Journal of Linear and Topological Algebra Vol. 05, No. 03, 2016, 145-153

On weakly *eR*-open functions

M. Özkoç^{a*}, B. S. Ayhan^a

^aDepartment of Mathematics, Faculty of Science Muğla Sıtkı Koçman University, Menteşe-Muğla 48000 Turkey.

Received 28 March 2016; Revised 24 June 2016; Accepted 30 June 2016.

Abstract. The main goal of this paper is to introduce and study a new class of function via the notions of e- θ -open sets and e- θ -closure operator which are defined by Özkoç and Aslım [10] called weakly eR-open functions and e- θ -open functions. Moreover, we investigate not only some of their basic properties but also their relationships with other types of already existing topological functions.

 \bigodot 2016 IAUCTB. All rights reserved.

Keywords: e-Closed set, e- θ -open set, weakly eR-open function, e- θ -open function.

2010 AMS Subject Classification: Primary 54C08; Secondary 54D05.

1. Introduction and Preliminaries

Throughout the present paper, X and Y always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let X be a topological space and A a subset of X. The closure and the interior of A are denoted by cl(A) and int(A), respectively. The family of all closed sets of X is denoted C(X). A subset A is said to be regular open [12] (resp. regular closed [12]) if A = int(cl(A)) (resp. A = cl(int(A))). A point $x \in X$ is said to be δ -cluster point [13] of A if $int(cl(U)) \cap A \neq \emptyset$ for each open neigbourhood U of x. The set of all δ -cluster points of A is called the δ -closure [13] of A and is denoted by $cl_{\delta}(A)$. If $A = cl_{\delta}(A)$, then A is called δ -closed [13], and the complement of a δ -closed set is called δ -open [13]. A subset A is called semiopen [5] (resp. b-open [1], e-open [4], preopen [7], α -open [8]) if $A \subset cl(int(A))$ (resp. $A \subset cl(int(A)) \cup int(cl(A)), A \subset cl(int_{\delta}(A)) \cup int(cl_{\delta}(A)), A \subset int(cl(A))$,

 * Corresponding author.

E-mail address: murad.ozkoc@mu.edu.tr (M. Özkoç).

© 2016 IAUCTB. All rights reserved. http://jlta.iauctb.ac.ir $A \subset int(cl(int(A)))$. The complement of a semiopen (resp. *b*-open, *e*-open, preopen, α -open) set is called semiclosed [5](resp. *b*-closed [1], *e*-closed [4], preclosed [7], α -closed [8]). The intersection of all *e*-closed sets of X containing A is called the *e*-closure [4] of A and is denoted by *e*-cl(A). The union of all *e*-open sets of X contained in A is called the *e*-interior [4] of A and is denoted by *e*-int(A). A subset A is said to be *e*-regular [10] if it is *e*-open and *e*-closed.

A point x of X is called a b- θ -cluster [11] (e- θ -cluster [10], θ -cluster [13]) point of A if $bcl(U) \cap A \neq \emptyset$ (e- $cl(U) \cap A \neq \emptyset$, $cl(U) \cap A \neq \emptyset$) for every b-open (e-open, open) set U of X containing x, respectively. The set of all b- θ -cluster (e- θ -cluster, θ -cluster) points of A is called the b- θ -closure [11] (e- θ -closure [10], θ -closure [13]) of A and is denoted by $bcl_{\theta}(A)$ (e- $cl_{\theta}(A)$, $cl_{\theta}(A)$), respectively. A subset A is said to be b- θ -closed [11] (e- θ -closed [10], θ -closed [13]) if $A = bcl_{\theta}(A)$ (A = e- $cl_{\theta}(A)$, $A = cl_{\theta}(A)$), respectively. The complement of a b- θ -closed (e- θ -closed, θ -closed) set is called a b- θ -open [11] (e- θ -open [10], θ -open [13]) set. A point x of X said to be a b- θ -interior [11] (e- θ -interior [13]) point of a subset A, denoted by $bint_{\theta}(A)$ (e- $int_{\theta}(A)$, $int_{\theta}(A)$), if there exists a b-regular (e-regular, regular) set U of X containing x such that $U \subset A$, respectively. The family of all e-open (resp. e-closed, e-regular, b- θ -open, e- θ -open, b- θ -closed, e- θ -closed) subsets of X is denoted by eO(X) (resp. eC(X), eR(X), $B\theta O(X)$, $e\theta O(X)$, eR(X, x), eR(X, x), $B\theta O(X, x)$, eR(X, x), eR(X, x), eR(X, x), $B\theta O(X, x)$, eR(X, x), eR(X, x)). Also it is noted in [10] that

e-regular $\Rightarrow e$ - θ -open $\Rightarrow e$ -open.

We shall use the well-known accepted language almost in the whole of the article.

Definition 1.1 A function $f: (X, \tau) \to (Y, \sigma)$ is called:

(a) contra *e*- θ -open if f(U) is *e*- θ -closed in Y for each open set U of X.

(b) contra e- θ -closed if f(U) is e- θ -open in Y for each closed set U of X.

(c) strongly continuous [6] if for every subset A of X, $f(cl(A)) \subset f(A)$.

(d) weakly *BR*-open [2] if $f(U) \subset bint_{\theta}(f(cl(U)))$ for each open set U of X.

2. Weakly *eR*-open Functions

In this section, we define the concept of weakly eR-open and investigate some basic properties of them.

Definition 2.1 A function $f : X \to Y$ is said to be weakly *eR*-open if $f(U) \subset e$ int_{θ}(f(cl(U))) for each open set U of X.

Definition 2.2 A function $f : X \to Y$ is said to be *e*- θ -open if f(U) is *e*- θ -open in Y for each open set U of X.

It is clear to see that every e- θ -open function is a weakly eR-open. However, a weakly eR-open function need not be e- θ -open as shown by the following example.

Example 2.3 Let $X = \{a, b, c, d\}$ and

 $\tau = \{\emptyset, X, \{a, d\}\} \text{ and } \sigma = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}\}.$

The identity function $f: (X, \tau) \to (X, \sigma)$ is weakly e*R*-open, but it is not e- θ -open.

The notions of weakly eR-open function and weakly BR-open function are independent as shown by the following examples.

Example 2.4 Let $X = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}$. The identity function $f : (X, \tau) \to (X, \tau)$ is weakly *eR*-open, but it is not weakly *BR*-open.

Example 2.5 Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}\}$. $f = \{(a, d), (b, c), (c, b), (d, d)\}$ is weakly *BR*-open, but it is not weakly *eR*-open.

Lemma 2.6 [10] Let A be a subset of a space X. Then:

(1) $e - cl_{\theta}(A) = \cap \{V | (A \subset V) (V \in eR(X))\}.$

(2) $x \in e - cl_{\theta}(A)$ iff $A \cap U \neq \emptyset$ for each *e*-regular set U of X containing x.

(3) $e - cl_{\theta}(A)$ is $e - \theta$ -closed.

(4) Any intersections of e- θ -closed sets is e- θ -closed and any union of e- θ -open sets is e- θ -open.

(5) A is $e - \theta$ -open in X if and only if for each $x \in A$ there exists an e-regular set U containing x such that $x \in U \subset A$.

Theorem 2.7 Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Then the following statements are equivalent:

(a) f is weakly eR-open,

(b) $f(int_{\theta}(A)) \subset e - int_{\theta}(f(A))$ for every subset A of X,

(c) $int_{\theta}(f^{-1}(B)) \subset f^{-1}(e \cdot int_{\theta}(B))$ for every subset B of Y,

(d) $f^{-1}(e - cl_{\theta}(B)) \subset cl_{\theta}(f^{-1}(B))$ for every subset B of Y,

(e) $f(int(F)) \subset e{-int_{\theta}(f(F))}$ for each closed subset F of X,

(f) $f(int(cl(U))) \subset e - int_{\theta}(f(cl(U)))$ for each open subset U of X,

(g) $f(U) \subset e\text{-}int_{\theta}(f(cl(U)))$ for every regular open subset U of X,

(h) $f(U) \subset e\text{-int}_{\theta}(f(cl(U)))$ for every α -open subset U of X,

(i) For each $x \in X$ and each open set U of X containing x, there exists an e- θ -open set V of Y containing f(x) such that $V \subset f(cl(U))$.

Proof. $(a) \Rightarrow (b)$: Let A be any subset of X and $x \in int_{\theta}(A)$.

$$\begin{aligned} x \in int_{\theta}(A) &\Rightarrow (\exists U \in \mathcal{U}(x))(x \in U \subset cl(U) \subset A) \\ &\Rightarrow (\exists U \in \mathcal{U}(x))(f(x) \in f(U) \subset f(cl(U)) \subset f(A)) \\ &f \text{ is weakly } eR\text{-open} \end{aligned} \} \Rightarrow \\ \Rightarrow f(U) \subset e\text{-}int_{\theta}(f(cl(U))) \subset e\text{-}int_{\theta}(f(A)) \\ \Rightarrow f(x) \in e\text{-}int_{\theta}(f(A)) \\ \Rightarrow x \in f^{-1}(e\text{-}int_{\theta}(f(A))). \end{aligned}$$

 $(b) \Rightarrow (c)$: Let B be any subset of Y.

$$B \subset Y \Rightarrow f^{-1}(B) \subset X \\ (b) \\ \} \Rightarrow f\left(int_{\theta}(f^{-1}(B))\right) \subset e\text{-}int_{\theta}(f(f^{-1}(B))) \subset e\text{-}int_{\theta}(B)) \\ \Rightarrow int_{\theta}(f^{-1}(B)) \subset f^{-1}(e\text{-}int_{\theta}(B)).$$

 $(c) \Rightarrow (d)$: Let B be any subset of Y.

$$\begin{array}{l} B \subset Y \Rightarrow Y \setminus B \subset Y \\ (c) \end{array} \right\} \Rightarrow int_{\theta}(f^{-1}(Y \setminus B)) \subset f^{-1}(e \cdot int_{\theta}(Y \setminus B)) \\ \Rightarrow int_{\theta}(X \setminus f^{-1}(B)) \subset f^{-1}(Y \setminus e \cdot cl_{\theta}(B)) \\ \Rightarrow X \setminus cl_{\theta}(f^{-1}(B)) \subset X \setminus f^{-1}(e \cdot cl_{\theta}(B)) \\ \Rightarrow f^{-1}(e \cdot cl_{\theta}(B)) \subset cl_{\theta}(f^{-1}(B)). \end{array}$$

 $(d) \Rightarrow (e)$: Let F be any closed set of X.

$$\begin{split} F &\in C(X) \Rightarrow Y \setminus f(F) \subset Y \\ & (d) \\ \\ &\Rightarrow f^{-1}(e \text{-} cl_{\theta}(Y \setminus f(F))) \subset cl_{\theta}(f^{-1}(Y \setminus f(F))) = cl_{\theta}(X \setminus f^{-1}(f(F))) \subset cl_{\theta}(X \setminus F) \\ \\ &\Rightarrow f^{-1}(Y \setminus e \text{-} int_{\theta}(f(F))) \subset cl_{\theta}(X \setminus F) = X \setminus int_{\theta}(F) \\ \\ &\Rightarrow X \setminus f^{-1}(e \text{-} int_{\theta}(f(F))) \subset X \setminus int_{\theta}(F) \\ \\ &\quad F \in C(X) \Rightarrow int_{\theta}(F) = int(F) \\ \end{split}$$

 $(e) \Rightarrow (f), (f) \Rightarrow (g)$: Obvious. $(g) \Rightarrow (h)$: Let U be any α -open set of X.

$$\begin{array}{l} U \in \alpha O(X) \Rightarrow (U \subset int(cl(int(U))))(int(cl(int(U))) \in RO(X)) \\ (g) \end{array} \} \Rightarrow \\ \Rightarrow f(U) \subset f(int(cl(int(U)))) \subset e\text{-}int_{\theta}(f(cl(int(cl(int(U)))))) \\ = e\text{-}int_{\theta}(f(cl(int(U)))) \subset e\text{-}int_{\theta}(f(cl(U))). \end{array}$$

 $(h) \Rightarrow (i)$: Straightforward.

$$(i) \Rightarrow (i)$$
: Let U be an open set in X and $y \in f(U)$.

$$\begin{array}{c} (U \in \tau)(y \in f(U)) \\ (i) \end{array} \} \Rightarrow (\exists V \in e\theta O(Y, y))(V \subset f(cl(U))) \\ y \in V \subset e\text{-}int_{\theta}(f(cl(U))) \end{array} \} \Rightarrow$$

$$\Rightarrow f(U) \subset e\text{-}int_{\theta}(f(cl(U))).$$

Theorem 2.8 Let $f: (X, \tau) \to (Y, \sigma)$ be a bijective function. Then the following statements are equivalent:

(a) f is weakly eR-open,

(b) For each $x \in X$ and each open set U of X containing x, there exists an *e*-regular set V containing f(x) such that $V \subset f(cl(U))$,

- (c) $e cl_{\theta}(f(int(cl(U)))) \subset f(cl(U))$ for each subset U of X,
- (d) $e cl_{\theta}(f(int(F))) \subset f(F)$ for each regular closed subset F of X,
- (e) $e cl_{\theta}(f(U)) \subset f(cl(U))$ for each open subset U of X,
- (f) $e cl_{\theta}(f(U)) \subset f(cl(U))$ for each preopen subset U of X,
- (g) $f(U) \subset e\text{-}int_{\theta}(f(cl(U)))$ for each preopen subset U of X,
- (h) $f^{-1}(e cl_{\theta}(B)) \subset cl_{\theta}(f^{-1}(B))$ for each subset B of Y,
- (i) $e cl_{\theta}(f(U)) \subset f(cl_{\theta}(U))$ for each subset U of X,
- (j) $e cl_{\theta}(f(int(cl_{\theta}(U)))) \subset f(cl_{\theta}(U))$ for each subset U of X.

Proof. $(a) \Rightarrow (b)$: Let $x \in X$ and U be any open subset of X containing x.

$$\begin{array}{l} x \in U \in \tau \\ (a) \end{array} \} \Rightarrow f(x) \in f(U) \subset e\text{-}int_{\theta}(f(cl(U))) \in e\theta O(Y, f(x)) \\ \text{Lemma 2.6(5)} \end{array} \} \Rightarrow \\ \Rightarrow (\exists V \in eR(Y, f(x)))(V \subset e\text{-}int_{\theta}(f(cl(U))) \subset f(cl(U))). \end{array}$$

 $(b) \Rightarrow (c)$: Let $x \in X$ and $U \subset X$.

$$\begin{aligned} f(x) \in Y \setminus f\left(cl(U)\right) &= f(X \setminus cl(U)) \Rightarrow x \in X \setminus cl(U) \\ &\Rightarrow (\exists G \in \mathcal{U}(x))(G \cap U = \emptyset) \\ &\Rightarrow (\exists G \in \mathcal{U}(x))(cl(G) \cap int(cl(U)) = \emptyset) \\ &(b) \end{aligned} \\ \begin{cases} \forall G \in \mathcal{U}(x)(cl(G) \cap int(cl(U)) = \emptyset) \\ &(b) \end{aligned} \\ \Rightarrow (\exists V \in eR(Y, f(x)))(V \subset f(cl(G))) \\ &\Rightarrow (\exists V \in eR(Y, f(x)))(V \cap f(int(cl(U))) = \emptyset) \\ &\Rightarrow f(x) \notin e \cdot cl_{\theta}(f(int(cl(U)))) \\ &\Rightarrow f(x) \in X \setminus e \cdot cl_{\theta}(f(int(cl(U)))). \end{aligned}$$

 $(c) \Rightarrow (d)$: Let F be any regular closed set of X.

$$\begin{array}{l} F \in RC(X) \Rightarrow e \text{-}cl_{\theta}(f(int(F))) = e \text{-}cl_{\theta}(f(int(cl(int(F)))))) \\ (c) \end{array} \} \Rightarrow \\ \Rightarrow e \text{-}cl_{\theta}(f(int(F))) \subset f(cl(int(F))) = f(F). \\ (d) \Rightarrow (e): \text{Let } U \text{ be any open subset of } X. \end{array}$$

 $(U \in \mathcal{O}(1/U) \in DC(Y))$

$$\begin{array}{c} (U \in \tau)(cl(U) \in RC(X)) \\ (d) \end{array} \} \Rightarrow e - cl_{\theta}(f(U)) \subset e - cl_{\theta}(f(int(cl(U)))) \subset f(cl(U)). \end{array}$$

 $(e) \Rightarrow (f)$: Let U be any preopen subset of X.

$$\begin{split} U \in PO(X) \Rightarrow (U \subset int(cl(U)))(int(cl(U)) \in \tau) \\ (e) \\ &\Rightarrow e - cl_{\theta}(f(U)) \subset e - cl_{\theta}(f(int(cl(U)))) \subset f(cl(int(cl(U)))) \subset f(cl(U)). \\ (f) \Rightarrow (g): \text{Let } U \text{ be any preopen subset of } X. \\ U \in PO(X) \Rightarrow X \setminus cl(U) \in \tau \\ (f) \\ &\Rightarrow e - cl_{\theta}(Y \setminus f(cl(U))) \subset f(X \setminus int(cl(U))) = Y \setminus f(int(cl(U))) \\ &\Rightarrow e - cl_{\theta}(f(cl(U))) \subset f(X \setminus int(cl(U))) = Y \setminus f(int(cl(U))) \\ &\Rightarrow f(U) \subset f(int(cl(U))) \subset e - int_{\theta}(f(cl(U))). \\ (g) \Rightarrow (h): \text{Straightforward.} \\ (h) \Rightarrow (i): \text{Let } U \subset X. \\ U \subset X \Rightarrow f(U) \subset Y \\ (h) \\ &\Rightarrow f^{-1}(e - cl_{\theta}(f(U))) \subset cl_{\theta}(f^{-1}(f(U))) = cl_{\theta}(U) \\ &\Rightarrow e - cl_{\theta}(f(U)) \subset f(cl_{\theta}(U)). \\ (i) \Rightarrow (j): \text{Let } U \subset X. \end{split}$$

$$U \subset X \Rightarrow cl_{\theta}(U) \in C(X) \Rightarrow int(cl_{\theta}(U)) \subset X \atop (i) \} \Rightarrow$$

$$\Rightarrow e - cl_{\theta}(f(int(cl_{\theta}(U)))) \subset f(cl_{\theta}(int(cl_{\theta}(U)))) = f(cl(int(cl_{\theta}(U)))) \subset f(cl_{\theta}(U)).$$

$$(j) \Rightarrow (a):$$
Straightforward.

Theorem 2.9 If X is a regular space and $f : (X, \tau) \to (Y, \sigma)$ is a bijective function, then the following statements are equivalent:

(a) f is weakly eR-open.

(b) For each θ -open set A in X, f(A) is e- θ -open in Y.

(c) For any set B of Y and any θ -closed set A in X containing $f^{-1}(B)$, there exists an e- θ -closed set F in Y containing B such that $f^{-1}(F) \subset A$.

Proof. $(a) \Rightarrow (b)$: Let A be a θ -open set in X.

$$\begin{array}{l} A \in \theta O(X) \Rightarrow Y \setminus f(A) \subset Y \\ (a)(\text{Theorem 2.7}(d)) \end{array} \} \Rightarrow f^{-1} \left(e \cdot c l_{\theta}(Y \setminus f(A)) \right) \subset c l_{\theta}(f^{-1} \left(Y \setminus f(A) \right)) \\ \Rightarrow X \setminus f^{-1} \left(e \cdot int_{\theta}(f(A)) \right) \subset c l_{\theta}(X \setminus A) = X \setminus A \\ \Rightarrow A \subset f^{-1} \left(e \cdot int_{\theta}(f(A)) \right) \\ \Rightarrow f(A) \subset e \cdot int_{\theta}(f(A)). \end{array}$$

 $(b) \Rightarrow (c)$: Let B be any set in Y and A be a θ -closed set in X such that $f^{-1}(B) \subset A$.

$$\begin{split} & (B \subset Y)(A \in \theta C(X))(f^{-1}\left(B\right) \subset A) \Rightarrow (X \setminus A \in \theta O(X))(B \subset Y \setminus f(X \setminus A)) \\ & (b) \\ & (b) \\ \end{pmatrix} \Rightarrow \\ & \Rightarrow (f(X \setminus A) \in e\theta O(Y))(B \subset Y \setminus f(X \setminus A)) \\ & F := Y \setminus f(X \setminus A) \\ \end{pmatrix} \Rightarrow \\ & \Rightarrow (F \in e\theta C(X))(B \subset Y)(f^{-1}(F) = f^{-1}(Y \setminus f(X \setminus A)) = f^{-1}(f(A)) = A.) \end{split}$$

 $(c) \Rightarrow (a)$: Let *B* be any set in *Y*.

$$\begin{array}{c} (B \subset Y)(f^{-1}(B) \subset cl_{\theta}(f^{-1}(B))) \\ X \text{ is regular} \Rightarrow cl_{\theta}(f^{-1}(B)) \in \theta C(X) \\ (c) \end{array} \} \Rightarrow \\ \Rightarrow (\exists F \in e\theta C(Y))(B \subset F)(f^{-1}(F) \subset cl_{\theta}(f^{-1}(B))) \\ \Rightarrow (\exists F \in e\theta C(Y))(B \subset F)(f^{-1}(e - cl_{\theta}(B)) \subset f^{-1}(F) \subset cl_{\theta}(f^{-1}(B))). \\ \text{Then from Theorem 2.8(h) } f \text{ is weakly } eR\text{-open.} \end{array}$$

Theorem 2.10 If X is a regular space and $f : (X, \tau) \to (Y, \sigma)$ is a bijective function, then the following statements are equivalent:

(a) f is weakly eR-open.

(b) f is e- θ -open.

(c) For each $x \in X$ and each open set U of X containing x, there exists an e-open set V of Y containing f(x) such that $e - cl(V) \subset f(U)$.

Proof. $(a) \Rightarrow (b)$: Let W be a nonempty open subset of X.

Theorem 2.11 If $f: (X, \tau) \to (Y, \sigma)$ is weakly *eR*-open and strongly continuous, then

f is e- θ -open.

Proof. Let U be any open subset of X.

$$\begin{cases} U \in \tau \\ f \text{ is weakly } eR\text{-open} \end{cases} \Rightarrow f(U) \subset e\text{-}int_{\theta}(f(cl(U))) \\ f \text{ is strongly continuous} \end{cases} \Rightarrow$$
$$\Rightarrow f(U) \subset e\text{-}int_{\theta}(f(cl(U))) \subset e\text{-}int_{\theta}(f(U)).$$

The following example shows that strong continuity is not decomposition of e- θ -openness. Namely, an e- θ -open function need not be strongly continuous.

Example 2.12 Let $X = \{a, b\}$ and τ be the indiscrete topology for X. Then the identity function $f : (X, \tau) \to (X, \tau)$ is an *e*- θ -open function but it is not strongly continuous.

Theorem 2.13 If $f: (X, \tau) \to (Y, \sigma)$ is contra *e*- θ -closed, then f is a weakly *eR*-open function.

Proof. Let U be any open subset of X.

$$\begin{array}{l} U \in \tau \Rightarrow cl(U) \in C(X) \\ f \text{ is contra } e - \theta \text{-closed} \end{array} \right\} \Rightarrow f(cl(U)) \in e\theta O(Y) \\ \Rightarrow f(U) \subset f(cl(U)) = e \text{-int}_{\theta}(f(cl(U))). \end{array}$$

Theorem 2.14 If $f: (X, \tau) \to (Y, \sigma)$ is bijective contra *e*- θ -open, then f is a weakly *eR*-open function.

Proof. Let U be any open subset of X.

 $\begin{array}{c} U \in \tau \\ f \text{ is contra } e - \theta \text{-open} \end{array} \right\} \Rightarrow f(U) \in e\theta C(Y) \Rightarrow e - cl_{\theta}(f(U)) = f(U) \subset f(cl(U)) \,.$ Then from Theorem 2.8(e) f is weakly eR-open.

Theorem 2.15 Let $f : (X, \tau) \to (Y, \sigma)$ be a bijective function. If $f(cl_{\theta}(U))$ is e- θ -closed in Y for every subset U of X, then f is weakly eR-open.

Proof. Let U be a subset of X. $(U \subset X)(f(cl_{\theta}(U)) \in e\theta C(Y)) \Rightarrow e - cl_{\theta}(f(U)) \subset e - cl_{\theta}(f(cl_{\theta}(U))) = f(cl_{\theta}(U))$. Then from Theorem 2.8(i) f is weakly eR-open.

Definition 2.16 A function $f: X \to Y$ is called complementary weakly eR-open (briefly c.w.eR-o) if for each open set U of X, f(Fr(U)) is e- θ -closed in Y, where Fr(U) denotes the frontier of U.

Examples 2.17 and 2.18 show the independence of complementary weakly eR-openness and weakly eR-openness.

Example 2.17 Let $X = \{a, b, c, d\}$ and

 $\tau = \{\emptyset, X, \{a, d\}\} \text{ and } \sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, X\}.$

The identity function $f: (X, \tau) \to (Y, \sigma)$ is weakly *eR*-open, but it is not c.w.*eR*-o.

Example 2.18 Let $X = \{a, b\}, \tau = \{\emptyset, X, \{a\}, \{b\}\}$ and $\sigma = \{\emptyset, X, \{b\}\}$. The identity function $f : (X, \tau) \to (X, \sigma)$ is c.w.eR-o., but it is not weakly eR-open.

Theorem 2.19 If $f: (X, \tau) \to (Y, \sigma)$ is bijective weakly *eR*-open and c.w.*eR*-o, then f is $e - \theta$ -open.

Proof. Let U be an open subset in X with $x \in U$. Since f is weakly eR-open, by Theorem 2.7(i) there exists an e- θ -open set V containing f(x) = y such that $V \subset f(cl(U))$. Now $Fr(U) = cl(U) \setminus U$ and thus $x \notin Fr(U)$. Hence $y \notin f(Fr(U))$ and therefore $y \in V \setminus f(Fr(U))$. Put $V_y = V \setminus f(Fr(U))$. Now V_y is an e- θ -open set since f is c.w.eR-o. Since $y \in V_y$, then $y \in f(cl(U))$. But $y \notin f(Fr(U))$ and thus $y \notin f(Fr(U)) = f(cl(U)) \setminus f(U)$ which implies that $y \in f(U)$. Therefore $f(U) = \cup \{V_y | (V_y \in e\theta O(Y))(y \in f(U))\}$. Hence f is e- θ -open.

Recall that a space X is said to be e-connected [3] if X is not the union of two disjoint nonempty e-open sets.

Theorem 2.20 If $f: (X, \tau) \to (Y, \sigma)$ is a bijective weakly *eR*-open of a space X onto an *e*-connected space Y, then X is connected.

Proof. Let f be a bijective weakly eR-open of a space X onto an e-connected space Y and suppose that X is not connected.

$$X \text{ is not connected} \Rightarrow (\exists U_1, U_2 \in \tau \setminus \{\emptyset\})(U_1 \cap U_2 = \emptyset)(U_1 \cup U_2 = X) \\f \text{ is bijective weakly } eR\text{-open} \end{cases} \Rightarrow$$
$$\Rightarrow (f(U_i) \in \sigma \setminus \{\emptyset\})(\bigcap_i f(U_i) = \emptyset)(\bigcup_i f(U_i) = Y)(f(U_i) \subset e\text{-}int_{\theta}(f(cl(U_i))) = e\text{-}int_{\theta}(f(U_i)))) (i = 1, 2)$$
$$\Rightarrow (f(U_i) \in \sigma \setminus \{\emptyset\})(\bigcap_i f(U_i) = \emptyset)(\bigcup_i f(U_i) = Y)(f(U_i) = e\text{-}int_{\theta}(f(U_i)))) (i = 1, 2)$$
$$\Rightarrow (f(U_i) \in e\theta O(Y) \setminus \{\emptyset\})(\bigcap_i f(U_i) = \emptyset)(\bigcup_i f(U_i) = Y) (i = 1, 2)$$

Then Y is not e-connected which is a contradiction.

Definition 2.21 A space X is said to be hyperconnected [9] if every nonempty open subset of X is dense in X.

Theorem 2.22 If X is a hyperconnected space, then a function $f : (X, \tau) \to (Y, \sigma)$ is weakly eR-open if and only if f(X) is e- θ -open in Y.

Proof. Sufficiency: Obvious.

Necessity: Let U be a nonempty open subset of X. $(U \in \tau)(X \text{ is hyperconnected}) \Rightarrow cl(U) = X \Rightarrow e\text{-}int_{\theta}(f(cl(U))) = e\text{-}int_{\theta}(f(X))$ $f \text{ is weakly } eR\text{-}open \} \Rightarrow$ $\Rightarrow f(U) \subset f(X) = e\text{-}int_{\theta}(f(X)) = e\text{-}int_{\theta}(f(cl(U))).$

Theorem 2.23 Let $f : (X, \tau) \to (Y, \sigma)$ be a bijective weakly *eR*-open function. Then the following properties hold:

(a) If F is θ -closed in X, then f(F) is e- θ -closed in Y.

(b) If F is θ -open in X, then f(F) is e- θ -open in Y.

Proof. (a) Let $F \in \theta C(X)$.

$$\begin{array}{l} F \in \theta C(X) \Rightarrow F = cl_{\theta}(F) \\ \text{Theorem 2.8(i)} \end{array} \Rightarrow e - cl_{\theta}(f(F)) \subset f(cl_{\theta}(F)) = f(F) \\ f(F) \subset e - cl_{\theta}(f(F)) \end{array} \rbrace \Rightarrow \\ \Rightarrow f(F) = e - cl_{\theta}(f(F)) \\ \Rightarrow f(F) \in e\theta C(Y). \\ (b) \text{ Similarly proved.} \end{array}$$

Acknowledgements

The authors are greatful to the referee for his/her careful reading and useful comments for the improvement of this paper. This study is dedicated to Professor Dr. Zekeriya

Güney on the occasion of his 67th birthday.

References

- D.Andrijevic, On b-open sets. Mat. Vesnik., 48 (1996), 59-64.
- [2] M. Caldas, E. Ekici, S. Jafari, R.M. Latif, On weakly BR-open functions and their characterizations in topological spaces. Demonstratio Math., 44 (1) (2011), 159-168. E. Ekici, New forms of contra continuity. Carpathian J. Math., 24 (1) (2008), 37-45.
- [3]
- [4] -, On e-open sets, \mathcal{DP}^* -sets and \mathcal{DPE}^* -sets and decompositions of continuity. Arab. J. Sci. Eng. Sect. A Sci., 33 (2) (2008), 269-282.
- [5] N. Levine, Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly., 70 (1963), 36-41. Strong continuity in topological spaces. Amer. Math. Monthly., 67 (1960), 269. [6]
- A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak precontinuous mappings. [7] Proc. Math. Phys. Soc. Egypt., 53 (1982), 47-53.
- O. Njastad, On some classes of nearly open sets. Pacific J. Math., 15 (1965), 961-970. [8]
- T. Noiri, A generalization of closed mappings. Atti. Accad. Naz. Lince Rend. Cl. Sci. Fis. Mat. Natur., 8 [9] (1973), 210-214.
- [10] M. Özkoç and G. Aslım, On strongly *θ-e*-continuous functions. Bull. Korean Math. Soc., 47 (5) (2010), 1025-1036.
- J.H. Park, Strongly θ-b-continuous functions. Acta Math. Hungar., 110 (4) (2006), 347-359. [11]
- M. Stone, Application of the theory of Boolean ring to general topology. Trans. Amer. Math. Soc., 41 (1937), [12]374-481.
- [13] N.V. Velicko, H-closed topological spaces. Amer. Math. Soc. Transl., 78 (1968), 103-118.