using die press machines.
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Table 1. Data Related to the Die Press Separation of the Motorcycle Parts Manufacturing

Company

Inputs Outputs
DMU Radial Non-Radial Non-Radial

x1 x2 x3 x4 x5 x6 y1 y2 y3
1 18 8 93 140 110 5 861 1.27 98
2 18 7 87 120 80 5 947 1.27 96
3 18 7 83 110 70 5 906 1.29 96
4 24 14 163 260 210 15 672 1.27 96
5 21 5 62 120 90 5 974 1.27 98
6 21 7 79 150 110 20 867 1.28 100
7 18 9 102 210 150 20 806 1.27 98
8 18 8 95 110 80 20 869 1.29 97
9 24 14 136 320 240 15 696 1.28 97
10 24 9 98 220 170 20 817 1.28 100
11 24 8 94 110 120 15 913 1.23 100
12 24 6 82 170 120 15 989 1.27 99
13 18 8 97 130 170 15 823 1.29 95
14 18 7 89 90 130 15 862 1.32 97
15 21 7 79 180 140 15 888 1.31 98
16 21 7 87 110 130 10 847 1.34 97
17 21 9 113 140 80 10 793 1.27 98
18 21 6 74 130 130 10 957 1.29 99
19 21 7 79 110 110 10 942 1.32 99
20 21 8 95 200 170 10 839 1.28 97
21 18 7 74 170 110 15 887 1.26 98
22 21 7 76 90 120 5 898 1.31 98
23 24 16 187 290 280 15 614 1.29 98
24 24 13 175 210 260 15 735 1.28 95
25 18 8 91 130 120 20 885 1.31 96

The die press division has a set of 25 die press machines of 80-ton pressing. In the current
research, the die press machines are assumed to be the DMUs. Table 1 specifies that the
mentioned company utilized 9 variables from the dataset having 6 inputs and 3 outputs.
These inputs and outputs are categorized into 5 radial inputs, 1 non-radial input and 3
non-radial outputs. Table 1 was presented by Lertworasirikul et al. (2011) and is repeated
here for ease of reference. It should be highlighted that the 7-th input was removed
from the dataset to better illustrate the proposed models. The inputs and outputs for
evaluating the DMUs’ efficiency scores are specified below and their descriptive statistics
are indicated in Table 2.
Radial inputs
Input 1(x1): Overtime hours of direct labor (h)
Input 2 (x2): Number of stopping times to change the die and adjust the die press machine
in a month
Input 3 (x3): Number of testing presses before a real press (stroke)
Input 4 (x4): Time the die moves from the forklift (min)
Input 5 (x5): Time for repair and adjustment (labor hours)
Non-Radial input
Input 6 (x6): Time for preventive maintenance (h)
Non-Radial Outputs
Output 1 (y1): Number of total presses resulting in good parts (strokes)
Output 2 (y2): Process capability ratio (Cp)
Output 3 (y3): Percent of on-schedule presses (%)
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Table 2. Descriptive Statistics for the 25 DMUs

Mean Std. Deviation Minimum Maximum
Input 1 20.7600 2.43721 18.00 24.00
Input 2 8.4800 2.77068 5.00 16.00
Input 3 99.6000 32.03123 62.00 187.00
Input 4 160.8000 62.04300 90.00 320.00
Input 5 13.0000 5.20416 5.00 20.00
Input 6 140.0000 56.05057 70.00 280.00
Output 1 812.4000 190.81295 8.00 989.00
Output 2 1.2856 0.02311 1.23 1.34
Output 3 97.6000 1.44338 95.00 100.00

5.2 Efficiency Analysis

First of all, the DHM model is applied in the current research in order to measure the
efficiency scores of DMUs and to systemically account for the existence of radial and
non-radial inputs and outputs in a unified framework. Because the slacks of inputs 1 to
inputs 5 are freely disposable, these items are categorized as radial. Besides, input 6 and
all outputs are categorized as non-radial.
To ratify whether a linear correlation exists among radial and non-radial inputs, Pearson
product-moment correlation coefficient analysis is employed in this study to investigate
the empirical dataset presented in Table 1.
According to Table 3, for the correlation between input variables 1, 2, 3, 4, and 5, the p-
values are less than 0.01, so the null hypothesis “there is no correlation between variables”
would be rejected. This means there are significant correlation between inputs 1, 2, 3, 4,
and 5. The correlation coefficients between inputs 1, 2, 3, 4, and 5 are greater than 0.518.
For the correlation between input variable 6 and the remaining inputs, the p-values are
greater than 0.05 and the null hypothesis “there is no correlation between variables”
cannot be rejected.
This means there is no significant correlation between input 6 and the other inputs.
The results specify there is a greater degree of linear correlation (i.e., proportionate re-
lationship) between the five radial inputs and a lesser degree of linear correlation (i.e.,
non-proportionate relationship) between the radial inputs and non-radial input. Conse-
quently, the radial inputs and non-radial input of the empirical dataset assessed utilizing
the DHM model is sensible.

According to Table 4, the p-values for the correlation between outputs are greater than
0.05, the null hypothesis “there is no correlation between variables” cannot be rejected.
This means there is no significant correlation between outputs. Therefore, outputs 1, 2
and 3 are accordingly supposed to be non-radial and there is no radial output to be
utilized in the empirical evaluation.

To obtain the efficiency scores of DMUs, assume that L = 1 and U = 1 (which leads to
the variable returns to scale (VRS) assumption of technology) and the direction vector
is specified by (2). At this stage, the DSBM, DBCC and DHM models are resolved for
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Table 3. Results of the Pearson Product-Moment Correlation Coefficient Analysis Re-

lated to the Inputs

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6
Input 1 1.000

——
Input 2 0.518 1.000

(0.008) ——
Input 3 0.518 0.963 1.000

(0.008) (0.000) ——
Input 4 0.572 0.824 0.731 1.000

(0.003) (0.000) (0.000) ——
Input 5 0.604 0.856 0.840 0.818 1.000

(0.001) (0.000) (0.000) (0.000) ——
Input 6 0.158 0.301 0.264 0.373 0.336 1.000

(0.452) (0.144) (0.203) (0.066) (0.101) ——

Note: The values in brackets are the P -value.

Table 4. Results of the Pearson Product-Moment Correla-

tion Coefficient Analysis Related to the Outputs

Output 1 Output 2 Output 3
Output 1 1.000

——
Output 2 0.218 1.000

(0.295) ——
Output 3 0.341 0.230 1.000

(0.095) (0.269) ——

Note: The values in brackets are the P -value.

Table 5. Results Obtained From the Com-

parisons between the Models and DHM

DMU Efficiency Score
DSBM DHM DBCC

1 1 1 1
2 1 1 1
3 1 1 1
4 0.41 0.60 0.94
5 1 1 1
6 1 1 1
7 1 1 1
8 1 1 1
9 0.42 0.62 0.95
10 0.78 0.81 1
11 1 1 1
12 1 1 1
13 1 1 1
14 1 1 1
15 0.77 0.89 0.99
16 1 1 1
17 1 1 1
18 1 1 1
19 1 1 1
20 0.64 0.80 0.96
21 1 1 1
22 1 1 1
23 0.38 0.64 0.97
24 0.44 0.62 0.93
25 1 1 1

the DMUs with the intention of attaining the DMUs’ efficiency scores.
According to Table 5, although the 18 DMUs can efficiently operate with a score of
1, they fail to contain input and output slacks. There are also 7 DMUs that perform
inefficiently with efficiency scores below 1. This means that these 7 DMUs have input
excesses or output shortfalls against the 18 DMUs.
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Table 6. Results Obtained from Decomposing the Inefficiency Using DHM

DMU Input inefficiency Output inefficiency Efficiency score
a∗ a∗1 a∗2 b∗ b∗1 b∗2 ψ∗

4 0.32 0.21 0.11 0.14 0.00 0.14 0.60
9 0.32 0.20 0.12 0.09 0.00 0.09 0.62
15 0.11 0.00 0.11 0.00 0.00 0.00 0.89
20 0.18 0.10 0.08 0.02 0.00 0.02 0.80
23 0.27 0.16 0.11 0.14 0.00 0.14 0.64
24 0.32 0.21 0.11 0.09 0.01 0.09 0.62

Table 5 depicts the obtained results, indicating remarkable dissimilarities in the efficiency
scores related to the three models employed based on non-zero slacks. For example,
ψ∗
DBCC = 0.93 was detected as the radial score for DMU 24; yet, the efficiency scores of

the two DEA models are ψ∗
DSBM = 0.44 and ψ∗ = 0.62. It can be interpreted that the

non-zero slacks are disregarded throughout radial efficiency measurement. Furthermore,
the radial specification was disregarded in the non-radial models. The radial variables
proportionally enhance while the non-radial variables enhance differently in achieving
the maximum efficiency in the DHM model. The DHM efficiency score may well be
equivalent to one of the DSBM or DBCC models in some DMUs due to the absence of
radial inefficiency or non-radial inefficiency.
Accordingly, it can be claimed that this model can find significant application, as it is
able to estimate the slack inputs and outputs as well identify their types. Owing to this
particular capability, the DHM model yields more precise evaluation and a score between
DBCC and DSBM, and stands accountable for the non-radial excesses and shortfalls, thus
leading to (41).
To better illuminate the introduced model, it is endeavored to support it in this study
through decomposing the efficiency using expression 4.2. In Table 6, the results of DMU
efficiency scores evaluated from the DHM model for inefficient DMUs are represented
under the heading ‘Efficiency Score’. In this table, the inefficiency indicators of radial
and non-radial inputs are measured by means of a∗ and stated under the heading ‘Input
Inefficiency’. Furthermore, the inefficiency indicators of radial and non-radial outputs are
measured by means of b∗ and stated under the heading ‘Output Inefficiency’.

Having explored the dataset, five among the inefficient DMUs have higher inefficiency
indicators caused by radial inputs compared with inefficiency caused by non-radial inputs.
For example, if DMU 4 is taken into account, it is observed that the inefficiency associated
with this DMU is related to input and output inefficiency (a∗= 0.32 and b∗= 0.14). In
practice, this inefficiency is a result of radial input inefficiency (a1

∗ = 0.21) in addition to
non-radial input inefficiency (a2

∗= 0.11) plus non-radial output inefficiency (b2
∗= 0.14).

In contrast, one DMU has a higher inefficiency indicator caused by non-radial input
rather than radial inputs. Evidently, the inefficiency associated with DMU 10 is related
to input and output inefficiency (a∗= 0.22 and b∗= 0.01). In practice, this inefficiency is
a result of radial input inefficiency (a1

∗= 0.10) in addition to non-radial input inefficiency
(a2

∗= 0.12) plus non-radial output inefficiency (b2
∗= 0.01).

Moreover, the input inefficiency (a∗= 0.11) gives rise to the inefficiency of DMU 15. This
input inefficiency is completely caused by non-radial input inefficiency (a2

∗= 0.11), with
no inefficiency indicator from radial inputs and non-radial outputs. According to the
above description, the empirical evaluation verifies that separating inputs and outputs
is an important factor in evaluating the efficiency score of DMUs.
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5.3 Discussion and Concluding Remarks

The current study is primarily focused on measuring efficiency from a DEA perspective.
In line with this, a generalized form of the hybrid model originally introduced by Tone
(2004) was developed with the intention of relating the two basic methods for radial
and non-radial efficiency measurement, using the directional distance function notion.
The proposed model is practical for calculating DMU efficiency when both radial and
non-radial inputs (outputs) are integrated in the problem.
In summary, an efficiency measure was defined in this paper, which was shown to perform
well. The reasons for this claim, in addition to the abovementioned reasons, include:

• This efficiency measure is well-defined, as it is the optimum value of a mathematical
programming problem that is also calculated and inferred simply.

• While the DHM efficiency score never surpasses the radial efficiency score values, the
DHM efficiency score exceeds the non-radial efficiency score values. The DHM efficiency
score is positioned between DCCR (the easiest) and DSBM (the hardest), which is an
indicator of the slacks’ partial incorporation.

• It is possible to observe the sources of inefficiency besides the magnitude of their impact
on the score by employing the proposed formula meant for decomposing the efficiency
score into radial input (output) and non-radial input (outputs) inefficiencies.

• It is also feasible to derive the hybrid model along with numerous renowned DEA
models such as CCR, BCC, ERM and SBM from the proposed model.

It should be highlighted that the model recommended in this research is flexible compared
to the hybrid DEA model. In addition, it is a more direct combination of the radial and
non-radial approaches, which therefore better elucidates the efficiency of the DMU to be
assessed. It is thus possible to promptly understand the proposed model. In brief, DEA
researchers and practitioners would be able to match the resources’ assessed contractions
as well as output expansions in a certain production system in order to obtain more
accurate efficiency measurements. It is also suggested for the input (output) to be taken
as non-radial, provided that the slacks for an input (output) are regarded as significant
for calculating efficiency. In the meantime, the item would be considered radial on the
condition that the slacks are disposable without restrictions.
Traditional DEA methods apply exact data for both inputs and outputs. However, in
some organizations, the defined data are sometimes imprecise or vague. Thus, fuzzy
and ordinal procedures for dealing with ambiguity and impreciseness of the proposed
model introduced in this paper should be considered in future studies. In extending the
mentioned model into a model with super efficiency, generating a rank for each DMU
would also be a challenge to overcome.
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