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Abstract 

Combined cooling, heat, and power (CCHP) units can be integrated with conventional separate cooling, heat, and power 

production units to meet demands. The goal of this study is to develop and examine a hybrid GA-heuristic optimization 

algorithm for solving the unit commitment problem for integrated CCHP-thermal-heat only system with considerations for 

electricity boiler. When environmental emission cost and valve-point effects are considered, the utilization of CCHP units in 

an integrated CCHP-thermal-heat system results in environmental emission and total cost reduction by and 38.37 and 0.03% 

respectively.. Also, using electricity boiler, environmental emission and total cost reduction of 0.53 and 0.03 are reached, 

respectively. 
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1. Introduction 

Proper utilization of combined cooling, heat, 

and power (CCHP) systems requires considerations 

for a range of technical, economic, and 

environmental emission issues for the purpose of 

optimal operation planning and scheduling [1-3]. 

When integrated to meet cooling, heat, and power 

demands, CCHP units are used for providing 

cooling (absorption chillers), heat, and power 

simultaneously, thermal units are utilized to meet 

cooling (compression chillers) and power 

generation, and heat only units are used for 

supplying the heat needed beyond that available 

from CCHP units. Also, CCHP units can be 

integrated with thermal and heat only units for 

delivering cooling, heat, and power as well as 

providing spinning reserve for power, which 

constitutes unit commitment (UC) problem [4]. 

However, for thermal units, opening steam valves 

of the large steam turbine for increasing the power 

output leads to a non-convex fuel cost function [5-

6] that must be accounted for in the UC problem 

formulation. 

In the literature, there are limited studies that 

focus on solving UC problem for CCHP systems. 

Optimal dispatch strategy for integrated 

energy systems with CCHP and wind power is 

presented in [7]. In that study, the objective 

function of the optimization model is to minimize 

the total operation cost of integrated energy 

systems and, the model is transformed into mixed 

integer linear programming formulation to improve 

the computation efficiency. Numerical case studies 

conducted demonstrate the lower operation cost of 

the proposed model facilitating wind power 

integration. 

In [8], a new operation strategy, based on the 

variational electric cooling to cooling load ratio, for 

the CCHP system with unlimited and limited power 

generation unit capacity is investigated. In [9, 10], 

a stochastic multi-objective optimization model to 

optimize the CCHP operation strategy for different 

climate conditions is proposed. The probability 

constraints are added into the stochastic model to 

guarantee the optimized CCHP operation strategy 

is reliable to satisfy the stochastic energy demand. 
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Several studies about scheduling of CCHP-

based microgrids are presented in [11-18]. 

An online economic optimal operation of 

CCHP and photovoltaic systems is proposed in [19, 

20]. In those studies, a test system consists of a 

CCHP, a photovoltaic system, an auxiliary boiler, 

an absorption chillers, a heat storage tank, and 

utility grids are included. 

A multi-objective optimization problem for 

CCHP system is discussed in [21]. The main 

objective of that study is to minimize 

simultaneously the amount of fuel utilization and 

pollutants emission from CCHP system. A value-

based planning method for CCHP placement based 

on the energy hub concept is proposed in [22]. The 

proposed method takes the benefits and costs of 

CCHP placement into account and determines the 

optimal sizing and operation for energy hub 

elements.  

The multi-objective optimization dispatch of 

CCHP based on the principle of equal emission is 

presented in [23]. In [24], an optimal operating 

strategy for CCHP in multi-energy carrier system is 

proposed. 

A simple model for CCHP based hybrid 

power system scheduling for energy resources is 

presented in [25]. That research points an effective 

operation strategy which ensure a clean and energy 

efficient power scheduling by exploiting available 

energy resources effectively. 

It is noted that in all previous studies [8-25], 

the effects of integration of CCHP units with other 

units, the feasibility region constraint of CCHP 

units, electricity boiler, and valve point effects for 

steam turbines of thermal units are not studied. 

Also, to accurate modeling of UC problem, related 

constraints such as minimum up/down times 

(MUT/MDT) must be considered. 

The goal of this study is to develop and 

examine a hybrid Genetic algorithm (GA)-heuristic 

optimization algorithm for solving the unit 

commitment problem for integrated CCHP-

thermal-heat only system with considerations for 

electricity boiler. 

The organization of this study is as follows. 

Section 2 introduces the UC problem formulation 

for integrated CCHP-thermal-heat only system and, 

Section 3 explains the heuristic optimization 

algorithm proposed in this study. In Section 4, the 

parametric values and data are presented and, 

simulation results are analyzed. Finally, in Section 

5, conclusion and recommendations are given.  

2. Problem Formulation 

A) Assumptions 

In this study, the following assumptions are 

considered: 

 The CCHP and thermal units provide cooling 

demand through absorption and compression 

chillers, respectively. 

 The CCHP, electricity boiler, and heat only 

units provide heat demand. 

 The power is generated by CCHP and thermal 

units. 

 Spinning reserve is considered only for power 

demand. 

 The input power of electricity boiler is 

provided by thermal and CCHP units. 

B) Thermal units 

For thermal units, the objective function is, 

 min THETC   (1) 

Where 

THE THE THE THETC FC SC EMC     (2) 

 
1 1

( ( , )) ( , )
T N

THE

t i

FC f P i t I i t
 

  (3) 

 

2

min

( ( , )) ( , ) ( , )

sin ( ( ) ( , ))

i i i

i i

f P i t a P i t b P i t c

d e P i P i t

  

 
 (4) 

where the last term in Eq. (4) represents the 

valve-point effects modeled as a non-convex term. 
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(6) 

( ,0) ( )I i IS i  (7) 

Note that ( ) 0IS i   if thermal unit i  has been 

ON before first time period and, ( ) 0IS i   if 

thermal unit 
thi has been OFF before first time 

period. 

The objective function for thermal units given 

by Eq. (1) is subject to the following constraints, 

 Generation capacity 

min max( ) ( , ) ( , ) ( )P i I i t P i t P i    (8) 

 Minimum up time' 

( , ) ( )ONT i t MUT i   (9) 

 Minimum down time 

( , ) ( )OFFT i t MDT i   (10) 

C) CCHP units 

For CCHP units, the objective function is, 

 min CCHPTC   (11) 

Where 
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If spinning reserve cost is considered, 

CCHPFC  is modified as 
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The objective function for CCHP units given 

by Eq. (12) is subject to the following constraints, 

 Generation capacity 

min max( ) ( , ) ( , ) ( )P j I j t P j t P j    (19) 

min max( ) ( , ) ( , ) ( )H j I j t H j t H j   (20) 

 Minimum up time 

( , ) ( )ONT j t MUT j   (21) 

 Minimum down time 

( , ) ( )OFFT j t MDT j   (22) 

3. Power-heat Feasible Operating Region 

Each CCHP unit has a power-heat feasible 

operation region shown in Fig. 1, which can be 

presented as a set of linear inequality constraints.  

These constraints address the joint 

characteristic technology of power-heat in CCHP 

units. 

( , ) ( , )k k kx P j t y H j t z    (23) 

 

 

Fig. 1. Power-heat feasible operating region of CCHP units 

[1]. 

A) Heat only units 

For heat only units, the objective function is, 

 min HTOTC   (24) 
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The objective function for heat only units 

given by Eq. (25) is subject to the following 

constraints, 

 Generation capacity 

min max( ) ( , ) ( , ) ( )H l I l t H l t H l    (31) 

 Minimum up time 

( , ) ( )ONT l t MUT l   (32) 

 Minimum down time 

( , ) ( )OFFT l t MDT l   (33) 

B) Electricity boiler 

Electricity boiler consumes electric power to 

generate heat energy when heat load cannot be met 

entirely by the CHP units and the heat storage tank. 

The cost function of electricity boiler is 

 min EBTC  (34) 
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It is noted that ( , )P k t  could also met by 

thermal and CCHP units. 

C) Integrated CCHP-thermal-heat only-

electricity boiler 

When CCHP, thermal, and heat only units are 

operated as one integrated system, the objective 

function is, 

 min INTTC  (38) 

INT THE CCHP HTO EBTC TC TC TC TC     (39) 

The objective function of UC problem given 

by Eq. (35) is subject to the following constraints, 

System cooling, heat, and power balances 

 Cooling balance 
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System power spinning reserve inequality 
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Units constraints 

All units' constraints (Eqs. (9)-(11), (20)-(23), 

(32)-(34), and (37)-(38)) must be met. 

D) Environmental emission 

The operation of integrated CCHP-thermal-

heat only system is always accompanied by the 

release of several environmental pollutants and, the 

CO2 emissions by units at hour t are given by 
2( ( , )) ( , ) ( , )ei ei eiEMS P i t P i t P i t      (48) 
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2( ( , )) ( , ) ( , )el el elEMS H l t H l t H l t      (50) 

and environmental emission associated costs are: 
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4. Optimization Methodology 

In this section, the heuristic optimization 

algorithm developed for optimal scheduling of 

integrated CCHP-thermal-heat only system for 

minimizing environmental emission and total cost 

is presented. 

Cost reduction and impressive low execution 

time can be achieved by utilizing the described 

heuristic optimization algorithm, as the 

maximization of proposed fitness function (FF) in 

this study finds the optimal output power of a unit 

[1]. After calculating the optimal output power of 

units using GA discussed in [26-28], the units are 

sorted according to their best FFs and, the 

committed units are then determined when all 

constraints such as generation capacity, MUT, and 

MDT are satisfied. This heuristic optimization 

algorithm is successfully applied to solve CHP 

PBUC [1] and, here it is modified to solve UC for 

integrated CCHP-thermal-heat only system. 

To solve the UC problem for integrated 

CCHP-thermal-heat only system, three alternatives 

(UC for power demand and UC for heat demand 

under two conditions) are proposed as detailed in 

Fig. 2. 

It is noted that electricity boiler is utilized 

when the cost of power input is less than the cost of 

corresponding heat (75% of power input). 

 

Fig. 2. Optimization algorithm flowchart of UC problem for integrated CCHP-thermal-heat only system at hour t. 
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UC for heat demand-A 
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1INTTC 
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5. Simulation Results 

The simulation results are presented to examine 

the environmental emission reductions and total 

cost achieved based on the heuristic optimization 

algorithm proposed in this study. 

A) Data needed 

 Thermal units: Ten thermal units with 

characteristics data from  [6] are used. 

 CCHP units: Two CCHP units with data from  

[4] are used. 

 Heat only unit: One heat only unit with data 

from  [4] is used.  

 Chillers: Absorption 
 1.2acCOP 

 and 

compression chillers 
 3ccCOP 

 data are 

from  [6]. 

 Power system demand: The needed data for 

power system demand is based on  [1] for 

simulation. It is noted that spinning reserve 

limit is considered at 10% of power demand 

[29-33]. 

 Heat system demand: The needed data for heat 

demand is based on  [4]. 

 Cooling system demand: The needed data for 

heat demand is based on  [4]. 

 Electricity boiler: The needed data for 

electricity boiler is available in  [6] when the 

efficiency is 75%. 

B) Results and discussion 

In this case, cooling, heat, and power 

demands are satisfied by integrated CCHP-thermal-

heat only system. Environmental emission cost is 

considered  26.6 $/TOCEMP   [1]. 

The effects of CCHP units: 

It is determined from Table I that, the 

utilization of CCHP units reduces environmental 

emission and total cost in comparison with 

separated thermal and heat only units by 38.37 and 

0.03% , respectively. 

The effects of electricity boiler: 

In this section, electricity boiler is considered. 

It is concluded from Table II that the 

utilization of electricity boiler can simultaneously 

reduce environmental emission and total cost by 

0.53 and 0.03%, respectively. 

The input power and output heat of electricity 

boiler are presented in Table 3.  

Optimal output (power+cooling) for 

integrated CCHP-thermal-heat only system is 

shown in Table 4., where cooling demand is met by 

thermal units using compression chillers and, 

CCHP and thermal units are responsible for 

satisfying power demand. 

Table.1. 
Results for UC problem for operation of integrated CCHP-

thermal-heat only system when 2 CCHP units are utilized with 

considerations for environmental emission cost. 

Operation TC 

($) 

TC 

(%) 

EMS 

(TOC) 

EMS 

(%) 

Without 

CCHP 

1,323,734 - 50,986 - 

With CCHP 1,323,330 0.03 31,421 38.37 

Table.2. 
Results for UC problem for operation of integrated CCHP-
thermal-heat only system when electricity boiler is utilized. 

Operation TC 

($) 

TC 

(%) 

EMS 

(TOC) 

EMS 

(%) 

Without electricity 

boiler 

1,323,330 - 31,421 - 

With electricity boiler 1,322,900 0.03 31,254 0.53 

 

In Table V, Optimal output (heat+cooling) for 

integrated CCHP-thermal-heat only system is 

presented. It is shown that cooling demand is met 

by CCHP units using absorption chillers and, 

CCHP and heat only units are responsible for 

satisfying heat demand.  

Table.3. 
Power input and heat output of electricity boiler 

Hr 

Electricity boiler 

(MW) 
Hr 

Electricity boiler 

(MW) 

Power 

input 

Heat 

output 

Power 

input 

Heat 

output 

1 0 0.0 13 10 7.5 

2 0 0.0 14 0 0.0 

3 40 30.0 15 0 0.0 

4 40 30.0 16 50 37.5 

5 5 3.8 17 30 22.5 

6 50 37.5 18 0 0.0 
7 50 37.5 19 10 7.5 

8 50 37.5 20 25 18.8 

9 0 0.0 21 0 0.0 
10 40 30.0 22 40 30.0 

11 40 30.0 23 50 37.5 
12 0 0.0 24 50 37.5 

 

As discussed in section III, GA is used to 

find *( , )P i t . For example, the GA convergence 

curves for thermal unit 2 at hr 12. (
*(2,12) 246P  ) 

is shown in Fig. 3. 

 

Fig. 3. Topology of the smart large consumer 
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Table.4. 
Optimal output (power+cooling) for integrated CCHP-thermal-heat only system with considerations for environmental emission and 

electricity boiler 

Hr 

Unit Output (MW) 

Thermal (Power + Cooling) CCHP 

1 2 3 4 5 6 7 8 9 10 1 2 

1 227.00+0.00 222.00+0.33 185.00+27.67 120.00+0.33 171.00+1.67 111.0+11.67 00.00+00.00 00.00+00.00 0.00+0.00 0.00+0.00 000.00 000.00 

2 234.00+0.00 229.00+0.00 202.00+37.33 131.00+0.00 181.00+0.00 133.00+0.00 00.00+00.00 00.00+00.00 0.00+0.00 0.00+0.00 000.00 000.00 

3 227.00+32.5 222.0+32.83 185.00+64.17 120.0+32.83 173.00+0.00 116.00+6.67 00.00+00.00 85.00+00.33 0.00+0.00 0.00+0.00 000.00 000.00 

4 231.00+0.00 226.00+0.00 193.00+31.00 126.00+0.00 177.00+0.00 81.00+00.00 00.00+00.00 00.00+47.00 0.00+0.00 0.00+0.00 215.00 109.50 

5 229.00+0.00 224.00+0.00 190.00+37.33 124.00+0.00 175.00+0.00 126.00+0.00 00.00+00.00 87.00+00.00 0.00+0.00 0.00+0.00 215.00 109.50 

6 231.00+0.00 226.00+0.00 195.00+39.33 127.00+0.00 178.00+0.00 128.00+0.00 130.00+0.00 88.00+00.00 0.00+0.00 0.00+0.00 215.00 109.50 

7 239.00+0.00 233.00+0.00 213.00+41.67 140.00+0.00 188.00+0.00 140.00+0.00 130.00+0.00 94.00+00.00 0.00+0.00 0.00+0.00 215.00 109.50 

8 242.00+0.00 235.00+0.00 219.00+36.00 193.00+0.00 192.00+0.00 144.0+16.00 130.00+0.00 96.00+00.00 0.00+0.00 0.00+0.00 215.00 109.50 

9 243.00+0.00 236.00+0.00 223.00+48.33 300.00+0.00 224.00+0.00 146.0+14.00 130.00+0.00 97.00+00.00 0.00+0.00 0.00+0.00 215.00 109.50 

10 246.00+42.0 238.00+0.00 330.00+10.33 300.00+0.00 243.00+0.00 160.00+0.00 130.00+0.00 100.0+20.33 0.00+0.00 0.00+0.00 215.00 109.50 

11 282.00+21.3 246.00+51.3 340.00+00.00 300.00+0.00 243.00+0.00 160.00+0.00 130.00+0.00 120.00+0.00 0.00+0.00 0.00+0.00 215.00 109.50 

12 356.00+23.0 246.00+59.3 340.00+00.00 300.00+0.00 243.00+0.00 160.00+0.00 130.00+0.00 120.00+0.00 0.00+0.00 0.00+0.00 215.00 109.50 

13 246.00+57.3 238.00+5.67 330.00+10.33 300.00+0.00 243.00+0.00 160.00+0.00 130.00+0.00 100.0+20.33 0.00+0.00 0.00+0.00 215.00 109.50 

14 243.00+0.00 236.00+0.00 223.00+90.00 300.00+0.00 224.00+0.00 146.0+14.00 130.00+0.00 97.00+00.00 0.00+0.00 0.00+0.00 215.00 109.50 

15 242.00+0.00 235.00+0.00 219.00+77.67 193.00+0.00 192.00+9.33 144.0+16.00 130.00+0.00 96.00+00.00 0.00+0.00 0.00+0.00 215.00 109.50 

16 227.00+0.00 222.00+0.33 185.0+102.67 120.00+0.33 173.00+0.00 122.00+0.67 130.00+0.00 51.00+00.00 0.00+0.00 0.00+0.00 215.00 109.50 

17 221.00+5.67 168.00+45.3 185.00+00.33 110.0+10.33 167.00+5.67 98.00+24.67 127.00+2.67 80.00+05.33 0.00+0.00 0.00+0.00 215.00 109.50 

18 231.00+0.00 226.00+0.00 195.00+83.33 127.00+0.00 178.00+0.00 128.00+0.00 130.00+0.00 88.00+00.00 0.00+0.00 0.00+0.00 215.00 109.50 

19 242.00+0.00 235.00+0.00 219.00+56.67 193.00+0.00 192.00+0.00 144.0+16.00 130.00+0.00 96.00+00.00 0.00+0.00 0.00+0.00 215.00 109.50 

20 246.00+42.0 238.00+0.00 330.00+10.33 300.00+0.00 243.00+0.00 160.00+0.00 130.00+0.00 100.0+20.33 0.00+0.00 0.00+0.00 215.00 109.50 

21 243.00+0.00 236.00+0.00 223.00+38.00 300.00+0.00 224.00+0.00 146.0+14.00 130.00+0.00 97.00+00.00 0.00+0.00 0.00+0.00 215.00 109.50 

22 231.00+0.00 226.00+0.00 195.00+41.67 127.00+0.00 178.00+0.00 128.00+0.00 130.00+0.00 88.00+00.00 0.00+0.00 0.00+0.00 215.00 109.50 

23 227.00+0.00 223.00+0.00 187.00+29.67 121.00+0.00 174.00+0.00 124.00+0.00 130.00+0.00 85.00+00.33 0.00+0.00 0.00+0.00 000.00 061.00 

24 227.00+0.00 223.00+0.00 187.00+31.00 121.00+0.00 173.00+0.00 123.00+0.00 130.00+0.00 0.00+00.000 0.00+0.00 0.00+0.00 000.00 000.00 

 

 

Table.5. 
Optimal output (heat+cooling) for integrated CCHP-thermal-

heat only system with considerations for environmental 

emission and electricity boiler 

Hr 

Unit output MW 

Hr 

Unit output MW 

Heat 

only 

CCHP 

 heat+cooling 
Heat 

only 

CCHP 

heat+cooling 

1 2 1 2 

1 401 0.00+0.00 0.00+0.00 13 179 160+00.00 135+0.00 

2 407 0.00+0.00 0.00+0.00 14 177 158+00.00 135+0.00 

3 417 0.00+0.00 0.00+0.00 15 172 155+12.00 135+0.00 

4 158 138+10.00 135+0.00 16 163 145+00.00 135+0.00 

5 160 143+00.00 135+0.00 17 160 143+00.00 135+0.00 

6 166 149+00.00 135+0.00 18 166 149+10.00 135+0.00 

7 169 151+00.00 135+0.00 19 172 155+10.00 135+0.00 

8 172 155+00.00 135+0.00 20 179 160+10.00 135+0.00 

9 178 159+00.00 135+0.00 21 176 157+10.00 135+0.00 

10 179 160+00.00 135+0.00 22 166 148+10.00 135+0.00 

11 181 162+00.00 135+0.00 23 355 0.00+00.00 75+18.33 

12 183 165+11.00 135+0.00 24 414 0.00+00.00 0.00+0.00 

6. Conclusions and Recommendations 

A hybrid GA-heuristic optimization algorithm 

for solving the UC problem with integrated CCHP-

thermal-heat only system with considerations for 

electricity boiler is developed. It is shown that with 

considerations for electricity boiler, integrated 

CCHP-thermal-heat only system can 

simultaneously reduce environmental emission and 

total cost, as compared with separated operation of 

thermal and heat only units. For future works, the 

application of the heuristic optimization algorithm 

developed in this study for solving UC problem 

with integration of CCHP and renewable energy 

resources is suggested. 
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