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Abstract. The main goal of this paper is to introduce and study a new class of function via
the notions of e-θ-open sets and e-θ-closure operator which are defined by Özkoç and Aslım
[10] called weakly eR-open functions and e-θ-open functions. Moreover, we investigate not
only some of their basic properties but also their relationships with other types of already
existing topological functions.
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1. Introduction and Preliminaries

Throughout the present paper, X and Y always mean topological spaces on which no
separation axioms are assumed unless explicitly stated. Let X be a topological space
and A a subset of X. The closure and the interior of A are denoted by cl(A) and
int(A), respectively. The family of all closed sets of X is denoted C(X). A subset
A is said to be regular open [12] (resp. regular closed [12]) if A = int(cl(A)) (resp.
A = cl(int(A))). A point x ∈ X is said to be δ-cluster point [13] of A if int(cl(U))∩A ̸= ∅
for each open neigbourhood U of x. The set of all δ-cluster points of A is called the
δ-closure [13] of A and is denoted by clδ(A). If A = clδ(A), then A is called δ-closed
[13], and the complement of a δ-closed set is called δ-open [13]. A subset A is called
semiopen [5] (resp. b-open [1], e-open [4], preopen [7], α-open [8]) if A ⊂ cl(int(A))
(resp. A ⊂ cl(int(A)) ∪ int(cl(A)), A ⊂ cl(intδ(A)) ∪ int(clδ(A)), A ⊂ int(cl(A)),
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Print ISSN: 2252-0201 c⃝ 2016 IAUCTB. All rights reserved.
Online ISSN: 2345-5934 http://jlta.iauctb.ac.ir
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A ⊂ int(cl(int(A)))). The complement of a semiopen (resp. b-open, e-open, preopen,
α-open) set is called semiclosed [5](resp. b-closed [1], e-closed [4], preclosed [7], α-closed
[8]). The intersection of all e-closed sets of X containing A is called the e-closure [4] of
A and is denoted by e-cl(A). The union of all e-open sets of X contained in A is called
the e-interior [4] of A and is denoted by e-int(A). A subset A is said to be e-regular [10]
if it is e-open and e-closed.

A point x of X is called a b-θ-cluster [11] (e-θ-cluster [10], θ-cluster [13]) point of A if
bcl(U)∩A ̸= ∅ (e-cl(U)∩A ̸= ∅, cl(U)∩A ̸= ∅) for every b-open (e-open, open) set U of X
containing x, respectively. The set of all b-θ-cluster (e-θ-cluster, θ-cluster) points of A is
called the b-θ-closure [11] (e-θ-closure [10], θ-closure [13]) of A and is denoted by bclθ(A)
(e-clθ(A), clθ(A)), respectively. A subset A is said to be b-θ-closed [11] (e-θ-closed [10],
θ-closed [13]) if A = bclθ(A) (A = e-clθ(A), A = clθ(A)), respectively. The complement
of a b-θ-closed (e-θ-closed, θ-closed) set is called a b-θ-open [11] (e-θ-open [10], θ-open
[13]) set. A point x of X said to be a b-θ-interior [11] (e-θ-interior [10], θ-interior [13])
point of a subset A, denoted by bintθ(A) (e-intθ(A), intθ(A)), if there exists a b-regular
(e-regular, regular) set U of X containing x such that U ⊂ A, respectively. The family
of all e-open (resp. e-closed, e-regular, b-θ-open, e-θ-open, b-θ-closed, e-θ-closed) subsets
of X is denoted by eO(X) (resp. eC(X), eR(X), BθO(X), eθO(X), BθC(X), eθC(X)).
The family of all e-open (e-closed, e-regular, b-θ-open, e-θ-open, b-θ-closed, e-θ-closed)
sets of X containing a point x of X is denoted by eO(X,x) (resp. eC(X,x), eR(X,x),
BθO(X,x), eθO(X,x), BθC(X), eθC(X,x)). Also it is noted in [10] that

e-regular ⇒ e-θ-open ⇒ e-open.

We shall use the well-known accepted language almost in the whole of the article.

Definition 1.1 A function f : (X, τ) → (Y, σ) is called:
(a) contra e-θ-open if f(U) is e-θ-closed in Y for each open set U of X.
(b) contra e-θ-closed if f(U) is e-θ-open in Y for each closed set U of X.
(c) strongly continuous [6] if for every subset A of X, f(cl(A)) ⊂ f (A) .
(d) weakly BR-open [2] if f (U) ⊂ bintθ(f(cl(U))) for each open set U of X.

2. Weakly eR-open Functions

In this section, we define the concept of weakly eR-open and investigate some basic
properties of them.

Definition 2.1 A function f : X → Y is said to be weakly eR-open if f (U) ⊂ e-
intθ(f(cl(U))) for each open set U of X.

Definition 2.2 A function f : X → Y is said to be e-θ-open if f (U) is e-θ-open in Y
for each open set U of X.

It is clear to see that every e-θ-open function is a weakly eR-open. However, a weakly
eR-open function need not be e-θ-open as shown by the following example.

Example 2.3 Let X = {a, b, c, d} and

τ = {∅, X, {a, d}} and σ = {∅, X, {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, b, d}}.

The identity function f : (X, τ) → (X,σ) is weakly eR-open, but it is not e-θ-open.
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The notions of weakly eR-open function and weakly BR-open function are independent
as shown by the following examples.

Example 2.4 Let X = {a, b, c, d, e} and τ = {∅, X, {a}, {c}, {a, c}, {c, d}, {a, c, d}}. The
identity function f : (X, τ) → (X, τ) is weakly eR-open, but it is not weakly BR-open.

Example 2.5 Let X = {a, b, c, d} and τ = {∅, X, {a}, {b}, {a, b}, {a, c}, {a, b, c},
{a, b, d}}. f = {(a, d), (b, c), (c, b), (d, d)} is weakly BR-open, but it is not weakly eR-
open.

Lemma 2.6 [10] Let A be a subset of a space X. Then:
(1) e-clθ(A) = ∩{V |(A ⊂ V )(V ∈ eR(X))}.
(2) x ∈ e-clθ(A) iff A ∩ U ̸= ∅ for each e-regular set U of X containing x.
(3) e-clθ(A) is e-θ-closed.
(4) Any intersections of e-θ-closed sets is e-θ-closed and any union of e-θ-open sets is
e-θ-open.
(5) A is e-θ-open in X if and only if for each x ∈ A there exists an e-regular set U
containing x such that x ∈ U ⊂ A.

Theorem 2.7 Let f : (X, τ) → (Y, σ) be a function. Then the following statements are
equivalent:
(a) f is weakly eR-open,
(b) f(intθ(A)) ⊂ e-intθ(f(A)) for every subset A of X,
(c) intθ(f

−1 (B)) ⊂ f−1 (e-intθ(B)) for every subset B of Y,
(d) f−1 (e-clθ(B)) ⊂ clθ(f

−1 (B)) for every subset B of Y,
(e) f (int(F )) ⊂ e-intθ(f (F )) for each closed subset F of X,
(f) f (int(cl(U))) ⊂ e-intθ(f (cl(U))) for each open subset U of X,
(g) f (U) ⊂ e-intθ(f (cl(U))) for every regular open subset U of X,
(h) f (U) ⊂ e-intθ(f (cl(U))) for every α-open subset U of X,
(i) For each x ∈ X and each open set U of X containing x, there exists an e-θ-open set
V of Y containing f(x) such that V ⊂ f (cl(U)) .

Proof. (a) ⇒ (b): Let A be any subset of X and x ∈ intθ(A).

x ∈ intθ(A) ⇒ (∃U ∈ U(x))(x ∈ U ⊂ cl(U) ⊂ A)
⇒ (∃U ∈ U(x))(f(x) ∈ f (U) ⊂ f (cl(U)) ⊂ f (A))

f is weakly eR-open

}
⇒

⇒ f (U) ⊂ e-intθ(f (cl(U))) ⊂ e-intθ(f (A))
⇒ f(x) ∈ e-intθ(f (A))
⇒ x ∈ f−1 (e-intθ(f (A))) .

(b) ⇒ (c): Let B be any subset of Y.

B ⊂ Y ⇒ f−1(B) ⊂ X
(b)

}
⇒ f

(
intθ(f

−1(B))
)
⊂ e-intθ(f(f

−1(B))) ⊂ e-intθ(B)

⇒ intθ(f
−1(B)) ⊂ f−1(e-intθ(B)).
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(c) ⇒ (d): Let B be any subset of Y.

B ⊂ Y ⇒ Y \B ⊂ Y
(c)

}
⇒ intθ(f

−1(Y \B)) ⊂ f−1(e-intθ(Y \B))

⇒ intθ(X \ f−1(B)) ⊂ f−1(Y \ e-clθ(B))
⇒ X \ clθ(f−1(B)) ⊂ X \ f−1(e-clθ(B))
⇒ f−1(e-clθ(B)) ⊂ clθ(f

−1(B)).

(d) ⇒ (e): Let F be any closed set of X.

F ∈ C(X) ⇒ Y \ f(F ) ⊂ Y
(d)

}
⇒

⇒ f−1(e-clθ(Y \ f(F ))) ⊂ clθ(f
−1(Y \ f(F ))) = clθ(X \ f−1(f(F ))) ⊂ clθ(X \ F )

⇒ f−1(Y \ e-intθ(f(F ))) ⊂ clθ(X \ F ) = X \ intθ(F )

⇒ X \ f−1(e-intθ(f(F ))) ⊂ X \ intθ(F )
F ∈ C(X) ⇒ intθ(F ) = int(F )

}
⇒ f (int(F )) ⊂ e-intθ(f(F )).

(e) ⇒ (f), (f) ⇒ (g): Obvious.
(g) ⇒ (h): Let U be any α-open set of X.

U ∈ αO(X) ⇒ (U ⊂ int(cl(int(U))))(int(cl(int(U))) ∈ RO(X))
(g)

}
⇒

⇒ f(U) ⊂ f(int(cl(int(U)))) ⊂ e-intθ(f(cl(int(cl(int(U))))))
= e-intθ(f(cl(int(U)))) ⊂ e-intθ(f(cl(U))).

(h) ⇒ (i): Straightforward.
(i) ⇒ (a): Let U be an open set in X and y ∈ f(U).

(U ∈ τ)(y ∈ f(U))
(i)

}
⇒ (∃V ∈ eθO(Y, y))(V ⊂ f(cl(U)))

y ∈ V ⊂ e-intθ(f(cl(U)))

}
⇒

⇒ f(U) ⊂ e-intθ(f(cl(U))). ■

Theorem 2.8 Let f : (X, τ) → (Y, σ) be a bijective function. Then the following state-
ments are equivalent:
(a) f is weakly eR-open,
(b) For each x ∈ X and each open set U of X containing x, there exists an e-regular set
V containing f(x) such that V ⊂ f(cl(U)),
(c) e-clθ(f (int(cl(U)))) ⊂ f (cl(U)) for each subset U of X,
(d) e-clθ(f (int(F ))) ⊂ f (F ) for each regular closed subset F of X,
(e) e-clθ(f (U)) ⊂ f (cl(U)) for each open subset U of X,
(f) e-clθ(f (U)) ⊂ f (cl(U)) for each preopen subset U of X,
(g) f (U) ⊂ e-intθ(f (cl(U))) for each preopen subset U of X,
(h) f−1 (e-clθ(B)) ⊂ clθ(f

−1 (B)) for each subset B of Y,
(i) e-clθ(f (U)) ⊂ f (clθ(U)) for each subset U of X,
(j) e-clθ(f (int(clθ(U)))) ⊂ f (clθ(U)) for each subset U of X.

Proof. (a) ⇒ (b): Let x ∈ X and U be any open subset of X containing x.

x ∈ U ∈ τ
(a)

}
⇒ f(x) ∈ f (U) ⊂ e-intθ(f (cl(U))) ∈ eθO(Y, f(x))

Lemma 2.6(5)

}
⇒

⇒ (∃V ∈ eR(Y, f(x)))(V ⊂ e-intθ(f (cl(U))) ⊂ f (cl(U))).
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(b) ⇒ (c): Let x ∈ X and U ⊂ X.

f(x) ∈ Y \ f (cl(U)) = f(X \ cl(U)) ⇒ x ∈ X \ cl(U)
⇒ (∃G ∈ U(x))(G ∩ U = ∅)
⇒ (∃G ∈ U(x))(cl(G) ∩ int(cl(U)) = ∅)

(b)

}
⇒

⇒ (∃V ∈ eR(Y, f(x)))(V ⊂ f (cl(G)))
⇒ (∃V ∈ eR(Y, f(x)))(V ∩ f(int(cl(U))) = ∅)
⇒ f(x) /∈ e-clθ(f(int(cl(U))))
⇒ f(x) ∈ X \ e-clθ(f(int(cl(U)))).

(c) ⇒ (d): Let F be any regular closed set of X.

F ∈ RC(X) ⇒ e-clθ(f(int(F ))) = e-clθ(f(int(cl(int(F )))))
(c)

}
⇒

⇒ e-clθ(f(int(F ))) ⊂ f(cl(int(F ))) = f(F ).

(d) ⇒ (e): Let U be any open subset of X.

(U ∈ τ)(cl(U) ∈ RC(X))
(d)

}
⇒ e-clθ(f(U)) ⊂ e-clθ(f(int(cl(U)))) ⊂ f(cl(U)).

(e) ⇒ (f): Let U be any preopen subset of X.

U ∈ PO(X) ⇒ (U ⊂ int(cl(U)))(int(cl(U)) ∈ τ)
(e)

}
⇒

⇒ e-clθ(f(U)) ⊂ e-clθ(f(int(cl(U)))) ⊂ f(cl(int(cl(U)))) ⊂ f(cl(U)).

(f) ⇒ (g): Let U be any preopen subset of X.

U ∈ PO(X) ⇒ X \ cl(U) ∈ τ
(f)

}
⇒ e-clθ(f(X \ cl(U))) ⊂ f(cl(X \ cl(U)))

⇒ e-clθ(Y \ f(cl(U))) ⊂ f(X \ int(cl(U))) = Y \ f(int(cl(U)))
⇒ Y \ e-intθ(f(cl(U))) ⊂ Y \ f(int(cl(U)))
⇒ f(U) ⊂ f(int(cl(U))) ⊂ e-intθ(f(cl(U))).
(g) ⇒ (h): Straightforward.
(h) ⇒ (i): Let U ⊂ X.

U ⊂ X ⇒ f(U) ⊂ Y
(h)

}
⇒ f−1(e-clθ(f(U))) ⊂ clθ(f

−1(f(U))) = clθ(U)

⇒ e-clθ(f(U)) ⊂ f(clθ(U)).

(i) ⇒ (j): Let U ⊂ X.

U ⊂ X ⇒ clθ(U) ∈ C(X) ⇒ int(clθ(U)) ⊂ X
(i)

}
⇒

⇒ e-clθ(f(int(clθ(U)))) ⊂ f(clθ(int(clθ(U)))) = f(cl(int(clθ(U)))) ⊂ f(clθ(U)).

(j) ⇒ (a): Straightforward. ■

Theorem 2.9 If X is a regular space and f : (X, τ) → (Y, σ) is a bijective function,
then the following statements are equivalent:
(a) f is weakly eR-open.
(b) For each θ-open set A in X, f (A) is e-θ-open in Y .
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(c) For any set B of Y and any θ-closed set A in X containing f−1 (B) , there exists an
e-θ-closed set F in Y containing B such that f−1 (F ) ⊂ A.

Proof. (a) ⇒ (b): Let A be a θ-open set in X.

A ∈ θO(X) ⇒ Y \ f(A) ⊂ Y
(a)(Theorem 2.7(d))

}
⇒ f−1 (e-clθ(Y \ f (A))) ⊂ clθ(f

−1 (Y \ f (A)))

⇒ X \ f−1 (e-intθ(f (A))) ⊂ clθ(X \A) = X \A
⇒ A ⊂ f−1 (e-intθ(f (A)))
⇒ f (A) ⊂ e-intθ(f (A)).

(b) ⇒ (c): Let B be any set in Y and A be a θ-closed set in X such that f−1 (B) ⊂ A.

(B ⊂ Y )(A ∈ θC(X))(f−1 (B) ⊂ A) ⇒ (X \A ∈ θO(X))(B ⊂ Y \ f(X \A))
(b)

}
⇒

⇒ (f(X \A) ∈ eθO(Y ))(B ⊂ Y \ f(X \A))
F := Y \ f(X \A)

}
⇒

⇒ (F ∈ eθC(X))(B ⊂ Y )(f−1(F ) = f−1(Y \ f(X \A)) = f−1(f(A)) = A.)

(c) ⇒ (a) : Let B be any set in Y .

(B ⊂ Y )(f−1(B) ⊂ clθ(f
−1(B)))

X is regular ⇒ clθ(f
−1(B)) ∈ θC(X)

(c)

 ⇒

⇒ (∃F ∈ eθC(Y ))(B ⊂ F )(f−1(F ) ⊂ clθ(f
−1(B)))

⇒ (∃F ∈ eθC(Y ))(B ⊂ F )(f−1(e-clθ(B)) ⊂ f−1(F ) ⊂ clθ(f
−1(B))).

Then from Theorem 2.8(h) f is weakly eR-open. ■

Theorem 2.10 If X is a regular space and f : (X, τ) → (Y, σ) is a bijective function,
then the following statements are equivalent:
(a) f is weakly eR-open.
(b) f is e-θ-open.
(c) For each x ∈ X and each open set U of X containing x, there exists an e-open set V
of Y containing f(x) such that e-cl(V ) ⊂ f(U).

Proof. (a) ⇒ (b): Let W be a nonempty open subset of X.

x ∈ W ∈ τ
X is regular

}
⇒ (∃Ux ∈ U(x))(cl(Ux) ⊂ W )

⇒ W = ∪{Ux|x ∈ W} = ∪{cl(Ux)|x ∈ W}
⇒ f(W ) = ∪{f(Ux)|x ∈ W}

f is weakly eR-open

}
⇒ f (W ) = ∪{f (Ux) |x ∈ W}

⊂ ∪{e-intθ(f (cl(Ux)))|x ∈ W}
⊂ e-intθ(∪{f (cl(Ux)) |x ∈ W})

f is bijective

}
⇒

⇒ f (W ) ⊂ e-intθ(f (∪{cl(Ux)|x ∈ W})) = e-intθ(f (W ))
e-intθ(f (W )) ⊂ f (W )

}
⇒

⇒ e-intθ(f (W )) = f (W )
⇒ f (W ) ∈ eθO(Y ).
(b) ⇒ (c) and (c) ⇒ (a): Straightforward. ■

Theorem 2.11 If f : (X, τ) → (Y, σ) is weakly eR-open and strongly continuous, then
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f is e-θ-open.

Proof. Let U be any open subset of X.

U ∈ τ
f is weakly eR-open

}
⇒ f (U) ⊂ e-intθ(f (cl(U)))

f is strongly continuous

}
⇒

⇒ f (U) ⊂ e-intθ(f (cl(U))) ⊂ e-intθ(f (U)). ■

The following example shows that strong continuity is not decomposition of e-θ-
openness. Namely, an e-θ-open function need not be strongly continuous.

Example 2.12 Let X = {a, b} and τ be the indiscrete topology for X. Then the identity
function f : (X, τ) → (X, τ) is an e-θ-open function but it is not strongly continuous.

Theorem 2.13 If f : (X, τ) → (Y, σ) is contra e-θ-closed, then f is a weakly eR-open
function.

Proof. Let U be any open subset of X.

U ∈ τ ⇒ cl(U) ∈ C(X)
f is contra e-θ-closed

}
⇒ f (cl(U)) ∈ eθO(Y )

⇒ f (U) ⊂ f (cl(U)) = e-intθ(f (cl(U))). ■

Theorem 2.14 If f : (X, τ) → (Y, σ) is bijective contra e-θ-open, then f is a weakly
eR-open function.

Proof. Let U be any open subset of X.
U ∈ τ

f is contra e-θ-open

}
⇒ f (U) ∈ eθC(Y ) ⇒ e-clθ(f (U)) = f (U) ⊂ f (cl(U)) .

Then from Theorem 2.8(e) f is weakly eR-open. ■

Theorem 2.15 Let f : (X, τ) → (Y, σ) be a bijective function. If f (clθ(U)) is e-θ-closed
in Y for every subset U of X, then f is weakly eR-open.

Proof. Let U be a subset of X.
(U ⊂ X)(f (clθ(U)) ∈ eθC(Y )) ⇒ e-clθ(f (U)) ⊂ e-clθ(f (clθ(U))) = f (clθ(U)) .
Then from Theorem 2.8(i) f is weakly eR-open. ■

Definition 2.16 A function f : X → Y is called complementary weakly eR-open (briefly
c.w.eR-o) if for each open set U of X, f (Fr(U)) is e-θ-closed in Y, where Fr(U) denotes
the frontier of U.

Examples 2.17 and 2.18 show the independence of complementary weakly eR-openness
and weakly eR-openness.

Example 2.17 Let X = {a, b, c, d} and

τ = {∅, X, {a, d}} and σ = {∅, {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, b, d}, X}.

The identity function f : (X, τ) → (Y, σ) is weakly eR-open, but it is not c.w.eR-o.

Example 2.18 Let X = {a, b}, τ = {∅, X, {a}, {b}} and σ = {∅, X, {b}}. The identity
function f : (X, τ) → (X,σ) is c.w.eR-o., but it is not weakly eR-open.

Theorem 2.19 If f : (X, τ) → (Y, σ) is bijective weakly eR-open and c.w.eR-o, then f
is e-θ-open.
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Proof. Let U be an open subset inX with x ∈ U. Since f is weakly eR-open, by Theorem
2.7(i) there exists an e-θ-open set V containing f(x) = y such that V ⊂ f(cl(U)).
Now Fr(U) = cl(U) \ U and thus x /∈ Fr(U). Hence y /∈ f(Fr(U)) and therefore y ∈
V \f(Fr(U)). Put Vy = V \f(Fr(U)). Now Vy is an e-θ-open set since f is c.w.eR-o. Since
y ∈ Vy, then y ∈ f(cl(U)). But y /∈ f(Fr(U)) and thus y /∈ f(Fr(U)) = f(cl(U)) \ f(U)
which implies that y ∈ f(U). Therefore f(U) = ∪{Vy|(Vy ∈ eθO(Y ))(y ∈ f(U)) }. Hence
f is e-θ-open. ■

Recall that a space X is said to be e-connected [3] if X is not the union of two disjoint
nonempty e-open sets.

Theorem 2.20 If f : (X, τ) → (Y, σ) is a bijective weakly eR-open of a space X onto
an e-connected space Y, then X is connected.

Proof. Let f be a bijective weakly eR-open of a space X onto an e-connected space Y
and suppose that X is not connected.
X is not connected ⇒ (∃U1, U2 ∈ τ \ {∅})(U1 ∩ U2 = ∅)(U1 ∪ U2 = X)

f is bijective weakly eR-open

}
⇒

⇒ (f(Ui) ∈ σ \ {∅})(∩
i
f(Ui) = ∅)(∪

i
f(Ui) = Y )(f(Ui) ⊂ e-intθ(f(cl(Ui))) = e-intθ(f(Ui))) (i = 1, 2)

⇒ (f(Ui) ∈ σ \ {∅})(∩
i
f(Ui) = ∅)(∪

i
f(Ui) = Y )(f(Ui) = e-intθ(f(Ui))) (i = 1, 2)

⇒ (f(Ui) ∈ eθO(Y ) \ {∅})(∩
i
f(Ui) = ∅)(∪

i
f(Ui) = Y ) (i = 1, 2)

Then Y is not e-connected which is a contradiction. ■

Definition 2.21 A space X is said to be hyperconnected [9] if every nonempty open
subset of X is dense in X.

Theorem 2.22 If X is a hyperconnected space, then a function f : (X, τ) → (Y, σ) is
weakly eR-open if and only if f(X) is e-θ-open in Y.

Proof. Sufficiency: Obvious.
Necessity: Let U be a nonempty open subset of X.
(U ∈ τ)(X is hyperconnected) ⇒ cl(U) = X ⇒ e-intθ(f(cl(U))) = e-intθ(f(X))

f is weakly eR-open

}
⇒

⇒ f(U) ⊂ f(X) = e-intθ(f(X)) = e-intθ(f(cl(U))). ■

Theorem 2.23 Let f : (X, τ) → (Y, σ) be a bijective weakly eR-open function. Then
the following properties hold:
(a) If F is θ-closed in X, then f(F ) is e-θ-closed in Y .
(b) If F is θ-open in X, then f(F ) is e-θ-open in Y .

Proof. (a) Let F ∈ θC(X).

F ∈ θC(X) ⇒ F = clθ(F )
Theorem 2.8(i)

}
⇒ e-clθ(f(F )) ⊂ f(clθ(F )) = f(F )

f(F ) ⊂ e-clθ(f(F ))

}
⇒

⇒ f(F ) = e-clθ(f(F ))
⇒ f(F ) ∈ eθC(Y ).
(b) Similarly proved. ■
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