Journal of Linear and Topological Algebra Vol. 04, No. 04, 2015, 275-281

Quotient Arens regularity of $L^1(G)$

A. Zivari-Kazempour*

Department of Mathematics, University of Ayatollah Borujerdi, Borujerd, Iran.

Received 9 December 2015; Revised 18 February 2016; Accepted 28 February 2016.

Abstract. Let \mathcal{A} be a Banach algebra with BAI and E be an introverted subspace of \mathcal{A}' . In this paper we study the quotient Arens regularity of \mathcal{A} with respect to E and prove that the group algebra $L^1(G)$ for a locally compact group G, is quotient Arens regular with respect to certain introverted subspace E of $L^{\infty}(G)$. Some related result are given as well.

© 2015 IAUCTB. All rights reserved.

 ${\bf Keywords:}$ Arens product, quotient Arens regular, introverted subspace, weakly almost periodic.

2010 AMS Subject Classification: Primary 46H20; Secondary 46H25.

1. Introduction

Let \mathcal{A} be a Banach algebra. It is well-known, on the second dual space \mathcal{A}'' of \mathcal{A} , there are two multiplications, called the first and second Arens products which make \mathcal{A}'' into a Banach algebra, see [1] and [4]. By definition, the first Arens product \Box on \mathcal{A}'' is induced by the left \mathcal{A} -module structure on \mathcal{A} . That is, for each $\Phi, \Psi \in \mathcal{A}'', f \in \mathcal{A}'$ and $a, b \in \mathcal{A}$, we have

$$\langle \Phi \Box \Psi, f \rangle = \langle \Phi, \Psi \cdot f \rangle, \quad \langle \Psi \cdot f, a \rangle = \langle \Psi, f \cdot a \rangle, \quad \langle f \cdot a, b \rangle = \langle f, ab \rangle.$$

Similarly, the second Arens product \diamond on \mathcal{A}'' is defined by considering \mathcal{A} as a right \mathcal{A} -module. The Banach algebra \mathcal{A} is said to be Arens regular if \Box and \diamond coincide on \mathcal{A}'' .

 $^{*} {\rm Corresponding \ author}.$

Print ISSN: 2252-0201 Online ISSN: 2345-5934 © 2015 IAUCTB. All rights reserved. http://jlta.iauctb.ac.ir

E-mail address: zivari@abru.ac.ir (A. Zivari-Kazempour).

For any fixed $\Phi \in \mathcal{A}''$, the map $\Psi \mapsto \Psi \Box \Phi$ and $\Psi \mapsto \Phi \Diamond \Psi$ are $w^* \cdot w^*$ continuous on \mathcal{A}'' . Thus, with the w^* -topology, (\mathcal{A}'', \Box) is a right topological semigroup and $(\mathcal{A}'', \Diamond)$ is a left topological semigroup. The following sets

$$Z_t^1(\mathcal{A}'') = \{ \Phi \in \mathcal{A}'' : \Psi \longmapsto \Phi \Box \Psi \text{ is } w^* - w^* \text{ continuous on } \mathcal{A}'' \},\$$

$$Z_t^2(\mathcal{A}'') = \{ \Phi \in \mathcal{A}'' : \Psi \longmapsto \Psi \Diamond \Phi \text{ is } w^* - w^* \text{ continuous on } \mathcal{A}'' \},\$$

are called the first and the second topological centres of \mathcal{A}'' , respectively. One can verify that \mathcal{A} is Arens regular if and only if $Z_t^1(\mathcal{A}'') = Z_t^2(\mathcal{A}'') = \mathcal{A}''$. For example, each C^* algebra is Arens regular and for locally compact group G, the group algebra $L^1(G)$ is Arens regular if and only if G is finite. This was proved for abelian groups G by Civin and Yood [3] and Young [13] extend it for non-abelian case.

A linear functional $f \in \mathcal{A}'$ is said to be almost periodic (weakly almost periodic) if the map $a \mapsto a \cdot f$, $\mathcal{A} \longrightarrow \mathcal{A}'$ is compact (weakly compact). The spaces of almost periodic and weakly almost periodic functionals on the Banach algebra \mathcal{A} are denoted by AP(\mathcal{A}) and WAP(\mathcal{A}), respectively. Both AP(\mathcal{A}) and WAP(\mathcal{A}) are norm closed \mathcal{A} -submodule of \mathcal{A}' and it was shown [5] that \mathcal{A} is Arens regular if and only if WAP(\mathcal{A}) = \mathcal{A}' .

For a detailed account of Arens product and topological centres, we refer the reader to Memoire [5] and [6].

We denote by LUC(G) (RUC(G)), the C*-algebra of bounded left (right) uniformly continuous functions on G. It is well-known that if $\mathcal{A} = L^1(G)$, then $\mathcal{A}' \cdot \mathcal{A} = LUC(G)$ and $\mathcal{A} \cdot \mathcal{A}' = RUC(G)$, see [7] for example. If G is compact, then LUC(G) coincide with RUC(G).

A bounded net $(e_{\alpha})_{\alpha \in I}$ in \mathcal{A} is a bounded approximate identity (BAI for short) if, for each $a \in \mathcal{A}$, $ae_{\alpha} \longrightarrow a$ and $e_{\alpha}a \longrightarrow a$. An element $\Phi_0 \in \mathcal{A}''$ is called mixed unit if it is a right unit for (\mathcal{A}'', \Box) and a left unit for $(\mathcal{A}'', \diamondsuit)$. It is well-known that Φ_0 is a mixed unit if and only if it is a weak^{*} cluster point of some BAI in \mathcal{A} , [3].

Let \mathcal{A} be a Banach algebra with a BAI and let X be a Banach \mathcal{A} -module. Then by Cohen's factorization theorem [7], the set

$$X \cdot \mathcal{A} = \{ x \cdot a : x \in X, a \in \mathcal{A} \},\$$

is a closed \mathcal{A} -submodule of X. Az in [9] we say that X factors in the left if the equality $X = X \cdot \mathcal{A}$ holds.

Throughout the paper we identify an element of a Banach algebra \mathcal{A} with its canonical image in \mathcal{A}'' .

2. Quotient Arens regularity

Let \mathcal{A} be a Banach algebra and E be a closed \mathcal{A} -submodule of \mathcal{A}' . Then E is called left introverted (right introverted) if $\Phi \cdot f \in E$ ($f \cdot \Phi \in E$), for all $\Phi \in \mathcal{A}''$ and $f \in E$, and is introverted if it is both left and right introverted. It follows from the Hahn-Banach theorem that E is left introverted if and only if $\Phi \cdot f \in E$, for all $\Phi \in E'$ and $f \in E$, [5]. For example, $\mathcal{A}' \cdot \mathcal{A}$ is left introverted and $\mathcal{A} \cdot \mathcal{A}'$ is right introverted in \mathcal{A}' .

Let E be a left introverted Banach A-submodule of \mathcal{A}' . Then E' is a Banach algebra

by the following (first Arens type) product

$$\langle \Phi \Box \Psi, f \rangle = \langle \Phi, \Psi \cdot f \rangle \quad (\Phi, \Psi \in E', f \in E).$$

The Banach algebra \mathcal{A} is said to be left quotient Arens regular with respect to E, if $Z_t(E') = E'$, where

$$Z_t(E') = \{ \Phi \in E' : \Psi \longmapsto \Phi \Box \Psi \text{ is } w^* - w^* \text{ continuous on } E' \}.$$

If $E = \mathcal{A}'$, then the space $Z_t(E')$ coincides with $Z_t^1(\mathcal{A}'')$. Similarly, if E is a right introverted, the second Arens product on \mathcal{A}'' induces naturally a Banach algebra product on E' which is denoted by \diamond . The topological centre and right quotient Arens regularity can be defined analogously. The Banach algebra \mathcal{A} is called quotient Arens regular(=QAR) with respect to E, if $\Phi \Box \Psi = \Phi \diamond \Psi$ for all $\Phi, \Psi \in E'$. It is clear that if \mathcal{A} is Arens regular, then \mathcal{A} is quotient Arens regular for each introverted subspace E of \mathcal{A}' .

The notion of the topological centre $Z_t(E')$ in the above sense was introduced in [8]. In the case where $E = \mathcal{A}' \cdot \mathcal{A}$, the space $Z_t(E')$ was denoted by $\widetilde{Z_1}$ in [9].

Proposition 2.1 Let \mathcal{A} be a Banach algebra with closed subalgebra \mathcal{B} . Let E and F be introverted subspace of \mathcal{A}' and \mathcal{B}' , respectively. If the restriction map $T : \mathcal{A}' \longrightarrow \mathcal{B}'$ maps E onto F, and \mathcal{A} is QAR with respect to E, then \mathcal{B} is QAR with respect to F.

Proof. This is immediate.

Theorem 2.2 Let \mathcal{A} be a Banach algebra with BAI. If \mathcal{A} is a right ideal in \mathcal{A}'' , then \mathcal{A} is left QAR with respect to $\mathcal{A}' \cdot \mathcal{A}$.

Proof. Let $E = \mathcal{A}' \cdot \mathcal{A}, \Phi, \Psi \in E'$ and $\Psi_{\alpha} \longrightarrow \Psi$ in w^* -topology. Then for all $f \in \mathcal{A}'$ and $a \in \mathcal{A}$ we have

$$\begin{split} \langle \Phi \Box \Psi_{\alpha}, f \cdot a \rangle &= \lim_{\alpha} \langle \Phi, \Psi_{\alpha} \cdot (f \cdot a) \rangle \\ &= \lim_{\alpha} \langle \widehat{a} \cdot \Phi, \Psi_{\alpha} \cdot f \rangle \\ &= \lim_{\alpha} \langle \Psi_{\alpha}, f \cdot (a \cdot \Phi) \rangle = \langle \Psi, f \cdot (a \cdot \Phi) \rangle \\ &= \langle \widehat{a} \cdot \Phi, \Psi \cdot f \rangle \\ &= \langle \Phi, \Psi \cdot (f \cdot a) \rangle \\ &= \langle \Phi \Box \Psi, f \cdot a \rangle. \end{split}$$

So $\Phi \Box \Psi_{\alpha} \longrightarrow \Phi \Box \Psi$ in w^{*}-topology of E', thus \mathcal{A} is left QAR with respect to E.

One can verify that if \mathcal{A} is a left ideal in \mathcal{A}'' , then \mathcal{A} is right QAR with respect to $\mathcal{A} \cdot \mathcal{A}'$, hence \mathcal{A} is QAR with respect to $\mathcal{A}' \cdot \mathcal{A} = \mathcal{A} \cdot \mathcal{A}'$, if \mathcal{A} is an ideal in the second dual.

Theorem 2.3 The group algebra $L^1(G)$ for a locally compact group G is QAR with respect to LUC(G) if and only if G is compact.

Proof. Suppose G is compact and $\mathcal{A} = L^1(G)$. Then \mathcal{A} is an ideal in \mathcal{A}'' by Lemma 4.1 of [11]. Therefore by above Theorem \mathcal{A} is QAR with respect to LUC(G).

Conversely, let \mathcal{A} be QAR with respect to LUC(G). Then by Theorem 3.6 of [9] we have

$$WAP(\mathcal{A}) = \mathcal{A}' \cdot \mathcal{A} = LUC(G).$$

Thus, G is compact by Corollary 3.8 of [9].

Let G be an infinite compact group and $\mathcal{A} = L^1(G)$. Then by above theorem \mathcal{A} is QAR with respect to LUC(G), but it is not Arens regular. Now let $\mathcal{U} = \mathcal{A} \widehat{\otimes} \mathcal{A}$, the projective tensor product of \mathcal{A} and \mathcal{A} . Since \mathcal{A} is not Arens regular, it follows from Corollary 3.5 of [10] that \mathcal{U} is not Arens regular, but it is a right ideal in the second dual by Theorem 5.3 of [11]. Therefore \mathcal{U} is left QAR with respect to $\mathcal{U}' \cdot \mathcal{U}$, by Theorem 2.2.

Theorem 2.4 Let G be a locally compact group and $\mathcal{A} = L^1(G)$. Suppose E is a closed \mathcal{A} -submodule of \mathcal{A}' and $E \subseteq Wap(G)$. Then \mathcal{A} is QAR with respect to E.

Proof. See Theorem 8.13 of [6].

As an consequence of above Theorem we have the next result.

Corollary 2.5 Let *E* denotes one of the space $C_0(G)$, $AP(\mathcal{A})$ or $WAP(\mathcal{A})$, where $\mathcal{A} = L^1(G)$. Then \mathcal{A} is QAR with respect to *E*.

Proposition 2.6 Suppose \mathcal{A} is a Banach algebra with BAI and E is an introverted subspace of \mathcal{A}' . If \mathcal{A} is a right ideal in E' and $E = E \cdot \mathcal{A}$, then \mathcal{A} is QAR with respect to E.

Proof. Let $\Phi, \Psi \in E'$ and $\Psi_{\alpha} \longrightarrow \Psi$ in w^* -topology of E'. Let $f \in E$, since $E = E \cdot A$, there exist $g \in E$ and $a \in A$ such that $f = g \cdot a$. Then we get

$$\begin{split} \langle \Phi \Box \Psi_{\alpha}, f \rangle &= \lim_{\alpha} \langle \Phi \Box \Psi_{\alpha}, g \cdot a \rangle \\ &= \lim_{\alpha} \langle \widehat{a} \cdot \Phi, \Psi_{\alpha} \cdot g \rangle \\ &= \lim_{\alpha} \langle \Psi_{\alpha}, g \cdot (a \cdot \Phi) \rangle = \langle \Psi, g \cdot (a \cdot \Phi) \rangle \\ &= \langle \widehat{a} \cdot \Phi, \Psi \cdot g \rangle \\ &= \langle \Phi, \Psi \cdot (g \cdot a) \rangle \\ &= \langle \Phi \Box \Psi, f \rangle. \end{split}$$

Thus \mathcal{A} is QAR with respect to E.

Let \mathcal{A} be a Banach algebra. We recall that a bounded linear operator $T : \mathcal{A} \longrightarrow \mathcal{A}$ is said to be a right multiplier if, for all $a, b \in \mathcal{A}$, T(ab) = aT(b). We denote by $RM(\mathcal{A})$ the set of all right multipliers of \mathcal{A} . In [12], Wong proved that $M(\mathcal{A})$, the multiplier algebra of \mathcal{A} , is isometrically isometric with (\mathcal{A}'', \Box) if and only if \mathcal{A} is Arens regular, have a BAI and is an ideal in the second dual. Now let $\mathcal{A} = L^1(G)$ for an infinite compact group G. Since \mathcal{A} is not regular, thus $M(\mathcal{A})$ dose not isometrically isometric with \mathcal{A}'' .

The following result generalized Wong's Theorem on introverted subspace.

Theorem 2.7 Let \mathcal{A} be a Banach algebra with BAI bounded by 1 and let E be an introverted subspace of \mathcal{A}' . Then $RM(\mathcal{A})$ is isometrically isometric with (E', \Box) if and only if E factors on the left and $\mathcal{A} \cdot E' \subset \mathcal{A}$.

278

Proof. Suppose $RM(\mathcal{A})$ is isometrically isometric with (E', \Box) . Then (E', \Box) is unital and so E factors on the left. Since \mathcal{A} is an ideal in $RM(\mathcal{A})$, the inclusion $\mathcal{A} \cdot E' \subset \mathcal{A}$ follows.

For the converse let $(e_{\alpha})_{\alpha \in I}$ be a BAI in \mathcal{A} bounded by one and let Φ_0 be a corresponding mixed unit of it in E' such that $\|\Phi_0\| = 1$. Define

$$\theta: RM(\mathcal{A}) \longrightarrow E', \quad \theta(T) = T''(\Phi_0).$$

Then θ is a continuous homomorphism. Since E factors on the left, we have

$$\|\theta(T)\| \leq \|T\|, \qquad (T \in RM(\mathcal{A}))$$

On the other hand for all $a \in \mathcal{A}$ and $f \in E$, we have

$$\begin{split} \langle \widehat{a} \cdot \theta(T), f \rangle &= \langle \theta(T), f \cdot a \rangle \\ &= \langle T''(\Phi_0), f \cdot a \rangle \\ &= \langle \Phi_0, (f \cdot a) T \rangle \\ &= \lim_{\alpha} \langle f, T(ae_{\alpha}) \rangle = \langle f, T(a) \rangle \\ &= \langle \widehat{T(a)}, f \rangle. \end{split}$$

Thus, $\widehat{a} \cdot \theta(T) = \widehat{T(a)}$. So

$$||T(a)|| = ||\widehat{a} \cdot \theta(T)|| \leq ||a|| ||\theta(T)||,$$

hence $||T|| \leq ||\theta(T)||$ and θ is isometry. Now for all $\Phi \in E'$, define

$$T(a) = \hat{a} \cdot \Phi, \quad (a \in \mathcal{A}).$$

Then $T \in RM(\mathcal{A})$ and we deduce

$$\langle \theta(T), f \cdot a \rangle = \langle T''(\Phi_0), f \cdot a \rangle$$

$$= \lim_{\alpha} \langle f \cdot a, T(e_{\alpha}) \rangle$$

$$= \lim_{\alpha} \langle f, \widehat{ae_{\alpha}} \cdot \Phi \rangle$$

$$= \langle \widehat{a} \cdot \Phi, f \rangle$$

$$= \langle \Phi, f \cdot a \rangle.$$

Thus, $\theta(T) = \Phi$ and θ is onto. This complete the proof.

Let $\mathcal{A} = L^1(G)$ and $E = C_0(G)$. Then all conditions of Theorem 2.7 are valid, so we deduce the following corollary which is due to J. Wendel [4].

Corollary 2.8 Let G be a locally compact group. Then

$$RM(L^1(G)) = M(G).$$

Theorem 2.9 Let \mathcal{A} be a Banach algebra and E be an introverted subspace of \mathcal{A}' . Then \mathcal{A} is QAR with respect to E if and only if the map $T_f : \mathcal{A} \longrightarrow E$, $a \longmapsto f \cdot a$ is weakly compact.

Proof. Suppose \mathcal{A} is QAR with respect to $E, \Phi \in E'$ and $a_{\alpha} \longrightarrow \Phi$ in w^* -topology of E'. Then for all $\Psi \in E'$ and $f \in E$ we get

$$\langle \Psi, f \cdot a_{\alpha} \rangle = \langle \widehat{a_{\alpha}}, \Psi \cdot f \rangle \longrightarrow \langle \Phi, \Psi \cdot f \rangle = \langle \Phi \Box \Psi, f \rangle = \langle \Phi \Diamond \Psi, f \rangle = \langle \Psi, f \cdot \Phi \rangle.$$

Thus, $f \cdot a_{\alpha} \longrightarrow f \cdot \Phi$ in w-topology of E', that is T_f is weakly compact.

Conversely, let $\Phi \in E'$ and $a_{\alpha} \longrightarrow \Phi$ in w^* -topology of E'. Then $f \cdot a_{\alpha}$ tend to $f \cdot \Phi$ in w-topology, and so for all $\Psi \in E'$ we have

$$\langle \Psi, f \cdot a_{\alpha} \rangle \longrightarrow \langle \Psi, f \cdot \Phi \rangle.$$

Therefore $\widehat{a_{\alpha}} \Box \Psi \longrightarrow \Phi \Diamond \Psi$. It follows that $\Phi \Box \Psi = \Phi \Diamond \Psi$ and \mathcal{A} is QAR with respect to E.

As an consequence of above Theorem we have the next result.

Corollary 2.10 Let G be a locally compact group. Then G is compact if and only if $T_f: L^1(G) \longrightarrow LUC(G), g \longmapsto f \star g$ is weakly compact.

Theorem 2.11 Let \mathcal{A} be a Banach algebra and E be a closed \mathcal{A} -submodule of \mathcal{A}' . Then $E \subseteq WAP(\mathcal{A})$ if and only if \mathcal{A} is QAR with respect to E.

Proof. Suppose $E \subseteq WAP(\mathcal{A})$, then E is introverted by Proposition 5.7 of [5]. Let $f \in E$, take

$$K = \{ f \cdot a : \|a\| \leq 1 \}.$$

Then the *w*-closure K in \mathcal{A}' is weakly compact, because f is weakly almost periodic. Since K is Hausdorff in w^* -topology, the weak and w^* -topologies agree on K and both of them coincide with the norm topology on K, by the Mazur's Theorem. Now let $\Psi_{\alpha} \longrightarrow \Psi$ in w^* -topology of E', then

$$\langle \Psi_{\alpha} \cdot f, a \rangle = \langle \Psi_{\alpha}, f \cdot a \rangle \longrightarrow \langle \Psi, f \cdot a \rangle = \langle \Psi \cdot f, a \rangle.$$

Since $\Psi_{\alpha} \cdot f \longrightarrow \Psi \cdot f$, for all $a \in \mathcal{A}$, thus $\Psi_{\alpha} \cdot f \longrightarrow \Psi \cdot f$ in *w*-topology. So $\Phi \Box \Psi_{\alpha} \longrightarrow \Phi \Box \Psi$ for each $\Phi \in E'$ and \mathcal{A} is QAR with respect to E.

Conversely, assume that \mathcal{A} is QAR with respect to E and let $f \in E$, then the map

$$T: E' \longrightarrow E, \quad \Phi \longmapsto f \cdot \Phi$$

is w^* -w continuous. Thus, the set $S = \{f \cdot \Phi : \|\Phi\| \leq 1\}$ is relatively weakly compact in E. Since $K \subset S$, it follows that K is relatively weakly compact and hence f is almost periodic, as required.

The proof of the next result is immediate and we omit it.

Proposition 2.12 Let \mathcal{A} be a Banach *-algebra and E be a introverted subspace of \mathcal{A}' . If the involution of \mathcal{A} can be extend to (E', \Box) , then \mathcal{A} is QAR with respect to E.

A locally compact group G is said an SIN-group if the identity e of G has a basis consisting of compact sets invariant under inner automorphisms. It was shown that G is SIN-group if and only if LUC(G) = RUC(G).

Remark 1 1) Let G be a locally compact SIN-group, and $\mathcal{A} = L^1(G)$. Let $(LUC(G)', \Box)$ has an involution extending the natural involution of \mathcal{A} , then by proposition 2.12, we have $Z_t(LUC(G)', \Box) = LUC(G)'$. Therefore G is compact by Theorem 2.3.

2) Let G be any totally bounded topological group. Then by Corollary 4.11 of [2] we have LUC(G) = Wap(G). Since the multiplication on Wap(G)' is $w^* \cdot w^*$ continuous, hence $Z_t(LUC(G)', \Box) = LUC(G)'$.

References

- [1] R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848.
- [2] J. F. Berglund, H. D. Junghenn and P. Milnes, Analysis on Semigroups, Wiley-Interscience, New York, 1989.
- [3] P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847-870.
- [4] H. G. Dales, Banach algebras and automatic continuity, London Math. Soc. Monographs 24, Clarenden Press, Oxford, 2000.
- [5] H. G. Dales and A. T. M. Lau, The second duals of Beurling algebras, Mem. Amer. Math. Soc. 177 (2005), 1-199.
- H. G. Dales, A. T.-M. Lau and D. Strauss, Banach algebras on semigroups and on their compactification, Mem. Amer. Math. Soc. 205 (2010), 1-165.
- [7] E. Hewitt and K. Ross, Abstract Harmonic Analysis, Volume II, Springer-Verlag, Berlin, 1970.
- [8] N. Isik, J. Pym and A. Ülger, The second dual of the group algebra of a compact group, J. London Math. Soc. 35 (1987), 135-158.
- [9] A. T. M. Lau and A. Ülger, Topological centres of certain dual algebras, Trans. Amer. Math. Soc. 348 (1996), 1191-1212.
- [10] A. Ülger, Arens regularity of the algebra $\mathcal{A}\widehat{\otimes}\mathcal{B}$, Trans. Amer. Math. Soc, 305 (1988), 623-639.
- [11] A. Ülger, Arens regularity sometimes implies RNP, Pacific J. Math. 143 (1990), 377-399.
- [12] P. K. Wong, Arens product and the algebra of duble multipliers, Proc. Amem. Math. Soc. 94 (1985), 441-444.
- [13] N. J. Young, The irregularity of multiplication in group algebras, Quart. J. Math. 24 (1973), 59-62.